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Abstract

Motivation: A cancer genome includes many mutations derived from various mutagens and muta-

tional processes, leading to specific mutation patterns. It is known that each mutational process

leads to characteristic mutations, and when a mutational process has preferences for mutations,

this situation is called a ‘mutation signature.’ Identification of mutation signatures is an important

task for elucidation of carcinogenic mechanisms. In previous studies, analyses with statistical

approaches (e.g. non-negative matrix factorization and latent Dirichlet allocation) revealed a num-

ber of mutation signatures. Nonetheless, strictly speaking, these existing approaches employ an

ad hoc method or incorrect approximation to estimate the number of mutation signatures, and the

whole picture of mutation signatures is unclear.

Results: In this study, we present a novel method for estimating the number of mutation signa-

tures—latent Dirichlet allocation with variational Bayes inference (VB-LDA)—where variational

lower bounds are utilized for finding a plausible number of mutation patterns. In addition, we per-

formed cluster analyses for estimated mutation signatures to extract novel mutation signatures

that appear in multiple primary lesions. In a simulation with artificial data, we confirmed that our

method estimated the correct number of mutation signatures. Furthermore, applying our method

in combination with clustering procedures for real mutation data revealed many interesting muta-

tion signatures that have not been previously reported.

Availability and implementation: All the predicted mutation signatures with clustering results are

freely available at http://www.f.waseda.jp/mhamada/MS/index.html. All the Cþþ source code and

python scripts utilized in this study can be downloaded on the Internet (https://github.com/qkiriki

gaku/MS_LDA).
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1 Introduction

Cancer cells carry a number of somatic mutations, which are rough-

ly subdivided into two categories: (i) driver mutations that contrib-

ute to the proliferation of cancer genomes and (ii) passenger

mutations that do not contribute to the proliferation (Stratton et al.,

2009). In the past research, hypothesis-driven studies whose target is

driver mutations have mainly been conducted (Smalheiser, 2002).

On the contrary, due to the development of next-generation

sequencers (NGS), large-scale data on cancer genomes are rapidly

accumulated worldwide (Forbes et al., 2015; Tomczak et al., 2015).

Accordingly, because many studies that are focused on passenger

mutations have been conducted (Rubin and Green, 2009; Wong

et al., 2011), passenger mutations are also considered important for

understanding carcinogenic mechanisms (Alexandrov et al., 2013a;

Barba et al., 2014; Greenman et al., 2007).

Regardless of whether it is a driver mutation or passenger muta-

tion, each somatic mutation has its own cause. For instance, it is

known that genome sequences of lung cancer patients with a smok-

ing habit have many typical substitutions, cytosine (C) to adenine

(A), in their tumor suppressor genes, such as TP53 (Toyooka et al.,

2003). In this case, we call the smoking habit a ‘mutational process’

(causes mutations), and a ‘mutation signature’ is defined as a prefer-

ence for mutations (mutational distribution, e.g. C to A substitu-

tions frequently occur) corresponding to the mutational process.

Every mutational process leads to a specific mutation signature, and

accumulation of mutations from birth up to now is considered a re-

sult of a combination of some mutation signatures (Stratton, 2011).

Hence, clarification of mutation signatures is expected to reveal car-

cinogenic mechanisms and may serve as biomarkers for early diag-

nosis (Harris, 2013; Temko et al., 2018; Wagener et al., 2015).

Note that Zou et al. (2018) recently reproduced mutation signatures

with a knockout of individual genes in vitro using the CRISPR-Cas9

technology; this result supports the existence of mutation signatures.

There exist many studies on prediction of mutation signatures by

means of cancer mutation catalogs. Nik-Zainal et al. (2012, 2016)

and Alexandrov et al. (2013a, 2015) used non-negative matrix fac-

torization (NMF) (Lee and Seung, 2001) for estimating mutation

signatures and revealed 30 mutation signatures in various cancer

types (http://cancer.sanger.ac.uk/cosmic). The ‘signeR’ also utilized

NMF (in combination with the empirical Bayesian approach) for

signature discovery (Rosales et al., 2017). On the other hand,

Shiraishi et al. (2015) used the topic model [in particular, latent

Dirichlet allocation (LDA) (Blei et al., 2003)] for modeling and clari-

fying mutation signatures. In comparison with NMF, topic models

assume probabilistic structures of mutations behind samples; this

approach is expected to improve generalization performance

(Hofmann, 1999).

Although those methods are effective at estimating mutation sig-

natures, they involve ad hoc approaches to prediction of the variety

(number) of mutation signatures; this arrangement prevents clarifi-

cation of the whole picture of mutation signatures. In addition, dur-

ing a search for a new signature, model selection is an important

basis for deciding whether a signature is new. A notable approach to

determining the number of mutation signatures is to employ the

EMu method (Fischer et al., 2013) where the Bayesian information

criterion (BIC) is utilized for model selection. However, BIC is math-

ematically suitable only for probabilistic models whose Fisher infor-

mation matrix is regular because the posterior distribution of

parameters can be Laplace approximated in the statistical regular

model where the central limit theorem holds. Thus, BIC should not

be used in mixed models including latent variables such as LDA

(Yamazaki and Watanabe, 2005). Note that signeR described in the

previous paragraph also utilized BIC for model selection. To address

these issues, we propose a novel method for prediction of mutation

signatures and select a plausible model for LDA with variational

Bayes (VB) inference. We confirmed that our method is sufficiently

accurate in a numerical simulation. In experiments with real data-

sets, we introduced clustering analyses for estimated mutation signa-

tures in addition to known signatures to discover reliable signatures

present in several cancer types. As a result, we found several interest-

ing mutation signatures that could be novel.

2 Materials and methods

2.1 Representation of mutations in cancer genomes
Due to the recent advances of next-generation sequencers, the num-

ber of known cancer genomes is rapidly growing in the world. With

a specific cancer genome, we obtain a set of mutations (e.g. a substi-

tution from A to C, denoted by [A>C]) present in the genome.

Here, the variety of mutations is defined by a mutation dictionary

(denoted by M), and we utilize four mutation dictionaries

(M1;M2;M3 and M4) according to the purpose of analyses as

described below.

2.1.1 Mutation dictionaries without insertions and deletions

(indels)

For a single-base substitution, there are 4 types of bases (A, C, G

and T) before the substitution, and 3 types of bases (other than the

original base) after the substitution, thus leading to 12 types of

mutations. Nonetheless, DNA forms base pairs within the double-

stranded structure, and it is impossible to determine the strand on

which a mutation occurred using only the observed mutation cata-

log. For example, whenever the [C > T] substitution happens, sub-

stitution [G > A] takes place simultaneously on the complementary

strand, and we cannot distinguish these two substitutions. After re-

moval of this redundancy, there are only six kinds of single-

nucleotide substitutions (among the 12 types). In this study, we used

M0 :¼ f½C > A�; ½C > G�; ½C > T�; ½T > A�; ½T > C�; ½T > G�g, which

is the simplest mutation dictionary (Alexandrov et al., 2013a).

Furthermore, Alexandrov et al. (2013a) suggests that the bases adja-

cent to the base where a substitution occurred (called a mutation

context) are important; therefore, we include the 50 and 30 adjacent

bases into the information on mutations. For instance, it is known

that the cytosine that is adjacent to G on the 30 side tends to get

methylated, and a methylated cytosine tends to undergo deamin-

ation and is prone to change to thymine (Pfeifer, 2006), leading to a

specific mutation pattern: 50-X[C>T]G-30 (X¼A, G, C and T),

Signature 1 in the COSMIC database (Fig. 1). Motivated by this ob-

servation, Alexandrov et al. (2013a) introduced mutation dictionary

M1 for single substitutions and a mutation context for adjacent

bases:

M1 :¼ f50�XmY�30jX;Y 2 fA;C;G;Tg; m 2 M0g:

Clearly jM1j ¼ 4� 6� 4 ¼ 96 holds.

Additionally, we introduce another mutation dictionary,M2, in

which not only adjacent bases but also bases up to 2 units away up-

stream and downstream from a substitution (e.g. 50-AT[C>T]GC–

30) are considered a mutation context as follows.
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M2 :¼ f50�XYmZW � 30jX;Y;Z;W 2 fA;C;G;Tg;m 2M0g

where jM2j ¼ 4� 4� 6� 4� 4 ¼ 1536 holds. This mutation dic-

tionary is also used by Alexandrov et al. (2013a) and Shiraishi et al.

(2015).

2.1.2 Mutation dictionaries with indels

The mutation dictionaries in the previous section include only sub-

stitutions. It is known that somatic mutations often include many

insertions and deletions (indels), some of which involve several tens

of bases. We therefore introduce mutation dictionaries including

indels. To avoid sparsity of expressions, we consider big (�10 bps)

and small (<10 bps) indels: I :¼ fbig indel; small indelg. As in

Section 2.1.1, we consider the mutation context around indels.

When we focus on the bases which are adjacent to indels, the com-

bination of bases amounts to 4�4¼16 types. Because the 12 com-

binations other than 4 combinations ([50-ApXpT-30], [50-CpXpG-

30], [50-GpXpC-30] and [50-TpXpA-30], which are palindromes with

the complementary strand) are considered duplicates, actual muta-

tion contexts consist of 10 patterns. We therefore define MI as the

mutation dictionary for a mutation context with respect to indels:

MI :¼ fAmT;CmG;GmC;TmA;AmC;CmT;TmG;GmA;AmA;

CmCjm 2 Ig. In this study, we introduce the mutation dictionaries

with indels, M3 (including both substitutions with a simple muta-

tion context and indels) and M4 (including both substitutions with

a detailed mutation context and indels), which are formally defined

as

M3 :¼M1 [MI and M4 :¼M2 [MI

respectively. Note that jM3j ¼ jM1j þ jMIj ¼ 96þ 2� 10 ¼ 116

and jM4j ¼ jM2j þ jMIj ¼ 1536þ 20 ¼ 1556.

2.2 LDA for modeling of mutation signatures
By means of one of the mutation dictionaries in the previous section,

a mutation catalog in a specific cancer genome is transformed into a

set of mutations (defined by the mutation dictionary). We modeled

these mutations using a generative probabilistic model called LDA.

LDA was initially proposed as a generative probabilistic model

for documents (Blei et al., 2003) that was successfully applied to

some bioinformatics problems, e.g. by Liu et al. (2010) and Flaherty

et al. (2005). In LDA, each word in a document is generated from a

latent variable called a topic, which has a specific word distribution.

In this study, words and topics in LDA correspond to mutations and

mutational processes, respectively (Fig. 2).

In this article, we employ the following notations:

• ms;i is the ith mutation of the sth sample.
• S is the number of samples; s (1 � s � S) is an index for a

sample.
• ns is the number of mutations in the sth sample;
• V is the total number of mutations in mutation dictionary M;

v means the vth type of mutation (1 � v � V).
• K is the number of mutational processes; k means the kth process

(1 � k � K).
• hs ¼ fhs;kgK

k¼1 is the parameter of the categorical distribution of

mutational processes for each sample s, where hs;k represents the

activity of the kth process in the sth sample, which is called sig-

nature activity.
• /k ¼ f/k;vgV

v¼1 is the parameter of the categorical distribution of

mutations for each signature k, where /k;v denotes the propor-

tion of the vth mutation type for the kth signature.

Then, we introduce a probabilistic model for the observed muta-

tions fms;ig with latent variable zs;i 2 f1; . . . ;Kg representing the

mutational process of ms;i. Specifically, the generative model for

mutations is expressed as follows:

hs � DirðaÞ; /k � DirðbÞ (1)

zs;i � CatðhsÞ; ms;i � Catð/zs;i
Þ (2)

where CatðhÞ and DirðaÞ represent categorical and Dirichlet distri-

butions with hyperparameters h and a, respectively. We emphasize

that /k, which represents a mutational signature, is in one-to-one

correspondence with the kth mutation process.

2.3 Learning LDA with variational Bayes inference
Either Gibbs sampling or variational Bayes (VB) is frequently used

for learning parameters in LDA (Blei et al., 2003). In this study, we

employ VB because the evaluation function of VB (called variational

lower bound: VLB) is applicable to model selection (i.e. estimating

the number of latent variables). The detailed method is presented in

the Supplementary Section S1. In VB, we try to minimize the KL di-

vergence with the true distribution by learning so as to maximize

Fig. 1. A known mutation signature in the COSMIC database. This signature

(Signature 1) was taken from the COSMIC database (http://cancer.sanger.ac.

uk/cosmic), whose mutational process is considered the deamination reac-

tion of methylated cytosine. The horizontal and vertical axes show types of

mutations and their probabilities, respectively. The four arrows indicate the

peaks at A[C>T]G, C[C>T]G, G[C>T]G and T[C>T]G, suggesting that

methylated cytosine tends to become thymine if the 30 adjacent base is

guanine

Fig. 2. A graphical model of LDA for modeling mutation signatures. m is an

observed variable for mutations with a given mutation dictionary,M and z is

a latent (hidden) variable for mutational processes. The ith mutation in the

sth sample, ms;i 2M, is generated by a categorical distribution with parame-

ters /zs;i
, where zs;i 2 f1; 2; . . . ;Kg corresponds to its mutational process that

is generated by a categorical distribution with parameter hs; h and / are gen-

erated from Dirichlet distributions with hyperparameters a and b, respective-

ly. In this model, /z represents a preference for mutations (in M) of

mutational process z, and this arrangement corresponds to a mutation signa-

ture. S and K indicate the numbers of samples and mutation signatures, re-

spectively, and ns is the number of mutations in the sth sample. In this study,

not only parameters a, b, h and / but also K are estimated from the observed

mutations
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VLB calculated from the joint distribution without calculating the

posterior distribution. By avoiding the calculation of the posterior

distribution, it is possible to solve the issue of non-regularity in sin-

gular models such as LDA.

In our computational analyses, we updated parameters until the

difference between a current VLB value and the previous value by

one iteration becomes smaller than 10�5 or the number of iterations

becomes larger than 1000. To avoid the local minimum, the initial

values of parameters were reallocated 50 times for each K, and the

estimated values of the parameters with the highest VLB value were

adopted as representative parameters of K. It should be emphasized

that VB inference enables us to select the optimal number of latent

variables automatically by taking the highest value of VLB for each

K (Corduneanu and Bishop, 2001), which is a complementary ap-

proach to existing approaches such as EMu.

2.4 A comparison between predicted and known

mutation signatures
After training VB-LDA for a set of mutations with given mutation

dictionary M, we obtained the number of mutation signatures (K)

and parameters / ¼ f/kgK
k¼1, where /k denotes a probability vector

inM for mutation signatures k. On the other hand, 30 mutation sig-

natures are obtained from the COSMIC database (https://cancer.

sanger.ac.uk/cosmic), and the probability vector of the lth known

signature is denoted by wknown
l . If we choose the mutation dictionary

M1 in our method, then the predicted signatures are directly com-

parable to the known signatures. In this study, cosine distance is

used for the comparison because it can capture characteristic peaks

in a mutation distribution.

For mutation dictionaries M2;M3 and M4, we introduce a

probability distribution whose vocabulary is the same asM1 as

p2ðXmYÞ :¼
X

Z;W2fA;G;C;Tg
pM2
ðZXmYWÞ

p3ðXmYÞ :¼
pM3
ðXmYÞ

P
X0 ;Y 02fA;G;C;Tg

P
m2M0

pM3
ðX0mY0Þ

p4ðXmYÞ :¼
P

Z;W2fA;G;C;Tg pM4
ðZXmYWÞ

P
X0 ;Y0 ;Z;W2fA;G;C;Tg

P
m2M0

pM4
ðZX0mY 0WÞ

respectively, for X;Y 2 fA;C;G;Tg; m 2M0. Here, pMd
denotes

the estimated mutational distribution inMd (d¼2, 3, 4). Given that

p2; p3 and p4 clearly provide probability vectors for mutation dic-

tionaryM1, they are used in comparison with the known COSMIC

signatures.

3 Results and discussion

3.1 Results on simulated mutation datasets
To confirm the usefulness of our proposed model, we conducted

experiments with a simulated dataset. In these analyses, we simu-

lated mutation data according to the LDA model, where /k

(k ¼ 1;2; . . . ; 10) is taken from COSMIC Known Signature

1; 2; . . . ; 10. We generated various simulated data by changing total

sample number S, the number of mutations for one sample ns, and

hyperparameter ak to determine under what conditions the model

can predict original signatures correctly. We tested K from 2 to 30,

and the optimal K was estimated by VB inference (see Section 2.3).

Table 1 shows the results of simulation, and Figure 3 and

Supplementary Figure S1 present the VLB for K ¼ 2; 3; . . . ; 30 and

Table 1. Simulation results for various parameters of data

generation

# samples: S 20 100 1000 5000

# predicted signatures 9 10 10 10

Ave. Cos. dist. (to COSMIC

Signatures)

0.0614 0.0096 0.0138 0.0050

Ave. Cos. dist. (to predicted

signatures)

0.0473 0.0096 0.0138 0.0050

# mutations in sth sample: ns 100 200 400 2000

# predicted signatures 6 7 10 10

Ave. Cos. dist. (to COSMIC

Signatures)

0.0276 0.0262 0.0462 0.0138

Ave. Cos. dist. (to predicted

signatures)

0.0793 0.0588 0.0462 0.0138

hyperparameter ak 0.01 0.1 1 10

# predicted signatures 10 10 10 6

Ave. Cos. dist. (to COSMIC

Signatures)

0.0134 0.0138 0.0558 0.0480

Ave. Cos. dist. (to predicted

signatures)

0.0134 0.0138 0.0588 0.1046

Note: In this simulation, we applied VB-LDA to a simulated mutation

dataset in which 10 known COSMIC signatures are regarded as true signa-

tures. The default setting of parameters is S¼ 1000, ns ¼ 2000 and ak ¼ 0:1,

and we changed each parameter from its default value. ‘# predicted signa-

tures’ (closer to 10 is better) is the number of predicted mutation signatures

according to VB-LDA based on VLB (cf. Fig. 3); ‘Ave. Cos. dist. (to COSMIC

Signatures)’ (smaller is better) is equal to dðP;KÞ ¼
1
jPj
P

p2P arg mink2K cos distðp; kÞ where P (resp. K) is a set of predicted

(resp. known) mutation signatures, and cos dist is cosine distance between

two signatures, whereas ‘Ave. Cos. dist. (to predicted signatures)’ (smaller is

better) is equal to dðK;PÞ ¼ 1
jKj
P

k2K arg minp2P cos distðp; kÞ. When ‘# of

predicted signatures’ is equal to 10 and the values of ‘Ave. Cos. dist. (to

COSMIC signatures)’ and ‘Ave. Cos. dist. (to predicted signatures)’ are closer

to 0, the correct signatures are assumed to be reproduced. The bold values in-

dicate the best values within each row.

Fig. 3. Variational lower bound (VLB) for each number of mutation signatures

in the simulation with an appropriate condition (S ¼ 1000;

ns ¼ 2000; and ak ¼ 0:1; cf. Table 1). In this analysis, the true number of sig-

natures is 10. The horizontal axis shows the number of signatures K, and ver-

tical axis indicates VLB for each K. Furthermore, red and green bars show the

highest and the second highest VLBs, respectively. On the basis of VLB, we

can select a true number of mutation signatures (i.e. 10)
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estimated mutational signatures for K¼10, respectively, with ap-

propriate parameters (S ¼ 1000;ns ¼ 2000; ak ¼ 0:1). These results

clearly mean that VB-LDA successfully estimated the correct num-

ber of mutation signatures (K¼10) and a mutational distribution

for most conditions.

On the other hand, VB-LDA failed to estimate the true mutation-

al distribution and the true number of mutation signatures when the

number of samples was less than 100 and the number of mutations

included in one sample (ns) was less than 400. This is presumably

because VB-LDA estimates a signature on the basis of co-occurrence

of mutations, which assumes a relatively large input dataset (Blei

et al., 2003). Besides, when hyperparameter a is smaller than 0.1

(i.e. the distribution of mutational processes in the sample is suffi-

ciently biased), our method successfully estimated the number of

mutation signatures and the original distributions. We apply these

observations to the selection of real data in the next section.

3.2 Results on real mutation datasets
To look for new mutation signatures, we predicted real mutation

signatures by applying our method to the mutation catalog provided

in the COSMIC database. Because a mutational process varies de-

pending on the cancer type, samples were subdivided into primary

lesions, which are used to train the LDA model.

Many mutation catalogs are registered in the COSMIC database

(https://cancer.sanger.ac.uk/cosmic/download), but there are many

samples that include only a small number of mutations (i.e. ns is

very small). We confirmed via the simulation that such samples are

not appropriate for learning mutation signatures as discussed in

Section 3.1; therefore, we filtered out samples with fewer than 400

mutations. In addition, the primary lesion whose number of suitable

samples is less than 25 was excluded from the analysis for the same

reason. As a result, 1607 samples in 11 categories of primary lesions

(breast, endometrium, large intestine, liver, lung, oesophagus, pros-

tate, skin, soft tissue, stomach, upper aerodigestive tract and urinary

tract) were analyzed as follows. For some categories of primary

lesions, the number of samples is small (e.g. 30 for breast cancer),

and it is unclear whether our method can estimate the correct num-

ber of signatures from the simulation results. However, in this case,

because the samples that have almost no mutations behave like

noise, we decided to use only the sample with many mutations even

if the number of samples decreases.

Then, based on four mutation dictionaries (Md; d ¼ 1; 2; 3; 4),

four datasets were constructed for each type of primary lesion. At

this time, it is necessary to determine the surrounding bases at the

site where the mutation occurred (mutation context) according to

the corresponding mutation dictionary, and we used GRCh38 as a

reference human genome to obtain it and produced mutation data-

sets. We provided the mutational burden of the samples used in the

experiment and the information on site subtype and histology as

Supplementary HTML materials (http://www.f.waseda.jp/mha

mada/MS/index.html). Ramazzotti et al. (2018) pointed out that the

mutational distributions are affected by the sequencing strategy (i.e.

whole-genome or whole-exome sequencing). In this study, we did

not care about the strategies because the mutational distributions

were not different between the whole-sequence group (1575 sam-

ples) and targeted-sequencing group (32 samples) (the cosine dis-

tance between them is 0.1024; Supplementary Fig. S1). However,

this might be because the majority of whole-sequence samples is

whole- exome-sequenced samples. In that case, it is better to subdiv-

ide the samples having a whole-exome sequence and whole-genome

sequence in the same way as in another study (Alexandrov et al.,

2013a), but the samples with whole-genome sequence are still too

few to perform analyses; therefore, in this study we decided to carry

out experiments without separating the samples.

Finally, we applied our LDA method to these mutation datasets

and determined mutation signatures by VB inference (Section 2.3).

3.2.1 VB-LDA successfully recovered known mutation signatures

Supplementary Tables S1–S4 show a summary of the number of pre-

dicted signatures, which are similar to COSMIC Known Signatures

for each mutation dictionary Mk (k ¼ 1; 2;3;4), suggesting that

most of the known signatures in the COSMIC database were

extracted by VB-LDA. Especially, when the mutation datasets with

M3 andM4 (both of which include indels in their mutation vocabu-

laries) were tested, our method successfully predicted mutation sig-

natures that are likely to be associated with insertions and deletions

(e.g. COSMIC Known Signatures 6 and 15). This result therefore

supports the usefulness of various mutation dictionaries.

On the other hand, our method did not find several COSMIC

Known Signatures with any dictionary. This is because we did not

take into account all the available mutation catalogs in COSMIC.

For example, our method did not extract COSMIC Known

Signature 27, which has been found in kidney cancer (Alexandrov

et al., 2013b). Because there is a only small number of samples of

kidney cancer that have more than 400 mutations in COSMIC, kid-

ney cancer was removed from the list of targets of the experiment to

perform stable modeling. Moreover, Supplementary Figure S3 indi-

cates that our method estimated a merged mutation signature (pre-

dicted signature 1, a dominant signature in most samples;

Supplementary Fig. S3A) of COSMIC signature 2 and 13

(Supplementary Fig. S3D). It is known that both COSMIC signa-

tures 2 and 13 are related to AID/APOBEC proteins and often co-

occur. From a methodological viewpoint, it would be difficult to

deconvolute signatures that often co-occur (the convexity of transi-

tion of VLB is unclear; Supplementary Fig. S3B). Note that signa-

tures in the COSMIC database are taken from several studies, and

manually curated.

3.2.2 Discovering new signatures on the basis of hierarchical

clustering

To find a novel set of mutation signatures, we performed hierarchic-

al clustering analyses for predicted mutation signatures with each

mutation dictionary. In these analyses, we put predicted signatures

all together regardless of the cancer types (i.e. primary lesion), and

subdivided those signatures into clusters based on cosine distance,

by the average-linkage hierarchical clustering method; the COSMIC

Known Signatures were also included for dictionaryM1. After clus-

tering, we regarded a group of signatures as a cluster when cosine

distances among members were less than 0.2 (Fig. 4 and

Supplementary Figs S4–S7). It should be noted that mutation signa-

tures that are found in several cancer types support the existence.

Additionally, to ascertain the reliability of the signatures, signature

activity, hs;k in Section 2.2, is calculated, which shows how

much relative contribution is present in a sample s for a specific sig-

nature k.

In the figures below, note that all bar graphs show a mutational

distribution (i.e. /k). The horizontal axis means the mutation types,

and the vertical axis shows their proportion of that signature as do

Figure 1 and Supplementary Figure S1. Furthermore, red, green,

blue, cyan, magenta and yellow bars show the probability of emer-

gence of substitutions [C > A], [C > G], [C > T], [T > A], [T > C]

and [T > G], respectively.
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In the text below, we report seven interesting mutation signa-

tures that might be novel, or otherwise broaden our understanding

of known COSMIC signatures from the clustering results. Because

they appear in multiple primary lesions, and most of the signatures

are active in many samples (cf. Supplementary Fig. S8), the existen-

ces of these signatures is reliable. Higher-resolution figures for all

the mutation signatures, clustering results and signature activity (i.e.

the relative contribution of signatures in each sample) are shown in

Supplementary HTML materials (http://www.f.waseda.jp/mha

mada/MS/index.html). In the following, ‘Md Cluster-ID’ denotes

the result of Cluster-ID with theMd dictionary (the ID of the cluster

corresponds to the ID in Supplementary HTML).

1. M1 Cluster-15 (Fig. 5A): The signatures in this cluster were

detected in the large intestine, endometrium and liver. We

observed characteristic peaks, X[T>C]G (X ¼ A, T, G or C), in

all the mutation signatures (Fig. 5), which might be influenced

by an unknown mutational process. This cluster includes novel

mutation signatures because there is no known signature that is

similar to these signatures. For example, the most similar known

signature for predicted signature 9 in the endometrium (the mid-

dle panel in Fig. 5A) is COSMIC Known Signature 12 (found in

liver cancer), and the cosine distance between them is relatively

large (0.2234). Note that ‘COSMIC known signature 12’ does

not include the characteristic peaks, X[T>C]G (Fig. 5B).

On the other hand, this cluster could be related to COSMIC

Known signature 1 for the following reason. The [TC]G peaks in

this signature are a mirror image of the [CT]G peaks in COSMIC

Known signature 1. If the reference genome (GRCh38) includes

many [CT] substitutions affected by Known Signature 1, the [TC]

substitutions have occurred in the other samples that were not

affected by Known Signature 1. If this hypothesis is correct, then

this signature does not represent a novel mutation process.

2. M2 Cluster-1 (Supplementary Fig. S9A) & M4 Cluster-12

(Supplementary Fig. S9B). Both clusters are composed of two

signatures, which are found in the stomach and oesophagus.

Both signatures have peaks at C[T>C]X and C[T>G]X (X ¼ A,

T, G or C), and the second and fourth panels in Figure 9B sug-

gest that they are not related to indels. The detailed mutation

context (up to 2 bases from the mutated base) shows that there

is a high proportion of XC[T>G]XT (Supplementary Fig. 9C).

Of note, these signatures were extracted from adjacent organs

such as the stomach and oesophagus.

3. M2 Cluster-2 &M4 Cluster-11 (Supplementary Fig. 10A).M4

Cluster-11 includes signatures from many organs (breasts, endo-

metrium, large intestine and stomach), and they have peaks at

T[C>A]X and T[C>T]X in common (X ¼ A, G, C or T).

Furthermore, a similar cluster was detected when dictionaryM2

was chosen (M2 Cluster-2). If we study the mutation context in

detail, it offers distinct peaks at TT[C>A]XT and TT[C>T]XG

(Supplementary Fig. 10B). Although M4 is a mutation diction-

ary including indels, signatures belonging to this cluster were

not related to indels. In the large intestine, two similar signatures

are predicted and belong to this cluster (Predicted Signatures 2

and 7; the 3rd and 4th panels in Supplementary Fig. S10A). One

Fig. 4. Clustering results on mutation signatures for dictionaryM1, where all

the known COSMIC signatures in addition to our predicted signatures are

included on the vertical axis. Averaged linkage hierarchical clustering with a

cosine distance is employed for clustering. The colors show a cluster with the

distance threshold 0.2. A high-quality image is available in Supplementary

Fig. S4 or Supplementary HTML material. The results for the other mutation

dictionaries are presented in Supplementary Figures S5–S7

Fig. 5.M1 Cluster-15. This cluster in panel (A) includes three mutation signa-

tures from the large intestine (top), endometrium (middle) and liver (bottom)

with the M1 dictionary. The horizontal axis indicates the mutation types in

M1, and the vertical axis shows their proportion estimated by our method (cf.

Fig. 1). The arrows (in the middle panel) show four peaks in the mutation dis-

tribution at X[T>C]G (X¼A, T, G or C), which are also observed in the other

figures. Panel B illustrates the known COSMIC signature that is the known

signature closest to the signatures inM1 Cluster-15
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possibility is that these signatures were obtained via a model se-

lection mistake, but the relative contributions of these two signa-

tures are clearly different among samples (Supplementary

Fig. S11), thus pointing to the existence of a mutational process

with multiple kinds of mutational distributions such as AID/

APOBEC family (i.e. Cosmic Known Signatures 2 and 13).

Besides, from the appearance of peaks, these signatures are prob-

ably related to COSMIC Known Signature 10 associated with

POLE defects. If we look at activities (Supplementary Fig. S8),

there are many cases in which these signatures are dominant in

large-intestine and endometrium samples. Variants of cancer-

related genes, POLE and POLD1, have been found in patients

with large-intestine or endometrial cancer (Briggs and Tomlinson,

2013; Palles et al. 2013); therefore, the relation between these sig-

natures and COSMIC Known Signature 10 is obvious.

4. M2 Cluster-6 &M4 Cluster-3 (Fig. 6). The mutation signatures

inM4 Cluster-3 are found in many organs such as the prostate,

liver, oesophagus, stomach, large intestine and the upper aerodi-

gestive tract (Fig. 6A). When theM2 dictionary is used, a signa-

ture is obtained that is similar to Cluster-6 with M2

(Supplementary HTML materials). All the signatures have peaks

at the [C>T] substitution in their mutation distribution, and mu-

tation [C>A] or [T>C] is seen in some signatures. In particular,

when we see the mutation context for up to 2 bases from a muta-

tion, characteristic peaks were observed at XX[C>T]XG

(Fig. 6B). Note that mutation signatures extracted from the oe-

sophagus, liver, prostate and upper aerodigestive tract withM4

have a preference for indels (Fig. 6C). Because they are related to

indels and there are peaks at substitutions [C>T], we believe

that these signatures have some relation to COSMIC Known

Signature 6, which is associated with defective DNA mismatch

repair (Fig. 6D). Actually, the cosine distance between any mem-

bers belonging to this cluster and COSMIC Known Signature 6

is sufficiently small (e.g. cosine distance between Predicted

Signature 5 in the oesophagus with M2 and COSMIC Known

Signature 6 is 0.1296). If this signature group is related to defect-

ive DNA mismatch repair, then this cluster shows an extended

sequence context preference for COSMIC Known Signature 6.

5. M2 Cluster-7 (Supplementary Fig. S12) & M4 Cluster-4. M2

Cluster-7 (Supplementary Fig. S12) is associated with M4

Cluster-4 (shown in the Supplementary HTML material). The

signatures inM2 Cluster-7 are found in the stomach, large intes-

tine and endometrium (Supplementary Fig. S12). A similar sig-

nature was also extracted from lungs in M4 Cluster-4. Every

signature inM2 Cluster-7 has peaks at G[C>T]X, and the signa-

ture of the endometrium has peaks at A[C>T]X (Supplementary

Fig. S12B). Additionally, mutation signatures from the stomach

and large intestine have definite peaks at GG[C>T]XG and

TG[C>G]XG in particular (Supplementary Fig. S12B). Besides,

any member of M4 Cluster-4 corresponding to this cluster has

no indels.

6. M2 Cluster-9 (Supplementary Fig. S13) & M4 Cluster-8

(Supplementary Fig. S14). M2 Cluster-9 is associated with M4

Cluster-8. In the results on M2, these signatures were found in

the upper aerodigestive tract, lungs and skin (Supplementary

Fig. S13A). All the estimated mutation signatures have peaks at

C[C>T]X and T[C>T]X, and this tendency is particularly

strong when the 30 adjacent base for the mutation is thymine

(i.e. the peaks of C[C>T]C and T[C>T]C are stronger than the

other peaks). If we examine the mutation context in detail, there

Fig. 6.M4 Cluster-3. (A) Six predicted mutation signatures (for the prostate, liver, oesophagus, stomach, large intestine and upper aerodigestive tract) with re-

spect to the substitution in this cluster, where mutation context of substitutions inM4 is transformed to that ofM1 as described in Section 2.4, and the horizontal

axis denotes the type of mutations inM1. All the signatures have peaks at the [C>T] mutation (blue bars in A), and mutation [C>A] or [T>C] is seen in some sig-

natures. (B) In the figure showing the context in detail, the horizontal axis means a mutation context of [C>T] substitutions inM2. In particular, when we see the

mutation context for up to 2 bases from a mutation, large peaks were observed at XX[C>T]XG as the four arrows indicate. (C) In the indel graph, the horizontal

axis means mutation types of MI , and signatures extracted from the oesophagus, liver, prostate and upper aerodigestive tract with M4 have indels as their

cause. (D) In addition, the bar graph presents COSMIC Known Signature 6, which is the most similar known signature (e.g. cosine distance between it and

Predicted Signature 5 in the oesophagus withM2 is 0.1296)
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are peaks at XT[C>T]XC (Supplementary Fig. S13B).

Furthermore, this cluster may be meaningful because all primary

lesions in which these signatures are found are in epithelial tissue

and have similar peaks in comparison with COSMIC Known

Signature 7 (Supplementary Fig. S13C), which is associated with

exposure to ultraviolet light (e.g. cosine distance between

Predicted Signature 2 from lungs withM2 and COSMIC Known

Signature 7 is 0.2076, which is relatively small). Therefore, the

mutational process of these signatures may be related to expos-

ure to ultraviolet light. In particular, Predicted Signature 2 in

skin withM2 has a stable relative contribution through samples

(Supplementary Fig. S8).

7. M3 Cluster-3 (Fig. 7). Two mutation signatures inM3 Cluster-

3 were found in the stomach and prostate, and they have peaks

at C[C>A]X (X ¼ A, C, G or T), especially at C[C>A]A and

C[C>A]G (Fig. 7A). The signatures in this cluster are novel be-

cause, for example, the known signature most similar to

Predicted Signature 7 for the prostate (the bottom panel in

Fig. 7A) is COSMIC Known Signature 24, whose cosine distance

is 0.7252, and they are clearly different signatures. We found

that the signatures in the M3 cluster are similar to Predicted

Signature 4 with M4 (Fig. 7B), which has strong peaks at

CC[C>A]XX when we see the mutation context in detail

(Fig. 7C), indicating that the 50 base is important for this

mutation.

3.3 Further discussion
In this study, we proposed a method for estimating mutation signa-

tures; the advantage of this method is the mathematical validity in

model selection (i.e. selecting the number of mutation signatures),

compared with existing methods that involve ad hoc approaches or

improper approximation for model selection. To test whether this

mathematical justification is effective for the estimation of the num-

ber of signatures and validity of the obtained signatures, we com-

pared VB-LDA with the existing method EMu and probabilistic

latent semantic analysis (PLSA), which is the probabilistic model

that Dirichlet distribution of a prior is excluded from LDA. Details

are given in the Supplementary material (Supplementary Section 4).

In summary, from the viewpoint of model selection, we confirmed

via the simulation that VB-LDA is superior to EMu (if a mutation

opportunity is not considered) and to PLSA. Nevertheless, in

benchmarking using real data, it was not possible to compare the ef-

fectiveness because the true signature set could not be known.

In addition to the signatures listed in Section 3.2.2, novel muta-

tion signatures that are consistently active in multiple samples were

found. In the clustering method (cf. Section 3.2.2), more reliable sig-

natures are selected on the basis of the criteria that similar signatures

are obtained from multiple independent primary lesions.

Nevertheless, there may exist mutational processes that are active

only in a specific primary lesion, and the reliability of those signa-

tures can be indicated by high activity in multiple samples.

Specifically, Signature 6 in the lung withM1 and Signature 1 in the

endometrium with M2 are mutation signatures whose median and

average values of activities were greater than 0.05 and whose cosine

distance to known signatures was greater than 0.2 (Supplementary

Fig. S15). The former has peaks at C[C>A]A and T[C>A]G, and

the latter has peaks at XX[C>A]XT (Supplementary Fig. S15).

Especially signature 1 in the endometrium withM2 (Supplementary

Fig. S15C) forms a cluster with signature 5 in the large intestine

withM2, and the activity also shows a moderate value (the median

and means are 0.0563 and 0.0413).

It is widely known that different signatures are obtained for dif-

ferent tissues even with the same primary lesion (Alexandrov et al.,

2013b). In the present study, we did not conduct analysis by further

distinguishing the mutation catalog of the same primary lesion by

histological or a site subtype information because the number of

samples included in one dataset becomes insufficient to apply our

method (cf. Section 3.1). For example, investigating the signature ac-

tivity of soft tissue with M2 dictionary (Supplementary Fig. S16),

four signatures were predicted and only one signature is dominantly

active in each sample that corresponds to one of the three site sub-

types (fibrous tissue of uncertain origin, striated muscle and blood

vessels). Therefore, to make effective use of those information,

increasing the number of samples and using the resampling technol-

ogy typified by the bootstrap method may be essential to avoid

overfitting.

This study uncovered multiple signatures that cause indels as

well as substitutions (e.g. M4 Cluster-3). Nonetheless, it has been

shown that indel-generating processes depend on not only sequence

context/indel length but also the features of the surrounding se-

quence such as overlapping micro-homology (Alexandrov et al.,

2018; Nik-Zainal et al., 2016), which cannot be captured by con-

ventional models. In addition, we did not include variants other

than substitutions and indels (e.g. rearrangement) in the vocabulary

of a mutation dictionary. Particularly, in recent years, there have

been reports of signatures in which a rearrangement is present spe-

cifically (Nik-Zainal et al., 2016). Thus, to elucidate the whole mu-

tation signature, it is necessary to pay attention to these mutations

as well as substitutions and indels.

Furthermore, it may be necessary to review how to analyze the

mutation context. In our study (and other existing studies), only two

bases upstream and downstream of the mutated base were incorpo-

rated into the mutation context. WithM2 orM4, there were many

mutation signatures depending on the mutation context upstream or

downstream by 2 bases from the mutated base [e.g. Predicted

Signature 3 in the prostate withM4 (Fig. 6B)], suggesting that a sig-

nature depends on the mutation context 3 bases or more away from

the mutated base. From the viewpoint of sparseness of data, it is dif-

ficult to analyze samples with a new mutation dictionary taking into

account longer mutation contexts as compared toM2 andM4. For

example, if 3 bases upstream and downstream of a mutated base are

included in the mutation context, the size of that mutation

Fig. 7. M3 Cluster-3. (A) Two mutation signatures (from the stomach and

prostate) included in this cluster; the arrow points to peaks at C[C>A]A and

C[C>A]G. (B) The (marginalized) Predicted Signature 4 in the prostate (with

theM4 dictionary) similar to the signatures inM3 Cluster-3, where the arrow

indicates the peaks at C[C>A]X (X¼A, G, C or T). (C) The detailed mutation

context (up to 2 bases from the mutation) for the C[C>A]X peaks in the muta-

tion signature shown in (B); the arrows indicate CC[C>A]XX peaks (X¼A, G,

C and T)
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dictionary is equal to 24 576 for substitutions. Further studies

should be conducted regarding how to define more complicated and

informative mutation dictionaries (e.g. by considering longer muta-

tion contexts).

Our computational study indicates that our method not only suc-

cessfully estimates the number of mutation signatures on simulated

data but also predicts several new mutation signatures whose reli-

ability is provided by signature activity and clustering of signatures.

On the other hand, the computational experiments also clarify sev-

eral limitations of the proposed method (e.g. some known signatures

could not be recovered; more than two very similar signatures are

estimated in one cancer type), and further studies are necessary for

improvement of the method. In particular, to determine one muta-

tion signature corresponding to one mutational process, it is neces-

sary to select the ‘representative’ signature or merge multiple ones

obtained from all the primary lesions in which that mutational pro-

cess acts. Although the mutational distribution of the extracted sig-

nature may be slightly different, we should not separate samples for

each primary lesion but rather analyze the samples collectively to

solve this problem. Nevertheless, in this case, the complexity of the

dataset increases, making identification of the signatures difficult.

Therefore, we are now devising a new Bayesian hierarchical model

to extract mutation signatures where the hyperparameters of a prior

distribution in LDA capture the features of each primary lesion

(Supplementary Fig. S20). By means of such a model, it becomes

possible to analyze samples collectively, with sharing of mutational

distributions of signatures among primary lesions. We expect that

this model will produce a set of signatures that do not include mul-

tiple signatures from the same mutational process.

4 Conclusion

In this study, we proposed an effective method for determining the

number and characteristics of mutation signatures by VB-LDA, and

discovered many interesting mutation signatures, which might be

novel, for mutation data of various cancer genomes with four muta-

tion dictionaries. Compared with other existing approaches, our

method employs a different approach for model selection, thereby

leading to different mutation signatures. Furthermore, we intro-

duced a hierarchical clustering procedure for predicted mutation sig-

natures in addition to known signatures and obtained better

information about which mutation signature appears in which pri-

mary lesion and where peaks appear in specific mutation signatures.

All the predictions are freely available on our website (http://www.f.

waseda.jp/mhamada/MS/index.html), which will be a useful re-

source for cancer research.

Although we discovered interesting mutation signatures in this

study, we could not determine biological implications of the newly

found mutation signatures (note that mutational processes for most

of known signatures in the COSMIC database are unknown). In the

future, we should consider the correspondence between mutation

contexts of these signatures and actual etiology. These data will lead

to further understanding of carcinogenic mechanisms and early diag-

nosis of cancers.

Acknowledgements

Computation for this study was partially performed on the NIG supercom-

puter at ROIS National Institute of Genetics. YU is currently working at a

pharmaceutical company in Japan.

Funding

This work was supported by the Ministry of Education, Culture, Sports,

Science and Technology (MEXT) [KAKENHI grant numbers JP18KT0016,

JP17K20032, JP16H05879, JP16H01318 and JP16H02484 to M.H.] JST

CREST Grant Number JPMJCR1881, Japan and by a Waseda University

Grant for Special Research Projects (Project Number: 2017A-506).

Conflict of Interest: none declared.

References

Alexandrov,L. et al. (2018) The repertoire of mutational signatures in human

cancer. bioRxiv, 322859.

Alexandrov,L.B. et al. (2013a) Deciphering signatures of mutational processes

operative in human cancer. Cell Rep., 3, 246–259.

Alexandrov,L.B. et al. (2013b) Signatures of mutational processes in human

cancer. Nature, 500, 415.

Alexandrov,L.B. et al. (2015) Clock-like mutational processes in human som-

atic cells. Nat. Genet., 47, 1402.

Barba,M. et al. (2014) Historical perspective, development and applications of

next-generation sequencing in plant virology. Viruses, 6, 106–136.

Blei,D.M. et al. (2003) Latent dirichlet allocation. J. Mach. Learn. Res., 3,

993–1022.

Briggs,S. and Tomlinson,I. (2013) Germline and somatic polymerase � and d

mutations define a new class of hypermutated colorectal and endometrial

cancers. J. Pathol., 230, 148–153.

Corduneanu,A. and Bishop,C.M. (2001) Variational Bayesian Model

Selection for mixture distributions. Artificial intelligence and Statistics

2001, 27–34.

Fischer,A. et al. (2013) Emu: probabilistic inference of mutational

processes and their localization in the cancer genome. Genome Biol., 14,

R39.

Flaherty,P. et al. (2005) A latent variable model for chemogenomic profiling.

Bioinformatics, 21, 3286–3293.

Forbes,S.A. et al. (2015) Cosmic: exploring the world’s knowledge of somatic

mutations in human cancer. Nucleic Acids Res., 43, D805–D811.

Greenman,C. et al. (2007) Patterns of somatic mutation in human cancer

genomes. Nature, 446, 153–158.

Harris,R.S. (2013) Cancer mutation signatures, dna damage mechanisms, and

potential clinical implications. Genome Med., 5, 87.

Hofmann,T. (1999) Probabilistic latent semantic indexing. In Proceedings of

the 22nd Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval. ACM, pp. 50–57.

Lee,D.D. and Seung,H.S. (2001) Algorithms for non-negative matrix factor-

ization. In: Advances in Neural Information Processing Systems, pp.

556–562.

Liu,B. et al. (2010) Identifying functional mirna–mrna regulatory modules

with correspondence latent dirichlet allocation. Bioinformatics, 26,

3105–3111.

Nik-Zainal,S. et al. (2012) Mutational processes molding the genomes of 21

breast cancers. Cell, 149, 979–993.

Nik-Zainal,S. et al. (2016) Landscape of somatic mutations in 560 breast can-

cer whole-genome sequences. Nature, 534, 47.

Palles,C. et al. (2013) Germline mutations affecting the proofreading domains

of pole and pold1 predispose to colorectal adenomas and carcinomas. Nat.

Genet., 45, 136.

Pfeifer,G. (2006) DNA Methylation: Basic Mechanisms. Springer, Berlin,

Heidelberg, pp. 259–281.

Ramazzotti,D. et al. (2018) De novo mutational signature discovery in tumor

genomes using sparsesignatures. bioRxiv, 384834.

Rosales,R.A. et al. (2017) Signer: an empirical bayesian approach to mutation-

al signature discovery. Bioinformatics, 33, 8–16.

Rubin,A.F. and Green,P. (2009) Mutation patterns in cancer genomes. Proc.

Natl. Acad. Sci. USA, 106, 21766–21770.

Shiraishi,Y. et al. (2015) A simple model-based approach to inferring and visu-

alizing cancer mutation signatures. PLoS Genet., 11, e1005657.

Discovering novel mutation signatures by VB-LDA 4551

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/22/4543/5472341 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz266#supplementary-data
http://www.f.waseda.jp/mhamada/MS/index.html
http://www.f.waseda.jp/mhamada/MS/index.html


Smalheiser,N.R. (2002) Informatics and hypothesis-driven research. EMBO

Rep., 3, 702.

Stratton,M.R. (2011) Exploring the genomes of cancer cells: progress and

promise. Science, 331, 1553–1558.

Stratton,M.R. et al. (2009) The cancer genome. Nature, 458, 719–724.

Temko,D. et al. (2018) The effects of mutational processes and selection on

driver mutations across cancer types. Nat. Commun., 9, 1857.

Tomczak,K. et al. (2015) The Cancer Genome Atlas (TCGA): an immeasur-

able source of knowledge. Contemp. Oncol. (Pozn), 19, 68–77.

Toyooka,S. et al. (2003) The tp53 gene, tobacco exposure, and lung cancer.

Hum. Mutat., 21, 229–239.

Wagener,R. et al. (2015) Analysis of mutational signatures in exomes from

B-cell lymphoma cell lines suggest APOBEC3 family members to be

involved in the pathogenesis of primary effusion lymphoma. Leukemia, 29,

1612–1615.

Wong,W.C. et al. (2011) Chasm and snvbox: toolkit for detecting biologically

important single nucleotide mutations in cancer. Bioinformatics, 27,

2147–2148.

Yamazaki,K. and Watanabe,S. (2005) Algebraic geometry and stochastic com-

plexity of hidden markov models. Neurocomputing, 69, 62–84.

Zou,X. et al. (2018) Validating the concept of mutational signatures with iso-

genic cell models. Nat. Commun., 9, 1744.

4552 T.Matsutani et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/22/4543/5472341 by guest on 23 April 2024


	l
	l
	btz266-TF1
	l

