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Abstract

Motivation: Cancer genomics studies frequently aim to identify genes that are differentially

expressed between clinically distinct patient subgroups, generally by testing single genes one at a

time. However, the results of any individual transcriptomic study are often not fully reproducible.

A particular challenge impeding statistical analysis is the difficulty of distinguishing between differ-

ential expression comprising part of the genomic disease etiology and that induced by down-

stream effects. More robust analytical approaches that are well-powered to detect potentially

causative genes, are less prone to discovering spurious associations, and can deliver reproducible

findings across different studies are needed.

Results: We propose a set-based procedure for testing of differential expression and show that this

set-based approach can produce more robust results by aggregating information across multiple,

correlated genomic markers. Specifically, we adapt the Generalized Berk–Jones statistic to test for

the transcription factors that may contribute to the progression of estrogen receptor positive breast

cancer. We demonstrate the ability of our method to produce reproducible findings by applying the

same analysis to 21 publicly available datasets, producing a similar list of significant transcription

factors across most studies. Our Generalized Berk–Jones approach produces results that show

improved consistency over three set-based testing algorithms: Generalized Higher Criticism, Gene

Set Analysis and Gene Set Enrichment Analysis.

Availability and implementation: Data are in the MetaGxBreast R package. Code is available at

github.com/ryanrsun/gaynor_sun_GBJ_breast_cancer.

Contact: sheilagaynor@hsph.harvard.edu or rys177@mail.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A common goal in transcriptomic analysis is to identify genes that

are differentially expressed between subjects with different disease

prognoses or outcomes, e.g. comparing cases and controls. The hy-

pothesis driving these analyses is that genes differentially expressed

between phenotypes are mechanistically linked with the differences

between those phenotypes (Sørlie et al., 2001; Sotiriou et al., 2003;

Van De Vijver et al., 2002; Van’t Veer et al., 2002; Wang et al.,

2005). However, to fully understand the implications of such associ-

ations, one must determine whether differentially expressed genes

are inducing the disease, or whether their expression profiles are a

product of the phenotype. Reactive genes falling into the second
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category are of much less relevance in understanding disease proc-

esses and causality.

There is a growing body of evidence suggesting that in disease,

most genes are reactive rather than causative. For example, it has

been shown in breast cancer patients that a large number of genes

are differentially expressed simply because of their association with

proliferation genes (Venet et al., 2011). In other words, while prolif-

eration genes are indeed expressed at levels associated with disease

state, they have far-ranging, secondary effects on the expression of

many other genes. As a result of these far-ranging but non-causative

effects (Desmedt et al., 2008; Mosley and Keri, 2008), different

studies often find distinct sets of differentially expressed genes. This

observation may in part explain the finding that many published

breast cancer outcome signatures perform worse than signatures

composed of random genes (Venet et al., 2011). As a result, the

breast cancer literature contains many reactive genes that have been

mistakenly identified as instigators of the disease (Klein et al.,

2017). Such difficulties underscore the need to develop statistically

principled methods that can account for artificially significant genes

and identify the genes that truly promote carcinogenic behavior

(Wirapati et al., 2008).

Motivated by these challenges, we present a set-based approach to

testing for expression signatures important to disease. Our key innov-

ation is to employ the Generalized Berk-Jones (GBJ) statistic, which

provides a powerful and robust tool for inference on differential ex-

pression. The GBJ statistic was originally developed for set-based in-

ference in GWAS datasets (Sun et al., 2019), but we show that it can

be adapted for expression studies as well. A major advantage of our

approach is that testing for association using a group of genes allows

pooling of data across all members of a set, which provides valuable

additional information. In the GWAS setting this pooling allows for

increased power in detecting sparse individual-single nucleotide poly-

morphism effects, but when testing for differential expression, the

additional information serves to limit the detection of spurious associ-

ations. For example, deceptive signals from proliferation-related genes

will be dampened by proliferation-independent genes in a set contain-

ing mostly downstream effects of breast cancer. Sets can be formed

based on a variety of characteristics, and set-based interpretations

may even be more informative than single-gene effects.

In this paper, we focus specifically on identifying the transcription

factors that promote tumor progression in breast cancer. Because

breast cancer possesses a complex genetic etiology (Alexandrov et al.,

2013; Balmain et al., 2003), we may expect a large number of bio-

logically relevant, differentially expressed genes; thus set-based meas-

ures of association are appropriate. We focus on transcription factors

both because they provide convenient groupings of genes based on

their regulons and because these genes may also provide higher-order

insight, as opposed to genes marking the end of the transcriptional

cascade. If a certain transcription factor is crucial to higher grade

tumors, then we would expect the majority of genes regulated by that

transcription factor to be expressed differentially in patients with

higher grade tumors. In contrast, those transcription factors that are

not important to disease progression should generally be associated

with regulons containing genes that do not show differential expres-

sion. While individual genes may demonstrate artificial significance,

the use of gene sets can downweight these contributions by requiring

differential activation of coherent biological processes.

It is also important to note that although we are performing set-

based inference, the overall goal is still to draw conclusions about

the role of single genes, in this case individual transcription factors.

The unique regulatory positions of transcription factors create im-

portant opportunities for understanding functional genomic

pathways in the etiology of breast cancer, and these pathways pro-

vide an ideal setting for set-based testing.

To illustrate the robustness of our method and to empirically

demonstrate the reproducibility of our results, we perform the ana-

lysis on 21 publicly available breast cancer transcriptomic datasets.

Our primary finding is that genes regulated by transcription factors

in the E2F family are significantly differentially expressed between

high grade and low grade breast cancer tumors. This E2F finding is

replicated across almost all of our datasets, and it is also the most

significant result in a meta-analysis integrating data from all studies.

Beyond E2F, GBJ generally also identifies the same group of sets as

the most significant associations of each individual study.

Performance of the GBJ approach is benchmarked by standard

single-gene models as well as three other set-based approaches utiliz-

ing the Generalized Higher Criticism (GHC) (Barnett et al., 2017),

Gene Set Analysis (GSA) (Efron and Tibshirani, 2007) and Gene Set

Enrichment Analysis (GSEA) (Subramanian et al., 2005). Single-

gene analysis of the largest dataset in our study finds E2F2 and

E2F7 to be two of the most significant genes associated with breast

cancer disease progression, but these results cannot be replicated in

many of smaller datasets in our study, succinctly illustrating the rep-

licability issues in traditional inference for differential expression. It

is likely that the analysis is hindered in smaller datasets by a lack of

power or the confounding effects of downstream mechanisms, as

detailed above. Additionally, all three of the alternative set-based

testing approaches demonstrate more variability across studies. If

our 21 different datasets had been analyzed in 21 manuscripts, using

a GHC, GSA, or GSEA approach in all 21 would result in more ‘dis-

coveries’ and fewer replications than using GBJ in each study.

2 Materials and methods

2.1 Transcription factor regulon sets
A key starting point for our proposed GBJ approach is the definition

of accurate and interpretable transcriptomic sets. If sets are poorly

defined, there can be a loss in power because real effects can be

diluted by extraneous noise, or results may not even be relevant to

the scientific question of interest. For our study, it is important to

define sets that contain all genes regulated by a given transcription

factor and only genes regulated by that transcription factor

(Vaquerizas et al., 2009). Thus testing the association between

regulon-based gene sets and tumor grade corresponds to testing the

association between transcription factors and tumor grade.

We employ a list of 615 transcription factor gene sets taken from

MSigDB (C3 Collection), which is a manually curated list of tran-

scription factor regulons provided by the Broad Institute

(Subramanian et al., 2005; Xie et al., 2005). The regulons are

grouped by sequence motifs that are known or likely cis-regulatory

elements in promotors. Because all genes in a set share a common

motif in their non-protein coding regions, they are likely to be regu-

lated by the same transcription factor. While this collection does not

constitute an exhaustive list of transcription factors and the genes

they regulate, to our knowledge it is one of the most complete and

reliable efforts to compile such information.

We manually remove some extremely large gene sets, as these

highly heterogeneous sets are difficult to interpret and are likely to

show association with many outcomes through sheer chance.

Specifically, we remove the 22 gene sets each containing more than

900 genes. This threshold is chosen through inspection of the gene

size distribution (see Supplementary Fig. S1), and increasing or

decreasing the threshold by even 100 genes affects only a small
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handful of sets; these sets do not materially change the results. The

final analysis contains 593 sets. We also provide the number of sets

that each individual gene belongs to in Supplementary Figure S2.

Finally, we note that some transcription factors are used to define

multiple, distinct gene sets in the list. This overlap occurs when mul-

tiple binding motifs correspond to the same transcription factor.

2.2 Transcriptomic data collection
Data on expression levels are obtained from the MetaGxBreast R

package (Zon et al., 2018). This compendium comprises one of the

largest sources of microarray data on breast and ovarian cancer to

date, and its manual curation and pre-processing pipelines have

been previously described (Ganzfried et al., 2013). Briefly, the pack-

age includes gene-level expression data for breast cancer tumors

from 38 transcriptomic datasets collected in different studies around

the world. Replicate samples are removed and data are standardized

across studies (Zon et al., 2018). We first remove all datasets with-

out tumor grade and all datasets without at least five individuals in

both grades 1 and 3. Summary statistics pertaining to the remaining

21 datasets are provided in Table 1. The smallest dataset contains

n ¼ 37 patients from a study conducted at the Osaka University

Graduate School of Medicine, while the largest contains n ¼ 1127

patients from the Molecular Taxonomy of Breast Cancer

International Consortium (METABRIC).

As an additional processing step, we remove all patients who do

not present with the estrogen receptor (ER)-positive subtype, as

breast cancer is known to exhibit heterogeneous behavior across dif-

ferent subgroups. In particular, ER-positive and ER-negative sub-

types are known to exhibit different prognostic signatures (Beck

et al., 2013), and thus including ER-negative patients would con-

found the analysis. We choose to focus on the homogeneous group

of ER-positive subjects because it is the more common subtype and

correspondingly larger sample. The sample size of ER-negative

patients is small enough that traditional asymptotic-based statistical

measures may be challenged, but similar analysis would be of inter-

est with a larger sample.

Tumor grade is assessed ordinally with possible values of 1, 2

and 3; a grade of 2 is often given to patients with intermediate prog-

nosis and could potentially represent a broad range of disease status

(Rakha et al., 2010). For our main analysis, we remove all subjects

in grade 2 due to (i) the possibility that systematic differences in

grade 2 classifications across hospitals could confound the analysis

and because (ii) the GBJ framework can be more straightforwardly

presented for a binary outcome, which allows for the modeling of

marginal associations between gene expression and outcome with

conventional logistic regression. As the modeling of marginal associ-

ations does not comprise part of our original methodological contri-

bution, we consider only grades 1 and 3 in the main analysis for

sake of presentation. However, it is certainly still important to dem-

onstrate our approach using the full dataset; therefore, we show

how to use a cumulative logit model to analyze the full dataset in

the Supplementary Materials.

2.3 The GBJ statistic
We use the recently-developed GBJ statistic to test for association

between a group of regulated genes and breast cancer tumor grade.

The general procedure for our analysis is represented by Figure 1,

where the GBJ statistic implements the set-level testing of the third

panel. GBJ is derived from a class of tests that possesses certain opti-

mality guarantees in set-based testing, and it has been shown to pro-

vide more power than alternatives when signals in a set are

correlated and moderately sparse. GBJ also demonstrates robust

power across a range of sparsity settings, in contrast to methods that

may show much less power when signals are very sparse or very

dense. The sparsity of signals in a group of regulated genes is un-

known and may vary widely, but GBJ offers reliable and powerful

inference across a variety of situations.

One unique feature of GBJ is a data-adaptive thresholding mech-

anism that determines a custom significance threshold in every set,

given the size of the set and correlation structure of the test statistics.

Since genes regulated by the same transcription factor will generally

show correlated expression patterns, and because there may only be

a subset of regulated genes that possess functional roles in disease

progression, GBJ provides a natural fit for the present setting.

Additionally, while other popular methods such as GSEA utilize a

number of ad-hoc steps and rely on permutation to perform infer-

ence, GBJ requires no tuning parameters and offers an analytic

P-value calculation. Supplementary Table S2 demonstrates the ac-

curacy of this calculation for the correlation structures found in

gene expression data.

Let m ¼ 1; 2; . . . ;21 index the different datasets we are using

from MetaGxBreast. Suppose in dataset m we have observations

from i ¼ 1; . . . ;nm different subjects. For the sake of presentation, in

the rest of this section we will suppress the dependency on m and as-

sume that we are working with data from only one study. Given a

transcription factor regulon set of size d genes, let Gi ¼
ðGi1; . . . ;GidÞ denote the (preprocessed) gene expression values for

subject i over the d genes in that set. In other words, Gi describes

one subject’s expression for d genes that are regulated by the same

transcription factor. Let Yi denote the patient’s tumor grade, where

in the main analysis Yi ¼ 1 if the tumor is grade 3 and Yi ¼ 0 if the

tumor is grade 1.

Table 1. Summary data from the 21 MetaGxBreast datasets used in

the main analysis

Dataset n Grade 3 ER positive HER2

positive

Mean

age

CAL 71 61 (85.9%) 48 (67.6%) — 55.7

DFHCC 87 64 (73.6%) 48 (55.2%) 28 (32.2%) 54.5

DFHCC2 68 58 (85.3%) 16 (23.5%) 13 (19.1%) 52.2

EXPO 183 151 (82.5%) 81 (52.6%) 44 (30.6%) 56.9

GSE25066 291 259 (89%) 129 (44.8%) 3 (1.1%) 49.5

GSE32646 37 21 (56.8%) 20 (54.1%) 10 (27%) 52.8

GSE58644 185 159 (85.9%) 122 (66.3%) 40 (22%) 57.1

IRB 97 70 (72.2%) 49 (50.5%) 23 (23.7%)

MAINZ 64 35 (54.7%) 43 (67.2%) — 57.3

MAQC2 136 123 (90.4%) 61 (44.9%) 32 (23.5%) 51.9

METABRIC 1127 957 (84.9%) 738 (66%) 126 (24.7%) 59.6

NCI 61 45 (73.8%) 37 (60.7%) — 58.3

NKI 228 149 (65.4%) 152 (66.7%) — 43.8

PNC 83 70 (84.3%) 43 (51.8%) 24 (28.9%) 56.3

STK 89 61 (68.5%) 69 (77.5%) — 55.3

STNO2 64 53 (82.8%) 41 (65.1%) — 56.9

TRANSBIG 113 83 (73.5%) 64 (56.6%) — 45.8

UCSF 88 74 (84.1%) 46 (58.2%) 8 (24.2%) 54.5

UNC4 163 138 (84.7%) 86 (53.4%) 27 (19.6%) 56.3

UNT 61 29 (47.5%) 41 (70.7%) — 51.1

UPP 121 54 (44.6%) 95 (80.5%) — 61.1

Note: Counts and proportion of subjects with grade 3, ER-positive and

HER2-positive designations are provided, along with mean age of subjects in

each study. Certain categories, for example HER2 status, are not available for

all studies.
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The dichotomization of the data between grades 1 and 3 natural-

ly suggests a logistic regression model with tumor grade as the out-

come, although much of our development is also valid for any

generalized linear model with canonical link function (McCullagh

and Nelder, 1989). For a framework capable of analyzing ordinal

tumor grades of 1, 2 and 3, a separate cumulative logit model is pre-

sented in the Supplementary Methods. All results presented in the

main text hereafter refer to the comparisons between grade 1 and

grade 3, unless otherwise stated.

A model for li ¼ EðYijGiÞ, the conditional mean of Yi given Gi,

is given by the Generalized Linear Model,

log
�
li=ð1� liÞ

�
¼ a0 þGT

i b; i ¼ 1; . . . ;n: (1)

The global null hypothesis of no association between tumor

grade and expression of genes in the gene set is H0 : b ¼ 0d�1 where

b ¼ ðb1; b2; ::; bdÞT. Under this global null, a marginal score statistic

for gene j, j ¼ 1; . . . ; d is

Zj ¼

Pn
i¼1

GijðYi � �YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�Yð1� �YÞ

�r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

G2
ij �

Pn
i¼1

Gij

 !2

=n

vuut
; (2)

where Y ¼ ðY1; . . . ;YnÞT is the vector of outcomes and �Y is the

mean of Y. The vector of test statistics Z ¼ ðZ1; . . . ;ZdÞT has an

asymptotic multivariate normal distribution

Z � Nð0d�1;Rd�dÞ;

where Rjj ¼ 1 for j ¼ 1; . . . ; d and for Rjk; j < k we can consistently

estimate

R̂ jk ¼

Pn
i¼1

GijGik �
Pn
i¼1

Gij

 ! Pn
i¼1

Gik

 !
=n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

G2
ij �

Pn
i¼1

Gij

 !2

=n

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

G2
ik �

Pn
i¼1

Gik

 !2

=n

vuut
:

Now, define the thresholding function

SðtÞ ¼
Xd

j¼1

1fjZjj � tg;

and let s be the realized value of S(t). We can think of s as the num-

ber of significant test statistics. The GBJ statistic is

GBJ ¼ max1� j�d=2 log

Pr S
�
jZjðd�jþ1Þ

�
¼ jjEðZÞ ¼ l̂ j;d � Jd; covðZÞ ¼ R

� �

Pr S
�
jZjðd�jþ1Þ

�
¼ jjEðZÞ ¼ 0 � Jd; covðZÞ ¼ R

� �
2
6664

3
7775

�I 2�U
�
jZjðd�jþ1Þ

�
<

j

d

� �

where I is an indicator function, JT
d ¼ ð1; 1; . . . ; 1Þd�1, and l̂j;d > 0

solves the equation

j=d ¼ 1� fUðjZjðd�jþ1Þ � l̂ j;dÞ � Uð�jZjðd�jþ1Þ � l̂j;dÞg: (3)

Let g denote the value of the observed GBJ statistic. The P-value

of g can be calculated by inverting g with generic root-finding algo-

rithms to find d boundary points. The boundary point bj determines

the limit on the jth-largest absolute value of Z. If the jth-largest ab-

solute value of Z>bj, then the observed statistic would be larger

than g. Approximating S(t) as an Extended Beta-Binomial random

variable at the boundary points allows for analytical P-value calcu-

lations (Sun et al., 2019).

Due to the difficulties of standardizing data across 21 studies,

the model in Equation (1) contains no non-expression covariates. As

a sensitivity analysis assessing the impact of possible model misspe-

cification, we also perform an entirely separate analysis that consid-

ers the comparison between grade 1 and grade 3 and includes age at

initial pathologic diagnosis as a covariate in Equation (1). Four stud-

ies (‘IRB’, ‘USCF’, ‘NCI’ and ‘NKI’) show large degrees of missing-

ness in the age covariate and are excluded from the age-adjusted

sensitivity analysis, resulting in the consideration of 17 studies. In

our cumulative logits analysis considering tumors of grades 1, 2 and

3 we again exclude studies with notable missingness (‘USCF’, ‘NCI’

and ‘KI’) and a study that did not contain any participants with

grade 2 tumor (‘PNC’), for a total of 17 studies again.

2.4 Normalization of GBJ statistics
We observed during standard single-gene analyses that test statistics

for association were significantly more dilated than would be

expected under the theoretical N(0, 1) distribution. This diagnostic

suggested possible unmeasured covariates, such as batch effects, that

could lead to inflated test statistics (Efron, 2012). As each study pro-

vided differing amounts of data, we decided the most uniform cor-

rection method would be to normalize the statistics by employing an

empirical null distribution (Efron, 2004) for all marginal tests of as-

sociation. More specifically, we first used Poisson regression density

Fig. 1. Analysis pipeline for identifying differentially expressed gene sets between breast cancer tumor grades. For each dataset, observational data is used to cal-

culate the associations between genes and tumor grade. The genes are then grouped into gene sets and tested. Results can be compared across multiple studies

via meta-analysis. We visualize meta-analysis results in network form
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estimation (Efron et al., 2001) separately in each study to estimate

the empirical null distribution of marginal test statistics for the asso-

ciation between a single gene and outcome [Equation (2)]. The test

statistics were binned, and counts of the test statistics in each bin

were modeled according to a Poisson distribution. Fitted counts

were obtained from the regression, and the mean and variance of the

empirical null were obtained by matching the shape of the fitted

counts to a normal distribution [see Remark D of Efron et al. (2001)

for full details]. All Z-statistics used to calculate the GBJ statistic in

Equation (2.2) were then scaled so that their P-value under the the-

oretical null would match the P-value of their unscaled version

under the empirical null. For example, if the empirical null in the

first study was calculated to be N(0, 2), then a test statistic Zj ¼ 3 in

that study would be scaled to Z�j ¼ 1:5 so that the P-value of the

scaled statistic under N(0, 1) was equal to the P-value of the un-

scaled test statistic under the empirical null (P ¼ 0.134).

2.5 Set-based and single-gene benchmarks
We compare our GBJ analysis against two categories of substitute

methods. First, instead of GBJ, we apply three alternative set-based

testing approaches to test the significance of transcription factor reg-

ulons. The GHC, GSEA and GSA are existing tools popularly used

for performing set-based inference in related settings, and we inte-

grate them in place of GBJ. To avoid inconsistencies in the handling

of missing data between the different approaches, we exclude three

studies from the comparative analysis (‘USCF’, ‘NCI’ and ‘NKI’) for

containing multiple missing values, resulting in a comparison across

18 studies (‘IRB’ only showed missingness in age).

Second, we perform single-gene analysis using the Generalized

Linear Model in Equation (1) with d ¼ 1. Thus instead of perform-

ing set-based inference, we simply test one gene at a time. This

model is applied to all individual genes in each of the 21 studies, al-

though we focus on results for seven individual genes in the E2F

family—E2F1, E2F2, E2F3, E2F4, E2F5, E2F6, E2F7 and E2F8.

2.6 Meta-analysis of study-specific results and network

analysis
In addition to analyzing each dataset independently, we summarize

our findings about the transcription factors most important to breast

cancer progression by performing a meta-analysis using all 21 data-

sets. For each gene set l, we form a set using the 21 study-specific P-

values ðp1
l ;p

2
l ; . . . ;p21

l Þ corresponding to the gene set, where pm
l is

the GBJ P-value for set l in study m. We then use Fisher’s method of

combining P-values to generate one single measure of association

for each gene set.

The gene sets that pass Bonferroni correction for multiple testing

after meta-analysis are analyzed in EnrichmentMap version 3.0

(Merico et al., 2010), provided through Cytoscape version 3.4.0

(Shannon et al., 2003). EnrichmentMap creates a network with each

node representing a transcription factor binding site, and the nodes

are connected according to overlap in the genes that belong to the

regulons of each node.

3 Results

3.1 Top transcription factors implicated in breast cancer

tumor gradation
We begin by describing the most significant transcription factors

from our main GBJ analysis. A discussion regarding the replicability

of these results follows in the next subsection.

After meta-analysis over all 21 studies, 33 of the 593 total gene

sets demonstrate statistical significance at a Bonferroni-corrected

level of p ¼ 0:05=593 ¼ 8:43 � 10�5. When viewing the complete list

of gene set results (Supplementary Table S1), we immediately see

that many of these top sets are related to the E2F family of transcrip-

tion factors, meaning each set contains genes that possess motifs in

their 3’UTR matching a given E2F annotation. We report the results

for the 10 most significant gene sets in Table 2, including their asso-

ciated transcription factor and meta-analysis P-value. The top gene

sets are all regulons of the E2F family, and all pass the Bonferroni-

corrected level. In other words, GBJ finds that all of the top 10 gene

sets deemed to significantly affect ER-positive breast cancer tumor

progression are sets of genes that contain a binding motif matching

the annotation for a transcription factor in the E2F family.

Figure 2 demonstrates the largest connected component of the

EnrichmentMap network constructed from all 33 gene sets passing

Bonferroni correction for multiple testing. The network further illus-

trates the importance of E2F, as the largest connected component al-

most exclusively contains nodes related to E2F. This component

specifically contains 18 out of the 33 nodes; no other gene sets clus-

ter together in connected components. We can interpret this net-

work as additional evidence that many of the genes regulated by

E2F transcription factors are the most significant genes associated

with ER-positive breast cancer tumor progression. We note that

though many gene set names include the string ‘E2F’, not all are

related to the E2F family; each name is given a more detailed de-

scription in MSigDB. However, many of the nodes are still related

to E2F.

Results for the cumulative logit model incorporating all three

grades demonstrate a high degree of overlap with the main analysis.

The top 10 gene sets all again demonstrate E2F family connections

(Supplementary Table S4), and the network constructed for all sets

passing the Bonferroni-corrected significance level (Supplementary

Fig. S7) appears similar to Figure 2. In fact, the largest connected

component of Supplementary Figure S7 contains the same 18 nodes

found in Figure 2.

3.2 Replicability of gene set associations
The full results of our set-based GBJ analysis are presented in

Figure 3, where we show a heatmap of P-value rank for each gene

set in each study. We show the set rankings instead of actual P-val-

ues because the studies vary greatly in their sample size, so the larger

studies will tend to have much smaller P-values simply because they

Table 2. Top ten transcription factor gene sets associated with

breast cancer tumor grade after meta-analysis of GBJ results in 21

studies

Set name (MSigDB) Transcription factor Meta-analysis P-value

E2F1DP2_01 E2F1 3:33 � 10�15

E2F_Q3 E2F family 1:13 � 10�13

E2F_Q6_01 E2F4 6:30 � 10�12

E2F1DP1RB_01 E2F1 1:36 � 10�12

E2F_Q6 E2F4 2:03 � 10�12

E2F_Q4 E2F4 2:06 � 10�12

E2F1_Q6 E2F1 5:28 � 10�12

E2F1_Q3 E2F1 5:66 � 10�12

E2F4DP2_01 E2F4 5:79 � 10�12

E2F1DP1_01 E2F1 5:79 � 10�12

Note: Each of the 593 TF sets considered consists of all genes regulated by

a given transcription factor.
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have more subjects. The heatmap of the P-values is provided as

Supplementary Figure S3. Studies are ordered according to their

final sample size in the analysis, while gene sets are ordered accord-

ing to their METABRIC study P-value. From the rank-based plot, it

is immediately obvious that GBJ selects the same top gene sets in al-

most every study. Outside of the outliers UNC4 and CAL, each of

the other 19 studies appears to agree on the top 5–10% of signifi-

cant transcription factors. In other words, if each of these studies

had been analyzed (with GBJ) by separate groups publishing separ-

ate manuscripts, the large majority of the 21 manuscripts would

agree on the top transcription factors. Even though some of the

smaller studies possess sample sizes that are almost two orders of

magnitude less than METABRIC, the smaller studies still often

show the same top gene sets.

There is less agreement among gene sets in the bottom 90% of

the rankings, but this disagreement is to be expected. If such sets

truly demonstrate no association with the outcome, then by defin-

ition their P-values are generated at random from a standard uni-

form distribution, and we should not expect to see any coherent

pattern among the non-significant sets. In a typical analysis, gene

sets not demonstrating significance are usually ignored and not

reported. We see essentially the same level of replicability in the sen-

sitivity analysis that adjusts for age as a covariate (Supplementary

Figs S4 and S5) and when using the cumulative logit model that con-

siders tumors of all grades (Supplementary Figs S8 and S9).

We quantify the level of overlap more specifically in Figure 4,

which shows the number of unique gene sets that would be repre-

sented in a list containing the top x sets from each study, where x is

given by the x-axis. That is, at x ¼ 1, the y-axis value is the number

of unique gene sets named as the most significant set across all 18

studies (three studies are removed from the comparison with alter-

native methods due to missing data, and a small number of individu-

als with missing data are also removed from the 18 remaining

studies). We allow the x-axis to range from 1 to 59 to cover the en-

tire top 10 percentile. GHC, GSA and GSEA all appear to perform

materially worse than GBJ. GSEA reports a similar number of

unique sets when the amount of sets to be reported is small, but per-

formance gradually decreases as more sets are reported. Both GHC

and GSA report a markedly larger number of unique results than ei-

ther GSEA or GBJ. In general, performing analyses using one of the

non-GBJ approaches would uncover a broader list of gene sets, espe-

cially when studies contain fewer subjects and are subject to more

variance (Supplementary Fig. S6). It follows that there would be

fewer replicated results if all analyses were performed using GHC,

GSA or GSEA, leading to greater confusion about the transcription

factors that warrant follow-up studies. A similar outperformance of

GBJ in the cumulative logit framework is observed in

Supplementary Figure S10.

In addition to the set-based comparison, we also explore how

conclusions may have changed if we utilized a single-gene approach

for all 21 studies, as described in Section 2.4. Because of the differ-

ence in the multiple testing burden between hundreds of gene sets

and tens of thousands of individual genes, for a fairer comparison

we focus only on testing certain top genes that we believe are likely

to be truly associated with ER-positive breast cancer disease pro-

gression. If a single-gene approach were reliable, the truly associated

genes should demonstrate small P-values across most studies.

As detailed above, the most significant transcription factors after

meta-analysis belonged to the E2F family. In addition, six out of

seven transcription factors in the E2F family demonstrated P-values

<1 � 10�5 in METABRIC, our largest dataset, and four out of seven

demonstrated P-values <1 � 10�12. Thus, there is evidence to hy-

pothesize that the E2F transcription factors are genuinely related to

the biological mechanisms governing disease progression. However,

in Table 3, we see that the marginal association between E2F genes

and breast cancer progression generally falls outside of the top 10

percentile of marginal associations for any given study. None of the

genes in the E2F family possess a median rank (across all 21 studies)

inside the top 1 percentile, and five of the genes have a median rank

outside of the top 15 percentile. We see that using a single-gene ap-

proach, as opposed to a set-based statistic, would likely conceal the

connection between the E2F family and breast cancer.

Fig. 2. Map of the community identified from a network analysis performed on the meta-analysis of the GBJ results across 21 studies. The nodes represent the

transcription factor sets; edges connecting nodes indicate that the nodes share many genes in common
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Table 3 further demonstrates the statistical challenges of identi-

fying significance at the single-gene level. Three of the E2F genes

demonstrate a median P-value <0.05 across all 21 studies, while

four do not. The lowest median P-value is for E2F8, at

P ¼ 0.00012, which may not even be enough to pass a Bonferroni

correction for multiple testing in many cases. Thus if all 21 studies

had been analyzed in a single-gene approach, over half of them

would probably have not provided enough evidence to implicate

E2F.

4 Discussion

We have adapted the GBJ statistic to propose a set-based testing pro-

cedure that can detect the transcription factors which are respon-

sible for segregating clinically distinct subgroups of patients.

Specifically, we interrogated 593 transcription factor regulon sets to

determine the transcription factors that are most likely to be

involved with progression of breast cancer tumor grade. A major ad-

vantage of set-based testing is that pooling information across mul-

tiple genes reduces the chance of finding artificially significant genes

that only show differential expression due to their association with

downstream effects, an issue that has challenged previous studies.

We do not expect to lose much power from not testing the transcrip-

tion factor directly, as the GBJ statistic boasts certain optimality

guarantees for power in set-based inference and, in essence, uses the

collected set of target genes as a method of providing multiple inde-

pendent assessments of transcription factor activity.

Our analytical framework is highly flexible and allows for a var-

iety of models to explain the marginal associations between gene ex-

pression and outcome, as we have demonstrated in utilizing both

logistic regression and cumulative logit regression. Thus investiga-

tors are free to employ a variety of different tools in modeling the
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Fig. 3. Heatmap for significance rank of 593 gene sets across all 21 studies. Rank 1 corresponds to the lowest P-value achieved in the study, and rank 593 corre-

sponds to the largest P-value for that study. The studies are ordered by size, and the gene sets are ordered according to their rank in the largest study
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individual-level data. This flexibility allows for GBJ to be extended

for use in a variety of complex biological applications.

As a demonstration of GBJ-based gene set analysis, we have used

data from 21 individual breast cancer gene expression datasets gath-

ered in the MetaGxBreast compendium. Results from individual

studies are relatively consistent, as the most significant gene sets

from each individual study show a high degree of overlap. Even

though some studies vary in their sample size by almost two orders

of magnitude, GBJ is generally able to name the same gene sets as

the most significant in disease progression. In contrast, similar set-

based analyses using GHC, GSA or GSEA to perform inference do

not show nearly as much overlap, especially among studies that are

limited by a smaller sample size and would be expected to deliver

more variable results. Thus, the expected number of times any given

gene set significance result would be replicated using the GHC, GSA

or GSEA procedures is lower than for GBJ.

A conventional single-gene approach is seen to be unreliable as

well, as most of the E2F transcription factors do not even show a

median ranking inside the top percentile over all studies. At best, uti-

lizing the single-gene approach would suggest the E2F family as a

possible target for follow-up among a large group of other transcrip-

tion factors. Such a situation closely reflects the problems that hin-

der many transcriptional studies of breast cancer—because single-

gene tests are much more susceptible to experimental and systematic

noise, many microarray study results cannot be reproduced in a dif-

ferent sample. If these 21 separate datasets had actually been ana-

lyzed in 21 different manuscripts employing single-gene or

alternative set-based approaches, the number of significant genes

may have been larger but would also be more varied, necessitating

further effort and analyses to determine genes worthy of follow-up.

The improved consistency of gene set identification using GBJ-based

gene set inference suggests that our set-based approach produces

more reliable and reproducible results.

In our analysis, we found that gene sets regulated by the E2F

family of transcription factors, a well-studied set of cell cycle regula-

tors, are significantly associated with breast cancer grade. E2F tran-

scription factors integrate signals from G1/S phase regulators and

regulate many cell cycle functions such as DNA synthesis, DNA re-

pair, and apoptosis - functions that are critical to oncogenic activity.

The G1/S transition is a checkpoint at which cells can choose to re-

pair themselves or proliferate, among other paths. If a cell chooses

to divide at this point, it can no longer be stopped from reproducing.

E2F1 expression has been associated with breast tumors, reduced

disease-free survival, reduced overall survival and increased malig-

nancy in breast tumors (Stender et al., 2007).

Estrogen regulation of E2F1 carries critical functions in the pro-

liferative program of breast cancer cells (Stender et al., 2007). Other

studies have found that E2F1 shows a growth-promoting effect

through the pRB and p42 tumor suppressor pathways (Zacharatos

et al., 2004); pRB and E2F are often studied together, and the inter-

play between pRB and E2F is known to be crucial to tumorigenesis

(Nevins, 1992; Trimarchi and Lees, 2002). Active research is also

ongoing into open questions regarding the specific roles of genes in

the E2F family, which sometimes take opposite functions in activa-

tion and suppression of cell division (Trimarchi and Lees, 2002).

Our findings suggest that more investigation into the various func-

tions regulated by the E2F family may provide additional insight

into breast cancer progression.

One shortcoming of our approach was a reliance on gene sets

defined by known regulons of transcription factors. While there

exists significant information on the binding motifs for many tran-

scription factors, we also know the list we are working with is in-

complete. As more knowledge is gathered on transcription factors

and their binding motifs, we expect that this type of analysis will

also become more accurate. Additionally, in performing meta-

analysis over 21 studies to collect our final results, it would have

been preferable to have more data in some of the studies with the

small sample sizes. Since each study received equal weight in the

final results even though their sample sizes varied widely, we may

have overemphasized studies enrolling only a few hundred subjects

or less. Lastly, it is important that we chose not to adjust for any

covariates in our primary marginal models of association between

expression and outcome. This decision was made so that we could

include as many subjects as possible; to include any covariates

would necessitate removal of those with missing values. However,

in doing so, we may also have specified the model incorrectly, which

is another factor that could affect the null distribution of our

Fig. 4. Number of unique gene sets identified across 18 studies (21 original

minus three with missing values) under GBJ, GSEA, GSA and GHC. The

x-axis specifies how many top-ranked gene sets are reported from each

study. At x ¼ 1, only the most significant gene set is reported for each study.

The y-axis shows the number of unique gene sets reported across all studies.

A smaller number of unique gene sets indicates that the method is replicating

the same results in multiple datasets. Analysis with GBJ is more likely to re-

port the same top pathways over multiple different studies

Table 3. Single-gene analysis testing for association of E2F with

breast cancer tumor grade

Transcription

factor

Median

P-value

Median percentile

rank

E2F2 0.1420 20.2

E2F3 0.0404 15.3

E2F4 0.2925 47.0

E2F5 0.0706 19.5

E2F6 0.1161 33.7

E2F7 0.0019 6.8

E2F8 0.0001 1.2

Note: Rather than testing the sets of genes regulated by an E2F transcrip-

tion factor, we test the association of each E2F gene directly. We see that the

E2F family does not show as much evidence of association with tumor grade

using this method.
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marginal test statistics. Although a sensitivity analysis presented in

the Supplementary Materials seems to show that results are essen-

tially unchanged when considering an age-adjusted model, it is still

preferable to specify the correct model. Use of a more complete

dataset would alleviate the likelihood of model misspecification in

future analyses.

In conclusion, we have proposed a new framework for transcrip-

tomic analysis of disease, one that tests sets of genes rather than sin-

gle-gene expression levels. We stress that although our approach

focuses on gene sets, the overall goal is still to make inferences about

individual genes. The main advantage of set-based testing is an

increased ability to filter out false positive associations that occur

when expression levels of genes are correlated with the true drivers

of disease progression. The GBJ statistic can perform this testing in a

computationally efficient and powerful manner. When applying our

methods to a large number independent breast cancer datasets, we

find that GBJ produces results that are highly replicable across indi-

vidual datasets, while other set-based approaches and a single-gene

analysis do not show the same level of robustness.
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