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Abstract

Motivation: Protein activity is a significant characteristic for recombinant proteins which can be

used as biocatalysts. High activity of proteins reduces the cost of biocatalysts. A model that can

predict protein activity from amino acid sequence is highly desired, as it aids experimental

improvement of proteins. However, only limited data for protein activity are currently available,

which prevents the development of such models. Since protein activity and solubility are correlated

for some proteins, the publicly available solubility dataset may be adopted to develop models that

can predict protein solubility from sequence. The models could serve as a tool to indirectly predict

protein activity from sequence. In literature, predicting protein solubility from sequence has been

intensively explored, but the predicted solubility represented in binary values from all the devel-

oped models was not suitable for guiding experimental designs to improve protein solubility. Here

we propose new machine learning (ML) models for improving protein solubility in vivo.

Results: We first implemented a novel approach that predicted protein solubility in continuous

numerical values instead of binary ones. After combining it with various ML algorithms, we

achieved a R2 of 0.4115 when support vector machine algorithm was used. Continuous values of

solubility are more meaningful in protein engineering, as they enable researchers to choose

proteins with higher predicted solubility for experimental validation, while binary values fail to

distinguish proteins with the same value—there are only two possible values so many proteins

have the same one.

Availability and implementation: We present the ML workflow as a series of IPython notebooks

hosted on GitHub (https://github.com/xiaomizhou616/protein_solubility). The workflow can be used

as a template for analysis of other expression and solubility datasets.

Contact: chewxia@nus.edu.sg or kang.zhou@nus.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Escherichia coli is a bacterium commonly used in genetic engineer-

ing to express recombinant proteins (Chan et al., 2010), which is a

pivotal process in biotechnology. Producing some proteins in E.coli

was, however, inefficient in industrial setting, resulting from low ac-

tivity of the recombinant proteins. As biocatalysts and therapeutic

agents, proteins with high activity have lower unit production cost.

Developing biocatalysts with high activity has thus become an im-

portant goal for further development of many biocatalytic

processes.

Some experimental strategies in vivo can improve the expression

of recombinant proteins, such as using suitable promoters, optimiz-

ing codon usage, or changing culture media, temperature and/or

other culture conditions (Idicula-Thomas and Balaji, 2005; Magnan

et al., 2009). Such empirical optimizations have, however, been

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 4640

Bioinformatics, 35(22), 2019, 4640–4646

doi: 10.1093/bioinformatics/btz294

Advance Access Publication Date: 30 April 2019

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/22/4640/5481956 by guest on 20 April 2024

https://github.com/xiaomizhou616/protein_solubility
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz294#supplementary-data
https://academic.oup.com/


time-consuming and expensive. Moreover, experiments often fail

due to opaque reasons. A generic solution is highly desired for

enhancing the heterologous protein overexpression and may be ul-

timately provided by using a computational model that can predict

activity of any enzyme accurately from its amino acid sequence and

other input information. Developing such model would require a

large dataset which contains at least two columns, protein sequence

and activity. No such dataset is currently available, because conven-

tional protein engineering was driven by chasing high activity, which

has provided very little information on protein sequence. For in-

stance, most proteins with low or intermediate activity values were

discarded without their sequence being revealed. It is currently pro-

hibitively expensive to generate a complete, large dataset for protein

activity, due to technical limitations.

A compromised solution is to predict protein activity by using

solubility of the protein as a proxy, because (i) activity and solubility

are correlated for some proteins (Zhou et al., 2012), and (ii) there is

a relatively large dataset available for solubility as solubility data

from different proteins can be pooled together. Until now, a number

of machine learning (ML) predictors have been developed to address

the interconnection between protein solubility and amino acid

sequence. The prediction for protein solubility from amino acid se-

quence was first proposed by Wilkinson and Harrison (1991). A

simple regression method was used by them to achieve high accuracy

(0.88) by using several features of 81 protein sequences, such as

hydrophilicity, molecular weight and averaged surface charge. The

accuracy was improved by logistic regression to 0.94 based on a

small database with 212 proteins (Diaz et al., 2010). Support vector

machine (SVM) is a core ML classification method that has achieved

competitive performance in this field. With SVM, Idicula-Thomas

et al. (2006) analysed 192 proteins with an unbalanced correlation

score filter, which achieved an accuracy of 0.74 by using physico-

chemical properties, mono-peptide frequencies, dipeptide frequen-

cies and reduced alphabet set as features. These datasets are,

however, not large enough to generate correlations that can be wide-

ly applied (Idicula-Thomas and Balaji, 2005). Molecular weight, iso-

metric point and amino acid composition were used as inputs to

build a SVM model by Niwa et al. (2009), who for the first time

generated and studied a dataset that contained more than 1000 pro-

teins. Prediction of protein solubility was subsequently conducted

with SVM based on databases with 2159 proteins (Agostini et al.,

2012) and 5692 proteins (Xiaohui et al., 2014). Besides, decision

tree (Christendat et al., 2000; Goh et al., 2004; Rumelhart et al.,

1985), Naı̈ve Bayes (Smialowski et al., 2007), random forest (Fang

and Fang 2013; Hirose et al., 2011), gradient boosting machine

(Rawi et al., 2017) and some computational methods combining

multiple ML models have been utilized to predict if a protein is sol-

uble or not by using their primary sequence. In addition, several

software and web servers have been developed for protein solubility

prediction, including ESPRESSO (Hirose and Noguchi, 2013), Pros

(Hirose and Noguchi, 2013), SCM (Huang et al., 2012), PROSOII

(Smialowski et al., 2012), SOLpro (Magnan et al., 2009) and

PROSO (Smialowski et al., 2007). Some of the predictors available

online are introduced below. ESPRESSO selects features by using

Student’s t-test filter and trains a model by SVM and another se-

quence pattern recognition-based method. Pros implements random

forest with Student’s t-test as filter and random forest as wrapper.

PROSOII is a two-layer model using a Parzen window in the first

layer and logistic regression in both layers.

Various databases were also utilized in the previous studies,

whereas eSol database (Niwa et al., 2009) is a unique one, which

has a relatively large size and continuous values of solubility,

ranging from 0 to 1. A brief summary of how solubility values in

eSol database were obtained is provided here. Proteins were pro-

duced in vitro by using cell-free protein expression technology and

plasmids carrying open reading frame (ORF) from complete E.coli

ORF library (ASKA library) (Kitagawa et al., 2005). Synthesized

proteins were fractionated into soluble and insoluble fractions by

using centrifugation, and the proteins in both fractions were quanti-

fied by using SDS-PAGE. Solubility was defined as the ratio of pro-

tein quantity of the supernatant to the total protein quantity.

Comparison of model performances using this database is summar-

ized in Table 1. All the ML models developed based on this data-

base, however, only predicted whether a protein was soluble or

insoluble (outputting binary values), which was not useful in guiding

protein engineering, because even a substantial increase in solubility

may not turn the status from ‘insoluble’ to ‘soluble’ and thus be

falsefully viewed as useless by the model. Moreover, it is challenging

to select several proteins with highest solubility to conduct experi-

ments because there are too many proteins with the same value of

solubility (i.e. 1) in a large dataset. Moreover, in the process of

grouping the proteins, all the previous works discarded data points

whose protein solubility was between 0.3 and 0.7.

In addition, adequate volume of data is key to develop useful

models by using ML. In biotechnology field, generating and collect-

ing large amount of data is; however, time-consuming and expen-

sive, resulting in much smaller dataset than other fields such as

facial recognition. Generative Adversarial Networks (GANs)

(Goodfellow et al., 2014), a state-of-the-art data augmentation algo-

rithm in artificial intelligence (AI), have been utilized to enlarge data

in both computer vision and biological fields. For example, GANs

have been used to generate mimic DNA sequences for optimizing

antimicrobial properties of recombinant proteins (Gupta and Zou,

2018) and to access the local geometry by local coordinate charts

(Qi et al., 2018). To date, the data argumentation algorithms have

not been applied to the problem of protein solubility.

In this study, we built models that can predict protein solubility in

numerical values that span from 0 to 1, which would allow fair evalu-

ation of a proposed mutation to a protein even when the resulting

Table 1. Performance of published methods based on eSol

database

Method Size Accuracy References

Random forest Total: 1918 0.84 (Fang and Fang, 2013)

Soluble: 886

Insoluble: 1032

1. SVM Total: 1625 0.81a (Samak et al., 2012)

2. Random forest Soluble: 843

3. Conditional

inference trees

Insoluble: 782

4. Rule ensemble

Decision tree Size: 1625 0.75 (Stiglic et al., 2012)

Soluble: 843

Insoluble: 782

SVM Size: 2159 N/A (Agostini et al., 2012)

Soluble: 1081

Insoluble: 1078

SVM Size: 3173 0.80 (Niwa et al., 2009)

Soluble: >0.7

Insoluble: <0.3b

aValue estimated from the figure in the reference.
bProteins with solubility higher than 0.7 are labelled as soluble and lower

than 0.3 are labelled as insoluble.
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improvement is small. We compared various model-building techni-

ques which used this new output format, and found SVM performed

the best, achieving a R2 of 0.4115. Moreover, we hypothesized that

data augmentation algorithms might alleviate the problem that bio-

technology applications do not have sufficient data for developing ML

models. We attempted to use GANs to improve the prediction per-

formance of the SVM model by generating artificial data.

2 Materials and methods

2.1 Protein database
All the proteins used in the study were downloaded from eSol data-

base (Niwa et al., 2009). Here, the solubility refers to the ratio of

soluble protein to the total protein, not the limit concentration

above which solute precipitates in the solvent. Many recombinant

proteins, when overexpressed in a heterologous host, become insol-

uble because of misfolding. The information about protein solubility

and the corresponding name of genes were included in the eSol data-

base. According to the name of genes, protein sequence for each pro-

tein was searched in NCBI and matched with the protein solubility.

We used all the proteins from the database, unless the proteins con-

tain no sequence information, or poorly determined sequence (e.g.

containing N instead of A, T, C or G, or multiple stop-codons).

Supplementary Table S1 summarized the reasons that 26 data points

were excluded in our study. After excluding 26 proteins in total, the

data size used in our study was 3147.

2.2 Features
Different features were extracted from sequences of proteins by

using protr package (Xiao et al., 2014) within R software, which

generates various numerical representation schemes. In our study,

the description of features is listed in Table 2 according to different

descriptors in protr package.

2.3 Training flowsheet
Data pre-processing is a very important part in data mining, which

transfers raw data into a well-organized dataset that can be taken as

inputs in model training. Only sequence and protein solubility were

retrieved from the original dataset. Protein sequence was then trans-

formed into numeric values (features) by using extractAAC descrip-

tor from Table 2. The values of protein solubility which were to be

higher than 1 were converted into 1 as the protein solubility repre-

sents the ratio of supernatant protein to the total protein. Some

experimental errors caused the values of protein solubility recorded

higher than 1. After cleaning the dataset, the table recoding the data-

set has 3147 rows and several columns whose number depends on

the descriptors used. Each row means one data point or one protein.

The last column stores protein solubility data, and each of the other

columns stores values of one descriptor.

Training ML models for protein solubility prediction included

several steps (as shown in Fig. 1). The inputs and outputs of ML

models were protein sequence and protein solubility respectively.

For training ML models, 90% of the original dataset (2833 proteins)

were used and the remaining dataset were validation data which can

be used to evaluate the performance of each model. After model

training, all the evaluation metrics were calculated with 10-fold

cross-validation to compare the performance of different ML mod-

els. The 10-fold cross-validation is a technique to partition the ori-

ginal dataset into 10 equal-size parts. And each part has similar

proportion of samples from different classes. In the 10 subsamples,

one subsample is taken as validation data to test the model and the

other data is used as training data to train the model. The accuracy

and R2 are the average of all the cases. For the data augmentation,

75% of the original data (2364 proteins) were used as training data

to train the four data augmentation algorithms, which then gener-

ated the same size of artificial data (2364 proteins). Then the ML

models were trained again on the doubled training data including

both the original training data and the generated data.

Subsequently, a new value of R2 was calculated by the validation

data which were held out in the training process. The improvement

of R2 represents the performance of data augmentation.

2.4 ML models
Seven supervised ML algorithms were applied to our dataset: logistic

regression, decision tree, SVM, Naı̈ve Bayes, conditional random

forest (cforest), XGboost and artificial neural networks (ANNs).

The first five models were used by implementing the corresponding

packages in R and the last two models were utilized by applying the

corresponding libraries in Python. All the hyperparameters can be

tuned by changing the arguments in the functions. For binary values

of solubility, classification algorithms were used and for continuous

values of solubility, regression algorithms were applied.

Among all the ML models in our study, SVM achieved the best

prediction performance. In a SVM classification model, the goal is to

find a hyperplane to separate the data points belonging to two groups

clearly (Fig. 2). The training dataset with n points was in the form of

ðx1
*

, y1Þ; . . . ; ðxn
*

, ynÞ where yi was either �1 or 1 indicating the

Table 2. Description of different descriptors in protr package of R software

Descriptors Description

extractAAC composition of each amino acid

extractPAAC hydrophobicity, hydrophilicity and side chain mass

extractAPAAC hydrophobicity, hydrophilicity and sequence order

extractMoreauBroto normalized average hydrophobicity scales, average flexibility indices, polarizability parameter, free energy of solution in water

extractMoran normalized average hydrophobicity scales, average flexibility indices, polarizability parameter, free energy of solution in watera

extractGeary normalized average hydrophobicity scales, average flexibility indices, polarizability parameter, free energy of solution in watera

extractCTDC hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, second structure, solvent accessibility

extractCTDT percentage of position of attributes in extractCTDC

extractCTDD distribution of attributes in extractCTDT

extractCTriad protein–protein interactions including electrostatic and hydrophobic interactions

extractSOCN Schneider-Wrede physicochemical distance matrix and Grantham chemical distance matrix

extractQSO Schneider-Wrede physicochemical distance matrix and Grantham chemical distance matrixb

aDifferent calculation methods are used for extractMoreauBroto, extractMoran and extractGeary using the same attributes listed above.
bDifferent calculation methods are used for extractSOCN and extractQSO using the same attributes listed above.
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two classes respectively. In our study, 0 and 1 were used to indicate

two classes which represented insoluble proteins and soluble proteins,

respectively. Each xi
*

represents a real vector with several dimen-

sions. Any hyperplane can be written as wi
* � xi

* � b ¼ 0; where w
*

is

the normal vector of the hyperplane and the aim is to maximize the

margin between the data points and the hyperplane by the hinge loss

function in Equation (1).

max 0; 1� yi wi
* � xi

* � b
� �� �

(1)

2.5 Tuning SVM
Among the ML models used to predict the protein solubility, SVM

achieved the best performance. Therefore, SVM was chosen for fur-

ther optimization to achieve higher prediction R2 by tuning all

parameters (Package e1071 in R software was used to implement

SVM model). Different kernels (representing different functions)

and three parameters (cost, gamma and epsilon) in SVM were tuned.

Cost is the regularization parameter that controls the trade-off be-

tween achieving a low training error and a low testing error. Cost

can also be interpreted as the extent we penalize the SVM when

data points lie within the dividing hyperplanes. Larger cost means

fewer points are within the dividing hyperplanes and the space be-

tween two dividing hyperplanes is small, which also indicates that

the unseen points are difficult to be separated because the data

points belonging to two categories are too close to each other. On

the contrary, lower cost gives larger margin and higher error for

training data. Epsilon is a margin of tolerance where no penalty is

given to errors. Larger epsilon means less penalty to errors. Gamma

is a parameter in the function of radial basis kernel, which indicates

the threshold to determine if two points are considered to be similar.

Gamma controls the standard deviation of the Gaussian function of

radial basis kernel.

2.6 Data augmentation algorithms
GANs are an emerging AI algorithm and have been used for data

augmentation in this work. There are two main models within

GANs, Generator Neural Network and Discriminator Neural

Network. The generative model G takes random data z from prob-

ability distribution p(z) as input. The discriminative model D takes

data generated from generative model G and real data from the

training dataset as inputs and distinguishes whether the data are

artificial or real. The training process is an adversarial game with

backpropagation between two networks (Fig. 3).

In Equation (2) (Goodfellow et al., 2014), D(x) calculates the prob-

ability that x comes from the original data. D’s objective is to maximize

the probability of labelling both the real and artificial data correctly

[termed as max(V)], whereas G’s objective is to minimize max(V),

which can be expressed as min[max(V)]. Overall, it is a two-player

game between D and G. Through the adversarial game between G and

D, the Discriminator Neural Network, which distinguishes the distribu-

tion of real data and generated data can push the probability distribu-

tion of G(z) more similar to the distribution of real data. For training

GANs, the discriminator is first trained for n epochs based on real data.

Second, data artificially generated from the generator is fed into the dis-

criminator networks which gave a judgement if the data were artificial.

Third, the generator networks were further trained with the feedbacks

from the discriminator to improve its data generation. The training pro-

cess was iterated until the data generated from the generator cannot be

distinguished by the discriminator networks from the original dataset.

min
G

max
D

V D; Gð Þ ¼ Ex�Pdata xð Þ ½logD xð Þ�
þ Ez�Pz zð Þ ½logð1�DðG zð ÞÞÞ� (2)

Fig. 1. Workflow of model training used in our study

Fig. 2. Maximum-margin hyperplane for a SVM trained with samples with

two classes (Note: This is an illustration of basic SVM classification algorithm

and we used a regression version in our study.)

Fig. 3. The workflow of training GANs
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With the development of AI algorithms for data augmentation,

other algorithms based on GANs have also been developed, which

enhanced the performance of GANs to some extent. CGAN is the

conditional version of GANs, which generates mimic data with class

labels (Mirza and Osindero, 2014). WGAN uses Wasserstein distance

metric rather than Jensen-Shannon distance metric used in GANs

when cross-entropy is calculated (Arjovsky et al., 2017). The cross-

entropy loss is a measurement of the ability of the discriminator to dis-

tinguish real data and generated data. Wasserstein distance measures

the minimum cost to make the distribution of generated data more

similar to that of real data, with the critic function in the discriminator

model. WCGAN is the conditional version of the Wasserstein GANs

(Gulrajani et al., 2017). Moreover, some architectures of CGAN and

WCGAN show great promise to explore datasets with labels, which

both generate mimic data similar to real data and explore the relation-

ship between features and labels. For the GANs with conditions, the

relationship between features and labels was studied by constraining

the labels of the generated data to be the expected values.

2.7 Evaluation metrics
Several evaluation metrics were used to quantitatively evaluate the

performance of different ML models. For comparison with prior

work, we transformed continuous predicted solubility values into

binary ones. Accuracy was calculated based on the binary values.

How to calculate accuracy is shown in Equation (3) and Table 3.

The definition of TP (true positive), TN (true negative), FP (false

positive) and FN (false negative) which are used to calculate accur-

acy is illustrated in Table 3. The number of proteins that have been

labelled as TP, FN, FP, TN was recorded as a, b, c, d, respectively.

Accuracy ¼ aþ d

aþ bþ cþ d
(3)

We also evaluated the model performance by using coefficient of

determination (R2) calculated from predicted and actual solubility

values. Computing R2 can only be done by using continuous values

our models generated.

3 Results

3.1 Develop models that output continuous numerical

values
We used continuous values of protein solubility to train ML models,

which we set to output continuous values instead of binary ones. We

have trained seven distinct models and two different evaluation cri-

teria (accuracy and R2) were recorded in Table 4. The prediction

performance of the ML models was compared using R2. The accur-

acy was measured to explore the influence of choosing cut-off

thresholds on the value of accuracy. For the purpose of calculating

the accuracy, we converted the continuous values of predicted solu-

bility into binary ones by using 0.44 (median value of the solubility

data of our database) as cut-off threshold because the data above

and below median exhibit same sizes. SVM showed the best predic-

tion performance among all the ML models according to the value

of R2 (Table 4). The tuned SVM parameters were listed in

Supplementary Table S2 and Supplementary Figure S1. After plot-

ting the correlation between the R2 versus cost, epsilon, or gamma,

optimized values were found (0.86, 0.031 and 0.205 for cost,

gamma or epsilon, respectively). The R2 indicates how well our re-

gression model explains all the variability of the protein solubility

around its mean. To evaluate our model in a more comprehensive

way, we performed the analysis of variance (ANOVA) to the SVM

model with the best prediction performance and the results of

ANOVA are shown in Table 5. In the table, other evaluation metrics

of our regression model of SVM are also provided. For example, the

mean squared error, measuring the average of the squares of the

errors, is 0.0639. In addition, the F statistic of 36.9342 is much higher

than 1, which shows our regression model is statistically significant.

For comparison, we also trained the models by using the conven-

tional approach, which converted continuous actual solubility val-

ues into binary ones BEFORE model training. Though using

continuous values did not always improve model prediction per-

formance, it improved SVM model and made it to be the best one,

in terms of both accuracy and R2 (Table 4).

Cut-off points were used to transfer continuous values of solubil-

ity to binary values for model evaluation. How to choose the cut-off

threshold substantially affects accuracy. Here we did a simple opti-

mization of the threshold with maximizing the accuracy as the ob-

jective. When the cut-off threshold was too low (<0.3) or too high

(>0.7), the accuracy would be very high, but such accuracy was not

useful because almost all the proteins would be classified either as

soluble or insoluble proteins. We varied the threshold from 0.3 to

0.7 with step size of 0.01 and calculated the SVM model prediction

accuracy. From Figure 4, the highest accuracy (0.7628) was

obtained when the cut-off point was 0.36 or 0.39. Therefore, 0.39

was randomly selected from those two values and was used in the

following analysis. Although this optimization did not substantially

improve SVM model prediction accuracy, the results showed that

the threshold can substantially change the accuracy (Fig. 4). In the

previous study using the same database with us (Fang and Fang,

Table 3. The definition of TP, TN, FP and FN for binary values of

solubility

Predicted solubility from models

Actual solubility

from experiments

Solubility ¼ 1 Solubility ¼ 0

Solubility ¼ 1 TP FN

Solubility ¼ 0 FP TN

Table 4. Performance of different ML models

Model Accuracy R2

Continuous values

of solubility

Binary values

of solubility

Continuous values

of solubility

Logistic

regression

0.6372 0.6868 0.2507

Decision tree 0.6734 0.6750 0.2459

SVM 0.7538 0.7001 0.4115

Naı̈ve Bayes 0.6674 0.6979 0.2376

cforest 0.7055 0.7123 0.3764

XGboost 0.7052 0.7103 0.3997

ANNs 0.6632 0.7086 0.2029

Table 5. Results of ANOVA test

Source Degrees of freedom Sum of squares Mean squares F

Model 19 44.8500 2.3605 36.9342

Error 784-19-1 48.8285 0.0639

Total 784-1 93.6784
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2013; Samak et al., 2012), two thresholds 0.3 and 0.7 were used,

which divided proteins with solubility lower than 0.3 as insoluble

and proteins with solubility higher than 0.7 as soluble. The proteins

with solubility within 0.3–0.7 were discarded. The method of divid-

ing whether the proteins were soluble affected the accuracy signifi-

cantly and was different from our approach. We first used one

threshold 0.44 and modified it within the range 0.3–0.7 to observe

the change of accuracy, whereas they used two thresholds 0.3, 0.7

and discarded the proteins with solubility between 0.3 and 0.7.

Since it is arbitrary to choose a cut-off threshold, accuracy based on

the cut-off threshold is intrinsically subjective. With our new meth-

ods and the resulting continuous model output values, we call for

using the coefficient of determination (R2) as the model evaluation

metric, which does not require any cut-off threshold. We used the

R2 as the sole evaluation metric in the rest of this study.

3.2 Attempt to improve model performance by

optimizing data pre-processing
To further improve SVM model prediction performance, we eval-

uated all the available algorithms that convert amino acid sequence

into numerical values. This step is critical as it extracts a fraction of

information (usually only a small fraction, termed as features) from

the sequence data, and feeds it to the model-training algorithms.

Since most information in raw data was discarded here, avoiding loss

of critical information by using a better algorithm may improve the

model performance. It turned out that the best was the extractAAC

descriptor that simply converted sequence into amino acid compos-

ition, and that we used in prior sessions of this study (Table 6).

3.3 Attempt to improve model performance by using

data augmentation
In the first attempt, four versions of GANs were trained for 500 itera-

tions to generate the artificial data, which were used together with the

original data to train ML models by using SVM. This attempt, how-

ever, failed to improve the model performance, as R2 was not increased

(Supplementary Table S3). Figures of protein sequence after dimen-

sionality reduction by principal component analysis (PCA) and protein

solubility were shown in Supplementary Figures S2 and S3. PCA can

generate a lower-dimensional projection of the data and preserve the

maximal data variance. Three components with highest variance were

retained after projecting our features with 20 dimensions for data

visualization, and they represented the three dimensions in

Supplementary Figures S2 and S3. Different colours represent different

values of solubility from 0 to 1. Over iterations, the quality of data

generated by GANs improved (Supplementary Fig. S3), which showed

GANs were implemented correctly. By comparing the performance of

four versions of GANs (Supplementary Table S3), GANs and CGAN

had better performance among the four versions of GANs. In addition,

GANs surpassed CGAN according to the comparison between the ori-

ginal data and the generated data from GANs and CGAN

(Supplementary Fig. S2). Therefore, GANs were explored for more

iterations.

In the second attempt, we increased the number of iterations from

500 to 5000. At the end of each 100 iterations, the generated data were

used together with the original data to train the SVM model. There

were 50 values of R2 corresponding to 50 sets of exported generated

data after we train GANs for 5000 iterations. The highest R2 among

the 50 values was recorded for each training dataset (Supplementary

Table S4). In Supplementary Table S4, suffixes 1, 2 and 3 represent

three randomly selected training datasets from the original dataset. For

each training dataset, the comparison of SVM model performance be-

tween original data and data including generated data was conducted.

There was, however, no improvement of prediction performance after

applying data augmentation algorithms.

Therefore, the generated data was not used for training the ML

models in other sections of our study. Optimization for GANs or other

data augmentation algorithms will be explored further in future work.

4 Discussion

4.1 Predict protein solubility with continuous values
In this study, we developed a new model that can use amino acid

sequence to predict protein solubility in continuous values from

0 to 1, which would help improve solubility of recombinant proteins

through protein engineering. Having model output in such format

also enables us to use coefficient of determination (R2) as a metric to

evaluate model performance, which does not depend on a subjective

threshold to determine if a protein is soluble or insoluble. In litera-

ture, all the studies used such threshold(s) to convert continuous val-

ues of protein solubility in eSol database into binary values.

The R2 of our model may be improved further in three aspects.

First, the descriptors we used to transfer amino acid sequence into nu-

merical values may not include complete information for the sequence.

For example, physical properties and secondary structure can be added

Table 6. Performance of different sequence descriptors by SVMa

Descriptors R2 Data dimension

extractAAC 0.4108 20

extractPAAC 0.3564 50

extractAACþextractPAAC 0.3719 70

extractAPAAC 0.3049 80

extractMoreauBroto 0.0806 240

extractMoran 0.0542 240

extractGeary 0.0562 240

extractCTDC 0.2484b 21

extractCTDT 21

extractCTDD 105

extractCTriad 0.0650 343

extractSOCN 0.1647 80

extractQSO 0.3224 100

aThe description of each descriptor is shown in Table 2.
bThe R2 is the result combining extractCTDC, extractCTDT and extractCTDD.

Fig. 4. Effect of cut-off threshold on SVM prediction accuracy
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as the features for improving the model performance. Second, the qual-

ity and quantity of the data points collected in the eSol database may

not be enough to train the ML models effectively. More data can be

collected by experiments or generated by data augmentation algo-

rithms to enlarge the dataset. Finally, the R2 may be limited by using

protein sequence alone for the prediction of protein solubility. Other

elements can be included to further enhance the model performance

such as pH and temperature in the process of expressing the proteins.

With continuous values of solubility, we will study how to use a devel-

oped model to guide experiments in the future. First, we will use statistical

tools to determine the minimal performance of a model (in terms of R2)

required to conduct a meaningful in silico screening of protein mutants—

the average quality of selected mutants should be substantially higher than

that of the initial pool of mutants. The next step is to validate the model

prediction by selecting a number of proteins with high predicted solubility

and measuring their actual solubility through experiments. We can gener-

ate the pool of mutants for in silico screening by randomly introducing

mutants to a model protein. However, binding of substrate/co-factor and

catalytic active site may be damaged by such random mutation, which

would influence the catalytic function. Therefore, mutation of residues re-

sponsible for binding substrates and the catalytic activity will be avoided.

Then sensitivity analysis will be conducted to determine how many muta-

tions should be made to improve protein solubility substantially. The

model we developed in this study laid the foundation for such future

works, which cannot be done by using any existing models.

4.2 Enlarge dataset by data augmentation algorithms
Despite that GANs have improved ML in many applications; it failed

to build better models in this case. There may be two reasons for the

undesired results. First, the parameters of GANs or the architecture of

the generator and the discriminator were suboptimal, so the quality of

the generated data was poor. To improve GANs, we plan to conduct

more optimizations of GANs parameters, such as learning rate of the

generator and the discriminator. Second, model prediction perform-

ance is strongly influenced by the quality of dataset, so the quality of

the dataset we used may limit us from developing better models. In this

case, GANs can be tried for a part of the original dataset only including

specific groups of proteins with acceptable prediction performance.

Acknowledgements

We thank Dr Wee Chin Wong, Dr Yun Long for technical discussions and Mr

Shen Yifan for assistance.

Funding

This work was supported by Ministry of Education (MOE) Research

Scholarship, MOE Tier-1 grant [R-279-000-452-133] and National Research

Foundation (NRF) Competitive Research Programme (CRP) grant [R-279-000-

512-281] in Singapore.

Conflict of Interest: none declared.

References

Agostini,F. et al. (2012) Sequence-based prediction of protein solubility.

J. Mol. Biol., 421, 237–241.

Arjovsky,M. et al. (2017) Wasserstein GAN. arXiv Preprint arXiv, 1701, 07875.

Chan,W.-C. et al. (2010) Learning to predict expression efficacy of vectors in

recombinant protein production. BMC Bioinform, 11, S21.

Christendat,D. et al. (2000) Structural proteomics of an archaeon. Nat. Struct.

Mol. Biol., 7, 903–909.

Diaz,A.A. et al. (2010) Prediction of protein solubility in Escherichia coli using

logistic regression. Biotechnol. Bioeng., 105, 374–383.

Fang,Y. and Fang,J. (2013) Discrimination of soluble and aggregation-

prone proteins based on sequence information. Mol. Biosyst., 9, 806–811.

Goh,C.-S. et al. (2004) Mining the structural genomics pipeline: identification

of protein properties that affect high-throughput experimental analysis.

J. Mol. Biol., 336, 115–130.

Goodfellow,I. et al. (2014) Generative adversarial nets. In Ghahramani,Z. et

al. (eds) Advances in Neural Information Processing Systems, Montreal,

Canada, MIT Press, Cambridge, MA, pp. 2672–2680.

Gulrajani,I. et al. (2017) Improved training of Wasserstein GANs. arXiv

Preprint arXiv, 1704, 00028.

Gupta,A. and Zou,J. (2018) Feedback GAN (FBGAN) for DNA: a novel

feedback-loop architecture for optimizing protein functions. arXiv Preprint

arXiv, 1804, 01694.

Hirose,S. et al. (2011) Statistical analysis of features associated with

protein expression/solubility in an in vivo Escherichia coli expression

system and a wheat germ cell-free expression system. J. Biochem., 150, 73–81.

Hirose,S. and Noguchi,T. (2013) ESPRESSO: a system for estimating protein

expression and solubility in protein expression systems. Proteomics, 13,

1444–1456.

Huang,H.-L. et al. (2012) Prediction and analysis of protein solubility using a

novel scoring card method with dipeptide composition. In Bmc

Bioinformatics. BioMed Central, p. S3.

Idicula-Thomas,S. et al. (2006) A support vector machine-based method

for predicting the propensity of a protein to be soluble or to form

inclusion body on overexpression in Escherichia coli. Bioinformatics, 22,

278–284.

Idicula-Thomas,S. and Balaji,P.V. (2005) Understanding the relationship

between the primary structure of proteins and its propensity to be soluble on

overexpression in Escherichia coli. Protein Sci., 14, 582–592.

Kitagawa,M. et al. (2005) Complete set of ORF clones of Escherichia coli

ASKA library (a complete set of E. coli K-12 ORF archive): unique resources

for biological research. DNA Res., 12, 291–299.

Magnan,C.N. et al. (2009) SOLpro: accurate sequence-based prediction of

protein solubility. Bioinformatics, 25, 2200–2207.

Mirza,M. and Osindero,S. (2014) Conditional generative adversarial nets.

arXiv Preprint arXiv, 1411, 1784.

Niwa,T. et al. (2009) Bimodal protein solubility distribution revealed by an

aggregation analysis of the entire ensemble of Escherichia coli proteins.

Proc. Natl. Acad. Sci. USA, 106, 4201–4206.

Qi,G.-J. et al. (2018) Global versus localized generative adversarial nets. In:

Saraju,M. (ed.) Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) Computer Vision and Pattern Recognition

(CVPR), Salt Lake City, Utah.

Rawi,R. et al. (2017) PaRSnIP: sequence-based protein solubility prediction

using gradient boosting machine. Bioinformatics, 34, 1092–1098.

Rumelhart,D.E. et al. (1985) Learning internal representations by error propa-

gation. Technical report DTIC Document.

Samak,T. et al. (2012) Prediction of protein solubility in E. coli. Chicago, IL:

E-Science (e-Science). In: Daniel,S.K. and Heinz,S. (eds) IEEE 8th

International Conference on Date of Conference, 8–12 October 2012;

2012: 2011–2018, Institute of Electrical and Electronics Engineers (IEEE),

Chicago, IL.

Smialowski,P. et al. (2012) PROSO II–a new method for protein solubility pre-

diction. FEBS J., 279, 2192–2200.

Smialowski,P. et al. (2007) Protein solubility: sequence based prediction and

experimental verification. Bioinformatics, 23, 2536–2542.

Stiglic,G. et al. (2012) Comprehensive decision tree models in bioinformatics.

PLoS One, 7, e33812.

Wilkinson,D.L. and Harrison,R.G. (1991) Predicting the solubility of recom-

binant proteins in Escherichia coli. Nat. Biotechnol., 9, 443.

Xiao,N. et al. (2014) Protr: protein sequence descriptor calculation and simi-

larity computation with R. R Package Version, 0.2–1.

Xiaohui,N. et al. (2014) Predicting the protein solubility by integrating chaos

games representation and entropy in information theory. Expert Syst. Appl.,

41, 1672–1679.

Zhou,K. et al. (2012) Enhancing solubility of deoxyxylulose phosphate

pathway enzymes for microbial isoprenoid production. Microb. Cell Fact.,

11, 148.

4646 X.Han et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/22/4640/5481956 by guest on 20 April 2024


	btz294-TF1
	btz294-TF2
	btz294-TF3
	btz294-TF4
	btz294-TF5
	btz294-TF6

