
Genome analysis

Chicdiff: a computational pipeline for detecting

differential chromosomal interactions in

Capture Hi-C data

Jonathan Cairns1,2,†, William R. Orchard1,3,4,5,†, Valeriya Malysheva1,3,4,†

and Mikhail Spivakov 1,3,4,*

1Regulatory Genomics Group, Nuclear Dynamics Programme, Babraham Institute, Cambridge CB22 3AT, UK, 2Data

Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge

CB4 0WG, UK, 3Functional Gene Control Group, Epigenetics Section, MRC London Institute of Medical Sciences,

London W12 0NN, UK, 4Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK

and 5Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.

Associate Editor: Inanc Birol

Received on January 22, 2019; revised on May 3, 2019; editorial decision on May 23, 2019; accepted on June 5, 2019

Abstract

Summary: Capture Hi-C is a powerful approach for detecting chromosomal interactions involving,

at least on one end, DNA regions of interest, such as gene promoters. We present Chicdiff, an R

package for robust detection of differential interactions in Capture Hi-C data. Chicdiff enhances a

state-of-the-art differential testing approach for count data with bespoke normalization and

multiple testing procedures that account for specific statistical properties of Capture Hi-C.

We validate Chicdiff on published Promoter Capture Hi-C data in human Monocytes and CD4þ

T cells, identifying multitudes of cell type-specific interactions, and confirming the overall positive

association between promoter interactions and gene expression.

Availability and implementation: Chicdiff is implemented as an R package that is publicly available

at https://github.com/RegulatoryGenomicsGroup/chicdiff.

Contact: mikhail.spivakov@lms.mrc.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Differential signal detection in sequencing data is one of the most

common tasks in genomic analyses. Multiple tools have been devel-

oped for this purpose, many of which, including DESeq and EdgeR,

are based on the negative binomial models for count data (Anders

and Huber, 2010; Robinson et al., 2010). Such tools are theoretical-

ly suitable for the analysis of most sequencing data types, including

chromatin immunoprecipitation and Hi-C, leading to the develop-

ment of wrapper packages around DESeq and EdgeR that facilitate

differential analyses for such data (Lareau and Aryee, 2018; Ross-

Innes et al., 2012). However, both of these algorithms have been

developed with standard RNA sequencing data in mind and

therefore not account for or benefit from the specific properties of

data resulting from other assays, prompting the development of

assay-specific differential analysis tools (Chen et al., 2015; Liu and

Ruan, 2017; Stansfield et al., 2018; Xu et al., 2008).

Capture Hi-C (CHi-C) is a powerful experimental technique for

detecting chromosomal interactions globally and at high resolution

(Schoenfelder et al., 2015). In CHi-C, the genome-wide pulldown of

pairs of interacting genomic fragments by Hi-C is followed by se-

quence capture to selectively enrich Hi-C material for interactions

involving (at least on one end) fragments of interest, termed ‘baits’.

Differential analyses of CHi-C data are challenging due to sample

normalization issues, sparsity and uneven signal-to-noise ratios
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across interaction distances and different capture baits, which are

not accounted for by standard differential analysis algorithms.

We have previously reported CHiCAGO, a statistical pipeline

for robust detection of significant interactions in CHi-C data from a

single condition (Cairns et al., 2016). Here, we present Chicdiff, an

R package for differential CHi-C data analysis. Chicdiff combines

moderated differential testing for count data implemented in

DESeq2 (Love et al., 2014) with CHi-C-specific procedures for sig-

nal normalization informed by CHiCAGO and P-value weighting.

Jointly, procedures implemented in Chicdiff enable a robust and sen-

sitive detection of differential interactions in CHi-C data.

2 Approach

A schematic of the overall analysis approach is presented in

Supplementary Figure S1. The following sections and

Supplementary Note describe specific steps in more detail.

2.1 Feature selection
CHi-C data are often sparse, particularly at large interaction distances,

limiting the power of differential signal detection. In part, this problem

can be mitigated based on the fact CHi-C signals commonly spread to

adjacent fragments (Eijsbouts et al., 2019), most likely owing to the

tethering of these fragments into the vicinity of the baits by nearby spe-

cific interactions. Therefore, to increase power, Chicdiff pools read

across several fragments (by default, five in each direction) surrounding

each interacting fragment of interest for each bait. A functionality is

provided to prioritize fragment-level interactions within each detected

differentially interacting region post-hoc (see Supplementary Note).

2.2 Data normalization and significance testing
Typically, in differential count analyses, a single normalization (scal-

ing) factor is estimated per sample to account for differences in library

size. However, we found that in CHi-C data, normalization can be fur-

ther improved by taking into account the differences in the background

levels for specific pairs of fragments between samples. In CHi-C, unlike

in many other data types, such as RNA-seq, it is possible to obtain

such background estimates from the data, and procedures for this are

implemented in the Chicago package (Cairns et al., 2016). Chicdiff

combines scaling factors based on these background estimates with

sample-level scaling factors in a manner that minimizes the total disper-

sion of read counts across replicates and conditions at each interaction.

The count and scaling matrices generated as described above are

provided as input for the DESeq2 package, which tests each inter-

action for differences between conditions using a negative binomial

model with moderated dispersion estimation.

2.3 Weighted multiple testing treatment
As with other Hi-C-derived data types, signal-to-noise ratios and ef-

fect sizes in CHi-C data vary highly with interaction distance. This

makes a strong case for non-uniform multiple testing correction,

such that P-values for differential tests on longer-distance interac-

tions are corrected more stringently compared with those on short-

distance interactions. To do this, Chicdiff uses the Independent

Hypothesis Weighting (IHW) method (Ignatiadis et al., 2016) to

learn P-value weights based on interaction distance in a manner

that maximizes the number of rejected null hypotheses. However,

training IHW weights on the test regions is not appropriate, since

their P-values are often not uniform under the null due to selection

bias, which violates IHW’s core assumption. Therefore, instead we

learn weights on a separate ‘weight training set’ of fragment pairs

randomly drawn from the full interaction count data for each sam-

ple (i.e. not limited to CHiCAGO-detected significant interactions),

thus avoiding selection bias. The distance-dependent weights learned

this way are applied to the P-values in the test set, and the resulting

weighted P-values are reported to the user.

3 Use example

We applied Chicdiff to detect interactions specific to naive CD4þ T

cells versus monocytes based on promoter CHi-C data from Javierre

et al. (2016). This resulted in 208 232 detected differential interacting

regions (weighted adjusted P-value <0.05; see Supplementary

Table S1 for further summary statistics). An example of differential

interactions is shown in Figure 1, and a heatmap of a subset of differ-

ential and non-differential interactions is shown in Supplementary

Figure S2. As expected, differential promoter-interacting regions were

enriched for differential enhancer activity between the two cell types

(Supplementary Fig. S3). In addition, many genes whose promoters

engaged in differential interactions showed consistent differences in

expression (Supplementary Fig. S4). Supplementary Figures S5–S9 val-

idate the Chicdiff approach by comparing the differential interaction

calls obtained with and without pooling across multiple fragments,

with Chicdiff versus standard DESeq2 normalization, and with and

without P-value weighting, with respect to the expression of associated

genes and other parameters.
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Fig. 1. Example of differential interactions detected by Chicdiff. Profiles of

Promoter CHi-C interaction counts detected for WNT7A promoter in naive

CD4þ T cells (top) and monocytes (bottom) generated by Chicdiff (data from

Javierre et al., 2016). Significant interactions detected for each condition sep-

arately by CHiCAGO are colour-coded (blue: 3<score�5; red: score>5).

Significant differentially interacting regions detected by Chicdiff are depicted

as red blocks. Interactions beyond 1 Mb each way cropped out
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