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Abstract

Summary: Statistical dependencies are present in a variety of sequence data, but are not discern-

ible from traditional sequence logos. Here, we present the R package DepLogo for visualizing

inter-position dependencies in aligned sequence data as dependency logos. Dependency logos

make dependency structures, which correspond to regular co-occurrences of symbols at depend-

ent positions, visually perceptible. To this end, sequences are partitioned based on their symbols

at highly dependent positions as measured by mutual information, and each partition obtains its

own visual representation. We illustrate the utility of the DepLogo package in several use cases

generating dependency logos from DNA, RNA and protein sequences.

Availability and implementation: The DepLogo R package is available from CRAN and its source

code is available at https://github.com/Jstacs/DepLogo.

Contact: grau@informatik.uni-halle.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequence logos (Schneider and Stephens, 1990) are still the most

prevalent way of visualizing sequence motifs. Sequence logos may

be perceived either as a visualization of position weight matrix

(PWM) models (Stormo et al., 1982), or as a compact representation

of a set of aligned sequences. Like PWMs, sequence logos assume

that the different positions of a motif are pairwise independent,

which is not true for many types of motifs. For instance, dependen-

cies are present in DNA-binding sites of transcription factors, one

prominent example being CTCF (Eggeling et al., 2014), covariation

of nucleotides appears in structured RNAs, or between amino acids

of protein sequences.

Several attempts have been made to visualize dependencies in

aligned sequence data. EnoLOGOS (Workman et al., 2005) and

CircularLogo (Ye et al., 2017) visualize the strength of pairwise

dependencies, but the exact dependency structure (i.e. information

like ‘if position 5 is A then position 2 is likely C’) remains invisible.

The visualizations of transcription factor flexible models (Mathelier

and Wasserman, 2013), elastic net regularized logistic regression

models (Yang and Chang, 2015), parsimonious context trees

(Eggeling et al., 2017) or covariance models (Eggenhofer et al.,

2018) provide extensive insights into dependency structures but are

each closely tied to one specific class of statistical models.

Recently, we proposed dependency logos as an alternative way of

visualizing dependencies in sequence data (Keilwagen and Grau,

2015). Dependency logos make dependency structures visually per-

ceptible. They partition sequences by the symbols at those positions

with the strongest dependencies. Dependencies between pairs of posi-

tions are measured by mutual information and the strength of the de-

pendency at a certain position is defined as the sum of the N (user

parameter) largest mutual information values to other positions.

Similar to EnoLOGOS and CircularLogo, dependency logos include a

representation of the strength of pairwise dependencies to guide the

viewer towards the most prominent positions. They further comprise

a traditional sequence logo to provide context and to assist the viewer

in mapping symbols to colors. We present an annotated example of a

dependency logo as Supplementary Figure S1, while further explan-

ation of the method is given in Keilwagen and Grau (2015) and is also

sketched in the package vignette. In addition, we provide a step-wise

illustration of the partitioning algorithm in Supplementary Text S1.
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Compared with the initial Java implementation (Keilwagen and

Grau, 2015), we have extended the R package presented in this

paper in several ways. Specifically,

• DepLogo is applicable to DNA, RNA and protein sequences

(Fig. 1),
• the input data may contain gap symbols, allowing to apply

DepLogo to multiple sequence alignments (Fig. 1A),
• the strength of dependencies may be visualized by arcs or by a

grid pattern connecting positions (Fig. 1A/B),
• dependency structures are visualized by color charts, colored

boxes representing data partitions or separate sequence logos for

individual partitions (Fig. 1, Supplementary Fig. S2),
• plotting functions are organized into high-level and low-level

functions, allowing for a custom layout of sub-plots

(Supplementary Fig. S3),
• all plotting functions are highly customizable by a large number

of user parameters and by custom implementations of plot func-

tions (Supplementary Fig. S3),
• auxiliary functions help to filter alignment columns by user-

defined criteria or suggest distinguishable colors for different

symbols (Supplementary Figs S4 and S5),
• dependency logos may be annotated by a representation of

sequence-assigned values, e.g. ChIP-seq peak statistics or other

confidence measures (Fig. 1B).

DepLogo comes with extensive documentation, a package vi-

gnette, example data and unit tests based on testthat (Wickham,

2011).

2 Use cases

We illustrate the utility of the DepLogo package for RNA, DNA

and protein sequence data, also demonstrating the versatility of the

different visualization options. In Figure 1A, we show a dependency

logo of the alignment of the left stem loop of a glutamine riboswitch

[RFAM (Kalvari et al., 2018) ID RF01739]. It is created from a vec-

tor of sequences x by (i) creating a DLData object, (ii) filtering align-

ment columns by the fraction of gaps and (iii) plotting the

dependency logo with a grid pattern as follows:

data <- DLData(sequences ¼ x,

symbols ¼ alphabet.rna.gap$alphabet,

colors ¼ alphabet.rna.gap$colors)

data.2<- filterColumns(data, filter.by.gaps(0.1))

plotDeplogo(data.2, dep.fun ¼ plotDepmatrix,

show.dependency.pvals ¼ TRUE, maxNum ¼ 4)

The dependency logo shows strong dependencies (i.e. covariation of

nucleotides) between positions 9–12 and 118–121 as indicated by

the black dots in the grid pattern at the top of the dependency logo.

After partitioning the sequence data by the nucleotides at the most

dependent positions, we can clearly derive rules like ‘if position 11 is

U then position 119 is likely A’ or, more generally, complementarity

of the nucleotides at those most dependent positions. Notably, these

are exactly the bases that form a stem loop structure by complemen-

tary base pairing. A further example considering tRNA sequences is

shown in Supplementary Figure S5.

In Figure 1B, we consider binding sites of the transcription factor

NRSF/REST as predicted by Slim models (Keilwagen and Grau,

2015), which are capable of capturing long-range dependencies

from ChIP-seq data. These data are also supplied as example data

within the DepLogo package. Assuming that these data are stored

in the data frame seqs, containing the sequences in the first and

associated peak statistics in the second column, we call

data <- DLData(sequences ¼ seqs[, 1],

weights ¼ log1p(seqs[, 2]))

plotDeplogo(data, threshold ¼ 0.03,

weight.fun ¼ subBoxes)

In this case, we find the strongest dependencies among positions 9–

16 of the extracted binding sites, which are represented by connect-

ing arcs at the top of the dependency logo. We further recognize that

the subset of sequences at the top of the dependency logo is highly

conserved at these very positions as indicated by the strong colors of

the corresponding blocks. We augment the plot by showing boxplots

of the ChIP-seq peak statistics of the peak origins of the extracted

binding sites. Notably, we find that sequences comprising the longer

motif originate from peaks that are more strongly bound by NRSF

according to the ChIP-seq data. In Supplementary Figure S6,

we show examples for binding sites of the transcription factor

c-Jun as predicted by Slim models, parsimonious Markov models

(Eggeling et al., 2017) and Bayesian Markov models (Siebert and

A

B

Fig. 1. Examples of dependency logos. (A) Left stem loop of a riboswitch

using a regular grid to represent dependency P-values. (B) Binding sites of

the transcription factor NRSF predicted from ChIP-seq data with individual

partitions annotated with ChIP-seq peak statistics
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Söding, 2016) to illustrate that dependency logos are inherently

model-agnostic.

Finally, we consider protein data, specifically the seed regions of

Glycosyl transferases downloaded from Pfam (El-Gebali et al., 2019)

(PFAM ID PF02885) shown in Supplementary Figure S4. Here, we

find several co-varying positions with complex dependency structures.

3 Discussion

We present DepLogo, an R-package for visualizing dependency struc-

tures in aligned sequence data. DepLogo is applicable to all types of

biological sequences, including DNA, RNA and protein sequences,

but may also be applied to other types of sequential, categorical data

using custom alphabet definitions. With parameter-rich plotting func-

tions and a modular design of low-level sub-plots, DepLogo can be

easily adjusted to specific data and application domains to generate

publication-quality plots that represent the wealth of dependency

structures that may be found in biological sequence data.

Conflict of Interest: none declared.
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