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Abstract

Summary: Imputation of dropout events that may mislead downstream analyses is a key step in

analyzing single-cell RNA-sequencing (scRNA-seq) data. We develop EnImpute, an R package that

introduces an ensemble learning method for imputing dropout events in scRNA-seq data.

EnImpute combines the results obtained from multiple imputation methods to generate a more ac-

curate result. A Shiny application is developed to provide easier implementation and visualization.

Experiment results show that EnImpute outperforms the individual state-of-the-art methods in al-

most all situations. EnImpute is useful for correcting the noisy scRNA-seq data before performing

downstream analysis.

Availability and implementation: The R package and Shiny application are available through

Github at https://github.com/Zhangxf-ccnu/EnImpute.

Contact: leouyang@szu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq), which measures global

gene expression of individual cells, provides new opportunities to

discover the mechanisms that cannot be seen from bulk RNA-

sequencing data. Due to technical factors, dropout events, where

transcripts are present in a cell but not detected, often occur in

scRNA-seq experiments. This may hinder downstream analyses

such as data visualization, cell clustering, cellular trajectory infer-

ence and differential expression analysis.

To address this issue, several computational methods have been

developed recently to impute dropout events in scRNA-seq data

(Chen et al., 2018; Eraslan et al., 2019; Huang et al., 2018; Kwak

et al., 2018; Li and Li, 2018; Linderman et al., 2018; Satija et al.,

2015; van Dijk et al., 2018). These methods have shown diverse

characteristics in terms of model assumptions and imputation strat-

egies. For example, some methods impute dropout values for each

cell by borrowing information from similar genes, while the remain-

ing ones pool the data for each gene across similar cells. In addition,

some methods use global strategies to impute the observed data,

whereas the others adopt local strategies. Individual imputation

methods may fail to recovery the true gene expression levels when

the model assumptions are not accurate. The performances of these

methods depend heavily on the underlying data structures and

evaluation approaches. None of these imputation methods is an

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 4827

Bioinformatics, 35(22), 2019, 4827–4829

doi: 10.1093/bioinformatics/btz435

Advance Access Publication Date: 24 May 2019

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/22/4827/5498284 by guest on 09 April 2024

http://orcid.org/0000-0002-5052-9725
https://github.com/Zhangxf-ccnu/EnImpute
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz435#supplementary-data
https://academic.oup.com/


apparent winner in all situations (Zhang and Zhang, 2018).

Therefore, it is difficult to choose an optimal method for new data

when there is no prior knowledge about the true expression levels.

By combining multiple results derived from different methods

into a consensus result, ensemble learning is an effective strategy to

deal with the above challenge. In this study, we introduce an ensem-

ble learning method, named EnImpute, for imputing dropout values

in scRNA-seq data. In the current implementation, EnImpute com-

bines the results of eight individual methods using the trimmed

mean. To provide a user-friendly tool, we develop an R package to

implement the ensemble method. A Shiny application is also devel-

oped to facilitate easier implementation and visualization. Extensive

experiments have shown the advantages of EnImpute over the indi-

vidual imputation methods.

2 Materials and methods

EnImpute uses the trimmed mean to combine results from eight indi-

vidual imputation methods: Adaptively-thresholded low rank ap-

proximation (ALRA) (Linderman et al., 2018), Deep count

autoencoder network (DCA) (Eraslan et al., 2019), DrImpute

(Kwak et al., 2018), Markov affinity-based graph imputation of

cells (MAGIC) (van Dijk et al., 2018), Single-cell analysis via expres-

sion recovery (SAVER) (Huang et al., 2018), scImpute (Li and Li,

2018), scRMD (Chen et al., 2018) and Seurat (Satija et al., 2015).

An overview of EnImpute is presented in Figure 1. The input of

EnImpute is a raw read count matrix where the columns represent

cells and the rows correspond to genes. EnImpute first runs the eight

individual imputation methods independently to generate the base

results. For ALRA, DrImpute, MAGIC, scRMD and Seurat, which

do not implement library size normalization and log transformation

in the imputation function, the input data is preprocessed using the

normalization functions provided by the authors. After obtaining

the imputation results from individual methods, EnImpute rescales

the imputed data before combining them. First, the imputed expres-

sion levels in log-scale (ALRA, DrImpute, MAGIC, scRMD and

Seurat) are exponentiated. Second, to eliminate the method-to-

method variations in scale, EnImpute rescales the imputed results by

performing library normalization such that library size for each cell

is 10 000. Third, the rescaled imputed data are log transformed with

pseudocount 1. Finally, the consensus result is obtained by calculat-

ing the trimmed mean of the imputations generated by the base

methods. The trimmed mean is used since it is more robust to out-

liers than the widely used mean that is computed as the sample aver-

age. Details are provided in Supplementary Section S1.

3 R package and Shiny web application

An R package, named EnImpute, is developed to implement the en-

semble method. The main function of the package is EnImpute. The

inputs include a raw read count matrix. Users can specify the library

size for re-scaling the imputed results and the fraction of observa-

tions to be discarded before calculating the trimmed mean by setting

the scale.factor and trim parameters. Users can also choose the indi-

vidual imputation methods and set their parameters according to the

arguments.

To provide a user-friendly tool, EnImpute is also implemented in

a web application using the Shiny R package (Chang et al., 2017).

The Shiny application interface is divided into three panels. The count

matrix (a .csv file) can be uploaded, and the tuning parameters of

each imputation method can be specified in the left panel. When the

imputation is finished, t-SNE visualization of the raw data and

the data imputed by EnImpute will be shown in the middle panel.

The imputed data can be downloaded with the download button in

the right panel. The detailed descriptions of the R package and Shiny

application are presented in Supplementary Sections S2 and S3.

4 Results

We assess the performance through down-sampling experiments,

differential expression analysis, and clustering and visualization ana-

lysis. The down-sampling experiments are conducted by following

the method of Huang et al. (2018). Down-sampling on four scRNA-

seq datasets are performed to generate the reference and observed

data. We run EnImpute and the eight individual imputation methods

on each of the observed data, and evaluate their performance by

comparing the imputed data with the reference data. Experiment

results show that EnImpute performs better than the individual

methods on all datasets in terms of the correlation with reference

data (both on the gene level and on the cell level), the recovery of

cell-to-cell and gene-to-gene correlation matrices, and cell clustering

and visualization (Supplementary Section S4). Differential expres-

sion analysis experiments show that EnImpute outperforms the

other methods in increasing the agreement between bulk and single-

cell differential expression analysis (Supplementary Section S5).

Clustering and visualization analysis on three scRNA-seq datasets

also reveal the advantage of EnImpute over individual methods

(Supplementary Section S6). The effect of parameter trim, which

specifies the fraction of observations to be trimmed, is analyzed in

Supplementary Section S7.

5 Conclusions

We have developed an R package to introduce an ensemble method

for imputing dropout events in scRNA-seq data. Besides EnImpute,

DrImpute (Kwak et al., 2018) is also an ensemble learning-based im-

putation method. DrImpute integrates the results from the same
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Fig. 1. Overview of EnImpute. (A) The workflow of EnImpute. (B) t-SNE visual-

ization of the observed, imputed (by EnImpute) and reference datasets, color-

coded by the clusters identified from the reference dataset (Color version of

this figure is available at Bioinformatics online.)
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type of base imputation methods, whereas EnImpute combines the

results from different types of base imputation methods that rely on

different model assumptions. When compared with DrImpute,

EnImpute can make full use of the advantages of different types of

methods. In the future, more newly developed imputation methods

will be integrated into EnImpute to improve the performance. Since

imputing dropout events is becoming a routine step in scRNA-seq

data analysis, EnImpute will serve a wide range of users for denois-

ing the raw scRNA-seq data.

In this study, we integrate the base results from different imput-

ation methods by taking the trimmed mean. Here, we use the

trimmed mean since it is simple and can improve the performance of

individual methods in most situations. In our opinion, more sophis-

ticated ensemble methods that can fully take advantage of the

strengths and weaknesses of the individual methods may produce

better results. For example, a weighted ensemble approach, which

learns a weight for each base imputation method and combines their

results using a weighted mean, can be considered. In addition, it is

well known that the zeros in scRNA-seq data can be divided into

technical zeros that are caused by dropouts and biological zeros that

reflect true biological non-expression. If we do not distinguish be-

tween technical and biological zeros and impute all zeros, the bio-

logically non-expressed values will be altered incorrectly. However,

determining which zeros are affected by dropouts is not easy.

ALRA, SAVER, scImpute and scRMD have tried to distinguish the

two types of zeros using different strategies and only impute the

technical zeros. But experiment results show that they do not always

outperform the methods that impute all the zeros (e.g. DCA,

DrImpute, MAGIC and Seurat). This might be partially due to the

problem that the two types of zeros are not distinguished accurately.

In the future, we will develop new methods to decide which zeros

are caused by dropouts and then impute these elements based on the

imputations from the base methods.

Funding

This work was supported by the National Natural Science Foundation of

China [11871026, 61532008, 61602309, 61772368, 61602347, 91530321

and 61572363], Natural Science Foundation of Hubei province

[2018CFB521], self-determined research funds of CCNU from the colleges

basic research and operation of MOE [CCNU18TS026], Shenzhen Research

and Development program [JCYJ20170817095210760], Natural Science

Foundation of SZU [2017077], Natural Science Foundation of Shanghai

[17ZR1445600] and Hong Kong Research Grants Council [Projects C1007-

15G and 11200818].

Conflict of Interest: none declared.

References

Chang,W. et al. (2017) Shiny: web application framework for r. R package,

page version 1.0.5.

Chen,C. et al. (2018) scRMD: Imputation for single cell RNA-seq data via ro-

bust matrix decomposition. bioRxiv, 459404, doi: 10.1101/459404.

Eraslan,G. et al. (2019) Single-cell RNA-seq denoising using a deep count

autoencoder. Nat. Commun., 10, 390.

Huang,M. et al. (2018) Saver: gene expression recovery for single-cell RNA

sequencing. Nat. Methods, 15, 539–542.

Kwak,I.-Y. et al. (2018) Drimpute: imputing dropout events in single cell

RNA sequencing data. BMC Bioinformatics, 19, 220.

Li,W.V. and Li,J.J. (2018) An accurate and robust imputation method

scImpute for single-cell RNA-seq data. Nat. Commun., 9, 997.

Linderman,G.C. et al. (2018) Zero-preserving imputation of scRNA-seq data

using low-rank approximation. bioRxiv, 397588; doi:10.1101/397588.

Satija,R. et al. (2015) Spatial reconstruction of single-cell gene expression

data. Nat. Biotechnol., 33, 495–502.

van Dijk, D. et al. (2018) Recovering gene interactions from single-cell data

using data diffusion. Cell, 174, 1–14.

Zhang,L. and Zhang,S. (2018) Comparison of computational methods for

imputing single-cell RNA-sequencing data. IEEE/ACM Trans. Comput.

Biol. Bioinform, doi: 10.1109/TCBB.2018.2848633.

EnImpute 4829

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/22/4827/5498284 by guest on 09 April 2024


