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Abstract

Motivation: High-throughput molecular profiles of human cells have been used in predictive com-

putational approaches for stratification of healthy and malignant phenotypes and identification of

their biological states. In this regard, pathway activities have been used as biological features in

unsupervised and supervised learning schemes.

Results: We developed SIGN (Similarity Identification in Gene expressioN), a flexible open-source

R package facilitating the use of pathway activities and their expression patterns to identify

similarities between biological samples. We defined a new measure, the transcriptional similarity

coefficient, which captures similarity of gene expression patterns, instead of quantifying overall

activity, in biological pathways between the samples. To demonstrate the utility of SIGN in biomed-

ical research, we establish that SIGN discriminates subtypes of breast tumors and patients with

good or poor overall survival. SIGN outperforms the best models in DREAM challenge in predicting

survival of breast cancer patients using the data from the Molecular Taxonomy of Breast Cancer

International Consortium. In summary, SIGN can be used as a new tool for interrogating pathway

activity and gene expression patterns in unsupervised and supervised learning schemes to

improve prognostic risk estimation for cancer patients by the biomedical research community.

Availability and implementation: An open-source R package is available (https://cran.r-project.org/

web/packages/SIGN/).

Contact: bhaibeka@uhnresearch.ca

1 Introduction

Messenger RNA (mRNA) expression is an important feature repre-

sentative of the biological state of a cell or cell population. Activity

of tissue-specific genes, master regulatory factors, tumor suppressor

and oncogenes can play important roles in variety of healthy and

disease phenotypes (Campbell and Marlow, 2013; Chatterjee and

Vinson, 2012; Spitz and Furlong, 2012). External stress, such as

drug treatment, hypoxia or other microenvironmental conditions of

a tissue affect the mRNA transcription in cancer cells (Bindra et al.,

2005; Razorenova and Giaccia, 2010).

Enrichment of pathways and their activity have been used as fea-

tures in machine learning frameworks to predict identity of cells, mech-

anism of action of drugs or mechanism of resistance of cancer cells

(Karr et al., 2012; Michelson and Young, 2011; Silberberg et al., 2012).

To facilitate this process, we developed SIGN (Similarity Identification

in Gene expressioN) as an open-source R package. The expression
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profiles of biological samples can be transformed to features at the path-

way level using pathway enrichment scoring approaches like single-sam-

ple Gene Set Enrichment Analysis (GSEA) (Barbie et al., 2009;

Subramanian et al., 2005) and Gene Set Variation Analysis (GSVA)

(Hänzelmann et al., 2013). These features are then used in a centroid

classification scheme for supervised learning tasks. We further introduce

the transcriptional similarity coefficient (TSC), an estimator of gene ex-

pression pattern similarity of pathway activity between biological sam-

ples based on the RV statistic (Smilde et al., 2009). We used SIGN to

classify breast tumors into subtypes and predict survival of patients in

the Molecular Taxonomy of Breast Cancer International Consortium

(METABRIC) cohort (Curtis et al., 2012). We show that SIGN yields

higher performance with respect to the top performing approaches from

the community DREAM challenge for breast cancer survival prediction

(Margolin et al., 2013).

2 Materials and methods

We applied SIGN for subtype clustering and patient survival

prediction using the transcriptomic profiles of patient tumors. The

underlying centroid classification within SIGN is used to stratify patients

with good survival from poor survival patients relying on gene expres-

sion profiles of their corresponding tumors. We further hypothesized

that gene expression patterns, biological pathways as the relative expres-

sion of genes within the pathway, are determinants of cell identity. We

defined TSC as a new way for comparing patterns of expression of bio-

logical pathways between tumors. Widely used pathway databases,

such as KEGG and Reactome as well as Gene Ontology (GO) terms can

be used as set of pathways in SIGN. GO terms in level C5 with 10–30

number of genes are used in this study to identify the similarity between

samples based on their gene expression pattern (Liberzon et al., 2011).

We limited the number of genes in GO terms to exclude large GO terms

(at the top of GO term hierarchy) that are parents of the GO terms in

our study (at the bottom of the GO hierarchy).

2.1 Transcriptional similarity coefficient
Let P be the matrix of expression of genes within a pathway for a set

of biological samples where rows are genes and columns are sam-

ples. SIGN defines the TSC between the two matrices using modified

RV coefficient (Smilde et al., 2009) as follows

TSC P1;P2ð Þ ¼
P

i P10 � P20ð ÞiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij P10ð Þ2ij

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij P20ð Þ2ij

qr

where P1 and P2 represent the matrix of gene expressions of a given

pathway in two set of samples (population 1 and 2), i is row index

(i.e. gene index) within each matrix, j is column index (i.e. sample

index) within each matrix and Pm0

Pm0 ¼ Pm � P0m �Diagonal Pm � P0m
� �

where the Diagonal function sets to zero the elements of the matrix that

are not in the diagonal. The range of the TSC score lies between [�1,

1]. Higher scores indicates higher similarity of gene expression pattern

of a given pathway between two populations. Therefore, TSC repre-

sents the similarity of a given pathway activity between two samples

and/or sample sets. We identify similarity of pathways between two

sample sets relying on distribution of TSCs between the populations.

2.2 Breast cancer subtype similarity
We used TSC as the measure of similarity of ESR1 and ERBB2 gene

module activities (Haibe-Kains et al., 2012) between breast tumor

samples in the discovery cohort of METABRIC. The similarities be-

tween the samples were used to identify total Euclidean distance be-

tween the samples and cluster them accordingly.

2.2 Survival analysis
We assessed performance of SIGN to predict the overall survival of

patients as an endpoint. We split the discovery cohort in METABRIC

(Curtis et al., 2012), for patients under the same treatment category

(Hormonal therapy, Chemoþhormonal therapy, chemotherapy or

under no drug treatment), into three groups of poor (10%), inter-

mediate (80%) and good (10%) survival. We defined

Delta ¼ similarity to good survival cohortð Þ
� similarity to poor survival cohortð Þ

and used it to identify difference of similarity of each patient tumor

sample to good and poor survival populations. To assess the signifi-

cance of the predictions using log-rank test, we binarized Delta as

being Deltaþ or Delta�. Log-rank function implemented in the

survcomp R package (1.32.0) (Schroder et al., 2011).

2.3 Research reproducibility
SIGN is publicly available as an open-source R package (https://

cran.r-project.org/web/packages/SIGN/) and the results of this art-

icle can be reproduced using the cloud-based computational repro-

ducibility platform CodeOcean (http://bit.ly/2PMwegY).

3 Results

We leveraged the METABRIC dataset of breast cancer patients to

test whether TSC can be used to recapitulate subtyping of breast

cancer patients. We used TSC comparing expression patterns within

signatures of luminal, basal and HER2þ breast cancer subtypes

(Desmedt et al., 2008; Gendoo et al., 2016; Haibe-Kains et al.,

2012) between tumor samples in discovery cohort of METABRIC.

Clustering of the tumor samples relying on the identified TSCs

agreed with different breast cancer subtyping methods, SCMOD2

(Haibe-Kains et al., 2012) and PAM50 (Parker et al., 2009), as well

as histopathological status of ER and HER2 (Fig. 1A).

Fig. 1. Schematic representation of Similarity Identification in Gene expressioN

(SIGN) and transcriptional similarity coefficient (TSC). (A) Gene Ontology (GO)

terms (BP: biological processes; MF: molecular functions; CC: cellular components),

or other pathway datasets, are used to identify similarity between samples. (B) TSC

is used to identify similarity of expression pattern of the genes within a given path-

way between two sets of samples. (C) Collection of TSCs pathways between two

sets of samples are used in unsupervised or supervised learning schemes

SIGN 4831

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/22/4830/5518919 by guest on 23 April 2024

https://cran.r-project.org/web/packages/SIGN/
https://cran.r-project.org/web/packages/SIGN/
http://bit.ly/2PMwegY


Comparing three subtypes of breast cancer including using TSC

illustrated ability of TSC for identifying true similarities between

breast tumor samples (Fig. 2A).

We further used overall survival as an endpoint to examine ability

of SIGN, as a classification framework, using TSC as a measure of

similarity in stratifying patients based on their risk. Breast tumors are

traditionally categorized to different subtypes in clinical setting using

their histopathological or genomic information (Curtis et al., 2012;

Sotiriou et al., 2006). The patients in each subtype are then assigned

to different therapeutics available and approved for that subtype

(Table 1) (Goldhirsch et al., 2011). Hence, patients under different

therapeutic regimen have different underlying biology and will have

different survival rate (Fig. 2B). For example, patients with luminal

breast cancer receive hormonal therapy and have higher survival rate

with respect to patients with basal-like tumor type that receive

chemotherapy (Table 1; Fig. 2B). To account for treatment differen-

ces, we applied SIGN, using TSC as measure of gene expression pat-

tern similarity between patient gene expression profiles under similar

therapeutic regimen in the discovery cohort of METABRIC.

We defined poor and good survival groups as the patients who

die the earliest after diagnosis and the patients who survived the

longest (10% of the cohort in each category). We then used the poor

and good survival patient cohorts to train the model and check val-

idity of the model in stratifying patients. We considered the rest of

the population, patients with intermediate survival, as test set to as-

sess the performance of SIGN in patient stratification. For each pa-

tient, the difference between the similarity with the poor and good

groups is computed so that patients with positive Delta are predicted

to have higher survival than the patients with negative Delta. We

assessed the prognostic value of Delta using the log-rank test for

each treatment group separately (Fig. 2C). SIGN yielded significant

prognostic value for all the treatment groups of patients, under dif-

ferent therapeutic regimen, except the patients who received both

hormonal therapy and chemotherapy (referred to as Chemo/Hormo;

Fig. 2C). The patients under Chemo/Hormo are patients with ag-

gressive luminal breast tumor who received chemotherapy upon

showing low response to hormonal therapy. Tumors in this cohort

of patients have high heterogeneity, and different underlying biology

is potentially responsible for low response rate or even recurrence

after hormonal therapy (Shipitsin et al., 2007). We examined use of

patient tumor profiles under only hormonal therapy or chemother-

apy for predicting survival of patients under Chemo/Hormo. Tumor

profile of patients under hormonal therapy were more informative,

with respect to patients under chemotherapy, for predicting survival

of patients under chemo/hormonotherapy (Fig. 2D).

We validated performance of SIGN trying to predict survival of

patients in the validation cohort of METABRIC (Curtis et al., 2012).

SIGN could significantly predict survival of breast cancer patients in

the validation cohort (Fig. 2E). We further compared the performance

of SIGN with the best 10 predictive models from the DREAM chal-

lenge (Bilal et al., 2013), to predict breast cancer patient survival using

gene expression profiles of tumors, that showcased SIGN as the best

model (Fig. 2F). We further showed SIGN outperformed than the best

10 predictive models from the DREAM challenge to predict breast can-

cer patient survival. The baseline model is the cox regression model

trained and tested using clinical features, such as ER status, HER2 sta-

tus, tumor size, age, grade, Lymph node status and assigned treatment

(Bilal et al., 2013). Moreover, PAM50 subtypes of breast tumor sam-

ples in discovery cohort of METABRIC were not significant predictors

of survival if added to the baseline clinical model (P-value > 0.4).

In conclusion, SIGN is a classification tool that can be applied to

predict cell identity and stratify patients based on their survival.

With the increasing amount of gene expression and transcriptomic

data, SIGN can be used in other applications, such as patient stratifi-

cation across other cancer types, identification of different cell phe-

notypes and identification of mechanism of action of drugs using

their genomic perturbation data (El-Hachem et al., 2017).
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Fig. 2. Patient stratification performance for discovery and validation cohort in

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC).

(A) Clustering of tumor samples in discovery cohort of METABRIC using ESR1

and ERBB2 gene signatures (Gendoo et al., 2016) and TSC as the measure of

distance between samples. (B) Survival of patients under different treatment

regimens in discovery cohort of METABRIC. (C) Performance of SIGN on

METABRIC discovery cohort stratified by treatments (log-rank test). (D)

Performance of SIGN on predicting survival of patients under

ChemotherapyþHormonal therapy (Chemo/Hormo) in discovery cohort of

METABRIC. (E) Performance of SIGN on METABRIC validation cohort. (F)

Performance of SIGN with respect to the top 10 ranked methods in DREAM

challenge (Bilal et al., 2013) in predicting patient survival in validation cohort in

METABRIC using Discovery cohort. Baseline is cox model of clinical features

Table 1. Number of patients in each breast subtyping group, identi-

fied using SCMOD2 gene signatures (Haibe-Kains et al., 2012), in

discovery cohort of METABRIC

Subtype Hormonal therapy No drug Chemo/Hormo Chemotherapy

Luminal 430 191 68 7

HER2 40 16 13 29

Basal 26 33 22 64
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