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Abstract

Motivation: Current dynamic phenotyping system introduces time as an extra dimension to

genome-wide association studies (GWAS), which helps to explore the mechanism of dynamical

genetic control for complex longitudinal traits. However, existing methods for longitudinal GWAS

either ignore the covariance among observations of different time points or encounter computa-

tional efficiency issues.

Results: We herein developed efficient genome-wide multivariate association algorithms for longitudinal

data. In contrast to existing univariate linear mixed model analyses, the proposed method has improved

statistic power for association detection and computational speed. In addition, the new method can ana-

lyze unbalanced longitudinal data with thousands of individuals and more than ten thousand records

within a few hours. The corresponding time for balanced longitudinal data is just a few minutes.

Availability and implementation: A software package to implement the efficient algorithm named

GMA (https://github.com/chaoning/GMA) is available freely for interested users in relevant fields.

Contact: liujf@cau.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have been used to detect

many genetic variants associated with various quantitative traits and

complex diseases. Linear mixed models (LMM) adopted to GWAS

(Kang et al., 2008; Lippert et al., 2011; Yu et al., 2006; Zhou and

Stephens, 2012) are able to capture genetic correlation among indi-

viduals, correct confounding environmental factors and control

population stratification. However, most LMM-based GWAS ana-

lytical tools, such as EMMA/EMMAX (Kang et al., 2008, 2010),

FaST-LMM (Lippert et al., 2011), GEMMA (Zhou and Stephens,

2012) and GCTA (Yang et al., 2011), focus on cross-sectional traits

that are measured only once. There are few methods available for

GWAS dealing with longitudinal traits that are repeatedly measured

during the life span of individual development.

Longitudinal traits, also known as dynamic traits or functional traits,

are dynamically changing over a period of time controlled by both genet-

ic effects and environmental factors. Multiple measurements at various

time points during a life cycle are usually collected as longitudinal traits.

Recently, advanced dynamic phenotyping system in animal and plant

genetic experiments (Fahlgren et al., 2015; Porto et al., 2015) makes it

feasible to acquire high-throughput time-varied datasets. Such repeated

measurements under varying environmental conditions can improve stat-

istical power of quantitative trait nucleotide (QTN) detection and help to
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further explore the mechanism of dynamical genetic control for complex

longitudinal traits (Li and Sillanpää, 2015; Wu and Lin, 2006).

Analyzing such types of datasets also promotes early prediction of longi-

tudinal traits and diseases (Kellogg et al., 2014; McSweeney et al., 2014).

However, currently employed analytical methods, such as

varying-coefficient regression (Gong and Zou, 2012) and estimation

equation (Xiong et al., 2011), are computationally intensive com-

pared to the univariate counterpart. An alternative way to improve

computational efficiency is to analyze each single time point separ-

ately and then integrate test statistics across time points to determine

the overall significance (Kwak et al., 2014). However, the single

time point analysis is inefficient in QTN detection because it ignores

the covariance among observations of different time points.

Random regression models (RRM) are multivariate linear mixed

models (mvLMM) and have been widely applied to longitudinal data

analysis in animal breeding (Schaeffer, 2004). Our previous studies dem-

onstrated the advantages of longitudinal GWAS over single-trait GWAS

(Ning et al., 2017). In our previous methods, we treat SNP effects as fixed

regression coefficients and use a sparse matrix technique in ASReml

(Gilmour et al., 2014) along with the population parameters previously

determined (P3D) algorithm (Zhang et al., 2010) to reduce computing

time. However, it is still computationally challenging when a marker

inferred dense kinship matrix (rather than a sparse pedigree-derived nu-

merator relationship matrix) is used to capture individual genetic rela-

tionships. With the marker-inferred kinship matrix, the computational

complexity is O(m3), where m is the total number of phenotypic records.

To address the low computational efficiency problem, we previously pro-

posed to use eigen decomposition to rotate the RRM and transform the

model into weighted least squares analysis (Ning et al., 2018), which

reduced the computational complexity to O(m2). However, the method

depends on the existing software to estimate variance parameters.

To further address the computational efficiency limitations, we

developed two efficient multivariate algorithms for longitudinal GWAS

(GMA): fixed regression strategy with eigenvalue decomposition (GMA-

fixed) and linear transformation of genomic estimation values (GMA-

trans) for unbalanced and balanced longitudinal traits, where unbal-

anced means that different individuals may be recorded at different time

points and balanced means that all individuals are measured at the same

time points. GMA-fixed for unbalanced data is similar to our previous

study (Ning et al., 2018). Here, we applied the weighted information

matrix method to variance parameters estimation, which is faster than

existing software. We developed an efficient and user-friendly software

for unbalanced and balanced longitudinal GWAS, which is independent

from existing software.

In order to investigate the properties of our new methods, a ser-

ies of simulation studies were conducted to compare the methods

with the existing univariate linear mixed model (uvLMM) method.

Furthermore, we validated our methods using an unbalanced dairy

cow milk production dataset and a balanced mouse growth dataset.

2 Materials and methods

2.1 Multivariate analysis algorithms for longitudinal

GWAS (GMA)
Details of GMA are presented in Supplementary Note. A typical

RRM to model time-varied genetic and environment effects (Mrode,

2014) can be written as

y ¼ XbþQaþZpþ e (1)

Where y is the vector of phenotypic values; b is the vector of fixed

effects and fixed regression polynomials coefficients; a and p are the

vectors of random regression polynomials coefficients for additive

genetic effects and subject-specific permanent environmental effects,

respectively; e is the vector of random residuals. X, Q and Z are the

corresponding design matrices. It is assumed that

a � Nð0; K�
X

a
Þ; p � Nð0; I�

X
p
Þ; e � Nð0; RÞ (2)

Here, K is a marker-derived relationship matrix; I is the identity ma-

trix; � is the Kronecker product; +a is the (co)variance matrix for

random regression coefficients of additive polygenic effects; +p is

the variance–covariance matrix of random regression coefficients

for permanent environmental effects; R is a diagonal matrix with

different values at different time periods. In the variance parameters

estimation, we incorporated the expectation-maximization (EM) al-

gorithm into the average information (AI) matrix to build a

weighted information matrix (Jensen, 1997), which guarantees the

variance parameters to converge rapidly within their legal domain.

IAE ¼ kIEM þ ð1� kÞIAI; hðfþ1Þ ¼ hðf Þ þ ðIAE
ðf ÞÞ�1 @L

@h
jhðf Þ (3)

Where IEM, IAI and IAE are the EM information matrix, AI matrix

and weighted information matrix, respectively. h is a vector of vari-

ance components including the unique values in +a, +p and R; f is

the iteration round; @L=@h is a vector of the first derivatives of the

log-likelihood function with respect to each variance component.

In the longitudinal GWAS analysis, the GMA-fixed and GMA-

trans algorithms are applied in unbalanced and balanced data, respect-

ively. GMA-fixed algorithm for unbalanced data is similar to our previ-

ous published paper (Ning et al., 2018). Detailed formula derivation is

shown in the Supplementary Note. We treated each SNP effect as fixed

regression coefficients and used the Legendre polynomials to model the

time-dependent SNP effects. The matrix form is

y ¼ XbþXSNPbSNP þQaþ Zpþ e (4)

Where, bSNP is a vector of fixed regression polynomials coefficients for

SNP effect and XSNP is corresponding design matrix. We construct

Wald v2 statistic to examine whether all elements in bSNP are zeros.

With the eigenvalue decomposition technique, computational complex-

ity of such a longitudinal GWAS step is reduced from O(m3) to O(m2)

per SNP, where m is the total number of phenotypic records.

In the GMA-trans for unbalanced data, we first estimate the individ-

uals’ genetic effects with the mixed-model equations (MME) as follows

X0R�1X X0R�1Q X0R�1Z
Q0R�1X Q0R�1Qþ K�1 �

P�1
a Q0R�1Z

Z0R�1X Z0R�1Q Z0R�1Zþ I�
P�1

p

2
64

3
75

b̂
â
p̂

2
64

3
75

¼
X0R�1y
Q0R�1y
Z0R�1y

2
64

3
75

(5)

In the Supplementary Note, we show that the estimated values of

random regression coefficients for jth SNP and corresponding

(co)variances are

ûj¼ðsj
0K�1 � IÞâ (6)

varðû jÞ ¼ ðsj
0K�1 � IÞvarðâÞðsj

0K�1 � IÞ0 (7)

The Wald v2 test for time-dependent SNP effect is

û 0j½varðûjÞ��1ûj � v2ðnr1 þ 1Þ (8)

Where nr1 is the order of the Legendre polynomials fitting time-

dependent genetic effects. Compared with GMA-fixed, GMA-trans
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takes advantage of some intermediate results of matrix calculation

in the variance parameter estimation step and avoids calculation of

the phenotypic (co)variance matrix and its eigenvalue decompos-

ition. This has reduced the computational complexity from O(m2)

to O([n(df þ 1)]2), where n is the number of individuals and df is the

order of the Legendre polynomials fitting the SNP effect. To ensure

convergence of the iterations in the process of variance component

estimation, df is usually less than five and thus n(df þ 1) is smaller

than m for the usual condition of more than five measures per

individual.

For balanced longitudinal data, if model the additive genetic ef-

fect and permanent environmental effect with the same order of

Legendre polynomials, matrix Q is equal to Z and the submatrices

for every individual in Q and Z are the same. Here we define the

submatrix as T, then Equation (2) can be rewritten as

y ¼ Xbþ ðI�TÞaþ ðI� TÞpþ e (9)

Eigen decomposition of the genomic relationship matrix K gives

K ¼ UDU0. We rotate Equation (9) with U0� I, and the phenotypic

(co)variance matrix for the rotated model is

V� ¼ varððU� IÞyÞ ¼ D� ðTGT0Þ þ I� ðTPT0Þ þ I�
X

(10)

V* is a block diagonal matrix and the size for each block is the num-

ber of records per individual (s). Therefore, we can obtain its inver-

sion with time complexity of O(ns3) compared with O(m3) for the

unbalanced longitudinal data. With the rotated RRM, we improved

the QTN detection power of GMA-fixed through re-estimating the

variance components for each tested SNP. The computational com-

plexity for GMA-trans is also reduced to O(ns3) in the rotated

RRM. The details of GMA-fixed and GMA-trans for balanced lon-

gitudinal data are given in the Supplementary Note.

2.2 Univariate linear mixed model
Parallel to GMA-fixed and GMA-trans methods, we also consider

the following standard LMM

y ¼ Xbþwaþ uþ e
u � Nð0;Kr2

aÞ; e � Nð0; Ir2
eÞ

(11)

Where y is the vector of cross-sectional phenotypic values at a single

time point; b is a vector of fixed effects; X is the design matrix which

relates records to fixed effects; w is a vector of marker genotypes; a
is the effect size of the marker; u is the random polygenic effects; e is

the residuals; K is the marker-derived relationship matrix; r2
a and

r2
e are the variances for polygenic effects and random residuals, re-

spectively. The Wald v2 statistic-implemented GEMMA is used to

examine whether the marker effect size (a) is zero. We also applied

the following two methods based on univariate LMM in our

analysis.

1. uvLMM-mean: It represents uvLMM to obtain the empirical de-

tection power of cross-sectional analysis method that utilizes

only phenotypic data at a single time point. We only applied the

method in the simulation study. For each repeated simulation,

we analysed a random measurement of each analysis and

repeated a certain number of times for unbalanced data (sam-

pling without replacement) or analysed the measurement of each

single time point separately for balanced data with the LMM

method. The power estimation was obtained by taking the mean

power across different analyses.

2. uvLMM-min: It represents uvLMM via the minimum P-value.

The algorithm was originated from Kwak et al. (2014), where

they developed a simple regression-based method to map QTL

for longitudinal data. In our study, we analysed a random meas-

urement each time and repeated a certain number of times for

unbalanced data (sampling without replacement) or analysed

one measurement for each time point separately for balanced

data with the LMM method. The minimum P-value across dif-

ferent analyses per SNP was used to determine the significance

for a SNP.

2.3 Data
Two datasets were analysed in the study: a mouse data (Gray et al.,

2015) and a dairy cow data (Ning et al., 2017). The mouse data con-

tain 1212F2 from the cross between the Gough Island mice and the

WSB/EiJ strain. The body weight and growth rate (estimated as the

first derivative of the fitted cubic splines) was obtained from week 1

to week 16 incremented by 1 week (16 measurements per mouse).

There are 11 833 available SNP markers across the mouse genome

after proper quality control. The dairy cow data include 5982 indi-

vidual cows. The milk yield, fat percentage and protein percentage

of the first parity were analysed in this study. The cows with less

than six records were filtered out, which resulted a total of 52 732

records. The SNPs with a minor allele frequency (MAF) less than

0.03 and a failed the Hardy–Weinberg equilibrium (HWE) test

(P-value < 10�6) were removed, resulting in 71 527 SNPs for the

subsequent longitudinal GWAS analyses.

2.4 Simulation
In order to assess whether different models can control type I error

well, we calculated the kinship matrix from the original SNPs and

randomly shuffled SNP analysis across individuals at each analysis,

which can purposely destroy the association of the phenotypes with

the scanned SNP and the linkage disequilibrium (LD) among SNPs.

The covariance structure of original phenotypes induced by the com-

plex cryptic genetic relationship among the individuals will not be

disorganized in this way. Under the expectation that random SNPs

are unlinked to polymorphisms controlling these traits, the cumula-

tive P-value distribution follows a uniform distribution of U(0, 1).

The empirical power was obtained from populations simulated from

the genotypes of the current populations (the mouse and the cattle

data) by assigning genetic effects to selected markers and adding

maker effects back to the original phenotypes (Yu et al., 2006), i.e.

yi;newðtÞ ¼ yiðtÞ þ siSNPðtÞ. Where yiðtÞ is the observed phenotypic

value of individual i at time t; si is a genotype indicator for individ-

ual i which is assigned 0, 1 and 2 for genotype aa, Aa and AA, re-

spectively; SNP(t) represents the simulated time-varied effect for

selected marker; yi;newðtÞ is the newly generated phenotypic value of

individual i at time t. We randomly selected 100 SNPs from the gen-

ome and assigned them with nine different maker effect curves. The

time-varied SNP effects were then adjusted so that they contributed

to some predetermined proportions of the phenotypic variance

(average proportion across the time points, 0.02–2% at MAF of

0.5). The genetic effect curves were assigned to the 100 random

selected SNPs, one at a time. The simulated data were analysed by

the proposed new methods and existing methods. Permutation test

with method of Churchill and Doerge (1994) was used to determine

whether a marker is significant at pointwise and genome-wide level.

In order to maintain the kinship matrix intact, we calculated the kin-

ship matrix from the original SNPs. To determine the pointwise sig-

nificance, we randomly shuffled analysed marker and analysed the

maker with different methods. We repeated the process with 1000

times. Then, we ordered the P-values and the fifth percentile was
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used as empirical threshold. To determine the genome-wide signifi-

cance, we permuted complete marker records and analysed the

genome-wide maker to find the minimum P-values. The process was

also repeated with 1000 times. We ordered these P-values and the

fifth percentile was used to determine the significance.

3 Results

3.1 Simulation
We first validated the performance of GMA with simulated data. To

make the simulation as close as possible to reality, we perform simu-

lations based on two real datasets, a dairy cow dataset (Ning et al.,

2017) with milk yield, fat percentage and protein percentage traits

and an inter-cross F2 mouse dataset (Gray et al., 2015) with body

weight and growth rate traits. Figure 1A and B and Supplementary

Figures S1A and B and S2A show that the type I errors are well con-

trolled by our longitudinal GWAS algorithms and the uvLMM-

mean algorithm, but are not controlled by the uvLMM-min method.

We obtained empirical statistic powers of different methods by

adding QTN effects back to the original phenotypes (Yu et al.,

2006). Nine different QTN effect functions (curves) were simulated

for the unbalanced dairy cow data and the balanced mouse data

(Supplementary Figs S3 and S4). The results are illustrated in

Figure 1C and D and Supplementary Figures S1C and D, S2B and S5

showing that the new methods have higher power than two uvLMM

methods. In particular, the approximate GMA-fixed algorithm for

the unbalanced data has almost the same power as GMA-trans,

while the exact GMA-fixed algorithm for the balanced data (opti-

mize variance parameters for each SNP) has the highest power. The

uvLMM-mean algorithm has the lowest statistic power, which dem-

onstrates the benefit of using the new GWAS methods of longitudin-

al traits.

3.2 Application to real data
We applied the GMA to analyse milk yield of unbalanced dairy cow

data and body weight of balanced mouse data. Prior to scanning

markers in the GWAS, we first compared our efficient algorithms

for variance component estimation to two existing methods,

Wombat (Meyer, 2007) and MTG2 (Lee and van der Werf, 2016)

(Table 1). In variance component estimation, the Wombat program

uses a hybrid algorithm consisting of a few initial rounds of PX-EM

(Liu et al., 1998), followed by the AI algorithm, while MTG2 uses

the pure AI algorithm with eigenvalue decomposition technique and

moderates the magnitude of updates when the parameters go outside

the legal domain of the parameter space. In general, the GMA meth-

ods converged faster with fewer iterations than the two methods.

For the balanced longitudinal mouse data, our algorithm took only

2 s to complete the analysis while MTG2 took 5 s and Wombat took

40 min. Even for unbalanced longitudinal dairy cow data, the GMA

method was substantially faster than Wombat.

We now compared results of the longitudinal GWAS obtained

via the GMA-trans and uvLMM method. The two took about the

same amount of time for the unbalanced data, but GMA-trans is

much faster than uvLMM for the balanced data. Furthermore, the

current GMA-trans algorithm for unbalanced data is several times

faster than the GMA-fixed algorithm. We compared the P-values

from GMA-fixed and GMA-trans and discovered that they are

exactly the same (Supplementary Fig. S6A). For the balanced mouse

data, GMA-fixed optimizes the variance components per SNP and is

much slower than GMA-trans. However, the correlation coefficient

of the P-values between the two methods is very high (Pearson’s

r¼0.995). The P-values of GMA-fixed are often smaller than the

P-values of GMA-trans (Supplementary Fig. S6B), which means that

GMA-fixed may detect more loci than GMA-trans. Taking into ac-

count the fast computational speed of GMA-trans and the high

power of GMA-fixed (due to re-estimation of variance components;

validated based on the above simulated datasets), we pre-selected

SNPs based on a relaxed P-value criterion, say P-value < 0.01, from

GMA-trans and then recalculated the P-values from GMA-fixed. As

a result, the lost power by GMA-trans has been be rescued by

GMA-fixed (Supplementary Fig. S6C), yet the reduced computation-

al time remained at the same level (about 7 min) as the GMA-trans

method.

All computations were performed on Intel Xeon E5 2.2 GHz

CPU. We used the third order of Legendre polynomials for the

mouse dataset and the fourth order for dairy cow dataset. The same

convergence criterion was used for all methods in variance estima-

tion, where the iteration stopped when the difference of the log-like-

lihood values between consecutive iterations is smaller than 0.001.

The uvLMM method was implemented in the GEMMA (Zhou and

Stephens, 2012) package. In variance component estimation, the

Wombat program uses a hybrid algorithm consisting of a few initial

rounds of PX-EM (Liu et al., 1998), followed by the AI algorithm;

MTG2 uses the pure AI algorithm and moderates the magnitude of

updates when the parameters go outside the legal domain of the par-

ameter space; GMA incorporates the EM algorithm into the AI ma-

trix to build a weighted information matrix.

Fig. 1. Cumulative P-value distributions and pointwise powers of different

methods in the simulation study. The left panels (A and C) represent the

unbalanced dairy cow data with milk yield traits and the right panels (B and

D) represent for the balanced mouse data with body weight traits. The upper

panels (A and B) represent distributions of the randomly shuffled SNPs.

Under the null model, the cumulative P-value distribution should follow a uni-

form distribution of U(0, 1) that overlaps with the diagonal line. Deviation

from the diagonal line indicates spurious associations. The lower panels (C

and D) represent the adjusted average power at different QTN contributions.

The phenotypic variance is the average variance across different time points

for QTN with allele frequency 0.5. The power estimation was based on

whether the P-value was smaller the empirical threshold (the fifth percentile

by permutation test), and we averaged the powers of different type of maker

effect curve. The red line overlapping with the blue line in panel C indicates

that GMA-fixed and GMA-trans have very similar power for the dairy cow

data analysis
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For the unbalanced dairy cow data, both GMA-fixed and GMA-

trans identified four significant SNPs (three at 1.65–1.81 Mb and

one at about 4.36 Mb on chromosome 14) for milk yield without

inflated false positives after multiple test correction using false dis-

covery rate (FDR) with FDR < 5% (q-value < 0.05)

(Supplementary Fig. S7). One of the SNPs (1 801 116 bp) is located

within the DGAT1 gene (1 795 351–1 804 562 bp) that is reported

to be a major gene affecting milk production traits (Grisart et al.,

2004), and all significant SNPs are within the boundary of the

reported QTL for milk yield (Hu et al., 2015). We compared the

additive effect curves of the four significant SNPs with milk yield

trajectory in Supplementary Figure S8 and found very similar pat-

terns between the curves, though the peak time of SNP effects (at

about 200 days) is delayed compared to the peak time of the pheno-

typic trajectory (at about 80 days). The results indicate that DGAT1

exhibits its main effects after the lactation peak and may contribute

to the persistency of milk production (Strucken et al., 2015).

For the balanced mouse data, GMA-fixed detected two candi-

date regions (112–128 Mb on chromosome 10 and 75–88 Mb on

chromosome 13) (Fig. 2A and B) while GMA-trans only detected

one of the two regions (119–125 Mb on chromosome 10) (Fig. 2C

and D) after multiple testing correction with Benjamini–Hochberg

(Benjamini and Hochberg, 1995) method at the q-value < 0.05. In

this study, we also used the uvMLM-min method for comparison.

The quantile–quantile (Q–Q) plot in Figure 2E shows that uvMLM-

min appears to have higher type I errors than GMA, which is con-

sistent with the simulation study. In order to control the type I error,

we used the permutation test to determine the P-value threshold

(genome-wide significance level of 0.05) for declaration of signifi-

cance. This criterion led to the detection of one candidate region

(118–125 Mb on chromosome 10) (Fig. 2F). Meanwhile, we com-

pared the additive effect curves of the significant SNPs with the

phenotypic trajectory (Fig. 3). The additive effect curves of signifi-

cant SNPs on chromosome 10 have patterns similar to the phenotyp-

ic trajectory. The region has also been reported as a candidate QTL

by Gray et al. (2015). However, the additive effect curves of the new

candidate QTL on chromosome 13 are concave in shape and the

QTL effect is inverse in the interim compared to the beginning and

end (Fig. 3C).

4 Discussion

Longitudinal GWAS provides an appealing approach to probe the

dynamic genetic mechanism of complex traits. However, successful

application of the longitudinal GWAS is challenged by cryptic genet-

ic relationship, dependency among the time course observations and

time-consuming computation challenge. Here, we developed

efficient analysis algorithms for longitudinal GWAS dealing with

either balanced or unbalanced longitudinal data. Our algorithms are

based on RRM, a mvMLM. The RRM includes a time-varied poly-

genic effect and a permanent environmental effect to explain the

cryptic genetic relationship and dependency among observations.

To improve the computational efficiency, we built a weighted infor-

mation matrix from the EM algorithm and the AI information ma-

trix, which guarantee the variance parameters to converge with

fewer iterations. In the meantime, we proposed the fixed regression

coefficient approach accompanied with eigenvalue decomposition

strategy (GMA-fixed) and linear transformation of genomic estima-

tion values (GMA-trans) algorithms. Simulations based on geno-

types and phenotypes of actual populations show that our

algorithms perform very well in terms of high statistical power and

low false positive rate compared with the conventional uvLMM

implemented GWAS. Application to the unbalanced dairy cow data

and the balanced mouse data further validated the benefits of our

longitudinal GMA.

There are various dynamic patterns of genetic controls repre-

sented by permanent QTLs, early QTLs, late QTLs and inverse

QTLs (Wu and Lin, 2006). In this study, we used Legendre

Table 1. Computational times of different methods for variance component estimation (including iteration number) and the subsequent

step of GWAS

Computational time

Category Method Mouse data Dairy cow data

Variance estimation Wombat 40 min (11) 105 h (12)

MTG2 5 s (15) —

GMA 2 s (9) 5.3 h (7)

GWAS uvLMM 14.4 min 3.7 h

GMA-fixed 5.1 h 16.5 h

GMA-trans 1.7 min 3.8 h

GMA-trans þ GMA-fixed 7 min —

Fig. 2. Association studies of growth trajectory in the mouse population with

the GMA-fixed method (panels at the top), the GMA-trans method (panels in

the middle) and the uvMLM-min method (panels at the bottom)
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polynomials to model the dynamic changing process of QTL. This is

a nonparametric approach because it makes no assumption about

the shape of the curve. The method also reduces the correlations be-

tween the estimated random regression coefficients so that variance

parameter estimation converges very rapidly. From the analyses of

the two real data, we observed that the main QTLs tend to have

similar changing patterns with the phenotypic curve, indicating that

these QTLs determine the dynamic genetic mechanism of longitu-

dinal traits. We also identified an inverse QTL (one genotype per-

forms better than the other during early stage of growth, but the

other genotype performs better during later stage of the growth) for

the mouse data with GMA-fixed. These QTLs and others with

minor effects can play a regulation role in shaping the final pheno-

typic trajectory.

For balanced data, GMA-fixed is more powerful than GMA-

trans because it optimizes the variance parameters per SNP, but the

latter is much faster. The GMA-trans step followed by the GMA-

fixed step is recommended because it takes advantage of the high

power of GMA-fixed and the high speed of GMA-trans. For unbal-

anced data, it is time consuming to optimize the variance compo-

nents for each SNP. Since GMA-fixed and GMA-trans have similar

power for unbalanced data, GMA-trans is recommended. In some

cases, the contribution of genetic effects to the traits cannot be sig-

nificantly greater than zeros, which can lead to overcorrection of

polygenic effects. We provide an alternative based on the GMA-

fixed method where the genetic effects are removed from the model.

In contrast to uvLMM with only two variance parameters (addi-

tive and residual variances), RRM has a complicated covariance

structure with many variance parameters (depending on the orders

of the Legendre polynomials). As a result, RRM may need more iter-

ations to converge and, sometime, may encounter a convergence

issue. If the iteration process stops early before convergence, the

GMA algorithms may be subject to a higher Type I error. The orders

of the Legendre polynomials can be determined by a model selection

criteria, such as Akaike information criterion (AIC) (Akaike, 1974)

and Bayesian information criterion (BIC) (Schwarz, 1978). To avoid

any convergence issue, three or four orders of Legendre polynomials

are recommended in practice. If the GMA algorithm encounters con-

vergence issue even with low order of Legendre polynomials, the

GMA-trans algorithm with an increased iteration number in vari-

ance parameter estimation step is recommended.

In our study, we focus on the traits changing over time.

However, our developed GMA algorithm can be naturally applied

to traits changing with other dynamic environmental covariates,

such as solar radiation, solar radiation and temperature. Modern

automatic information platforms can record abundant environmen-

tal data, while advanced genotyping technologies allow accessing to

genomic information on a large scale. The GMA can utilize the two

types of high dimensional information to tackle genome-wide geno-

types and environments (G�E) interactions efficiently, which facili-

tates dissecting the complex genetic architecture of dynamic traits.
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