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Abstract

Summary: JUCHMME is an open-source software package designed to fit arbitrary custom Hidden

Markov Models (HMMs) with a discrete alphabet of symbols. We incorporate a large collection of

standard algorithms for HMMs as well as a number of extensions and evaluate the software on

various biological problems. Importantly, the JUCHMME toolkit includes several additional fea-

tures that allow for easy building and evaluation of custom HMMs, which could be a useful re-

source for the research community.

Availability and implementation: http://www.compgen.org/tools/juchmme, https://github.com/pba

gos/juchmme.

Contact: pbagos@compgen.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Hidden Markov Models (HMMs) are probabilistic models widely

used in biological sequence analysis. The most commonly used type

of HMM is the profile HMM (pHMM), which is especially useful

for multiple sequence alignment and remote homology detection.

Tools based on pHMMs like HMMER (Eddy, 1998) and SAM

(Hughey and Krogh, 1996) are used routinely by thousands of

researchers around the world. Software tools based on pHMM use a

standard architecture in order to construct the models correspond-

ing to the multiple alignment. However, for other applications in

biological sequence analysis, the need of HMMs with custom archi-

tecture arises. For these applications, the model design can be time-

consuming, thus software tools that allow easy implementation of

HMMs with arbitrary and user-defined topologies are necessary.

We present here an open-source tool, JUCHMME, which can be

used to easily build custom HMMs utilizing the most complete col-

lection of algorithms.

2 Materials and methods

JUCHMME can be used to build a broad range of HMMs. Standard

HMMs are commonly trained by the Maximum Likelihood (ML)

criterion using the Baum-Welch algorithm (Durbin et al., 1998;

Rabiner, 1989). Maximizing P(xjh) corresponds to unsupervised

learning. JUCHMME implements also the gradient-descent algorithm

proposed by Baldi and Chauvin (1994) and the Segmental k-means
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algorithm also known as Viterbi learning algorithm (Juang and

Rabiner, 1990). In most biological applications, the use of labeled

sequences for training is advisable. In these models, each amino acid

sequence x is accompanied by a sequence of labels y. Krogh named

this model Class HMM (CHMM) and proposed simple modifications

of forward and backward algorithms (Krogh, 1994). The likelihood

to be maximized in such situations (supervised learning) could be the

joint probability of the sequences and the labels given the model,

P(x, yjh), which corresponds to ML training, or the probability of the

labels given the sequences, P(yjx,h), which corresponds to conditional

maximum likelihood (CML) estimation that leads to discriminative

training (Krogh, 1997). The gradient-based algorithms necessary for

these models are implemented using various heuristics for fast and ro-

bust convergence (Bagos et al., 2004a, b), including adaptive step-size

and resilient back-propagation (RPROP). Moreover, a newly devel-

oped variant of the segmental k-means for labeled sequences, for both

ML and CML, is also available (Theodoropoulou et al., 2017).

The toolkit implements also a large collection of decoding algo-

rithms such as the standard Viterbi, Posterior-Viterbi (Fariselli

et al., 2005), N-Best (Krogh, 1997) and Optimal Accuracy

Posterior Decoder (Käll et al., 2005). Moreover, modifications of

the decoding algorithms that allow constrained predictions (i.e.

fixing the observed labels) are also available (Bagos et al., 2006).

These can be helpful when one wishes to incorporate some prior

knowledge, such as experimentally derived information, in the pre-

diction process.

Additionally, to overcome HMM limitations, a number of exten-

sions have been developed such as Hidden Neural Networks

(HNNs) (Krogh and Riis, 1999), models that condition on previous

observations ( Tamposis et al., 2018) and a newly developed method

for semi-supervised learning of HMMs that can incorporate labeled,

unlabeled and partially labeled data (Tamposis et al., 2019).

Finally, the toolkit includes numerous auxiliary programs that

automate several routine processes, like cross-validation tests

(including jackknife), generating random sequences from a given

model, various options for initializing the models (both HMMs and

HNNs) suitable for testing purposes, and various programs for

measuring prediction accuracy (Baldi et al., 2000; Zemla et al.,

1999) and reliability (Melen et al., 2003). Of note, JUCHMME also

supports multicore parallelization a feature that can speed up the

computations.

3 Usage scenario

To illustrate the utility and features of JUCHMME toolkit, we pro-

vide a simple real-life scenario (see Supplementary Material). For

this we need to follow the steps:

1. define the transition probabilities, using a spreadsheet

(Supplementary Fig. S2). This is important because non-zero ele-

ments define the allowed transitions and thus the model

architecture.

2. define the initial emission probabilities, using a spreadsheet

(Supplementary Fig. S3).

3. define the model file using a text editor (Supplementary Fig. S4).

This contains the symbols, the states, the labels and the states

that share emission probabilities.

4. set up the configuration file in a text editor. This file contains all

the training and testing options.

After defining the model and the configuration file and depend-

ing on the chosen options, parameter estimation and testing can be

performed in one step. JUCHMME offers the option for self-

consistency test, independent test, k-fold cross-validation or

jackknife procedures. The different model types, training and

testing options can be combined efficiently. Various measures of

accuracy and reliability can be requested through the configuration

file. The trained model can also be used in a stand-alone

application.

Finally, after the model is trained, new data may emerge and an

update may be possible. Thus, one can easily modify the architecture

of existing models. In this way, the HMMpTM model (Tsaousis

et al., 2014) was created by modifying the architecture of the

HMMTM model (Bagos et al., 2006). This was also the case regard-

ing CW-PRED and CW-PRED2 (Fimereli et al., 2012; Litou et al.,

2008).

4 Results and conclusion

The JUCHMME toolkit is implemented in Java and it is publicly

available under the GNU license. The software has been under

development over the last years and has been used in numerous

applications in protein sequence analysis, including prediction of

alpha-helical membrane proteins (Bagos et al., 2006), prediction of

transmembrane beta-barrels (Bagos et al., 2004a, b; Tsirigos et al.,

2016), prediction of lipoprotein signal peptides (Bagos et al., 2008),

prediction of signal peptides in Archaea (Bagos et al., 2009), predic-

tion of twin-arginine signal peptides in bacteria (Bagos et al., 2010),

joint prediction of transmembrane topology and post-translational

modifications (Tsaousis et al., 2014) and prediction of cell-wall

anchored proteins in bacteria (Litou et al., 2008). These methods

(which we now make available through JUCHMME) could not

have been developed easily without the use of this tool, since this

would require that the different sub-models corresponding to labels

had to be trained separately and then the sub-models had to be com-

bined with arbitrary transitions. The CHMM approach which

requires labels is not only more elegant, but also offers the CML

methods with the associated algorithms that can efficiently train

such models.

The software can be used for building standard HMMs, CHMMs

with labeled sequences, or HNNs. JUCHMME supports a versatile

architecture in which the models can be freely parameterized in terms

of their architecture (i.e. states and transitions between them), the al-

phabet of the symbols used and the number of labels and sharing of

emission probabilities (parameter tying).

A comparison of JUCHMME against the other available tools,

such as modhmm (Viklund, 2003), MAMOT (Schütz and

Delorenzi, 2008), HMMConverter (Lam and Meyer, 2009),

HMMoC (Lunter, 2007) and StochHMM (Lott and Korf, 2014) is

provided in Table 1. In brief, JUCHMME implements the widest

range of training and decoding algorithms for HMMs. Notably, it is

among the few implementations that can handle CHMMs trained

with ML or CML, using algorithms for fast and robust convergence

and it is, to our knowledge, the only publicly available implementa-

tion of HNNs and semi-supervised learning algorithms for HMMs.

Contrary to other tools, JUCHMME is user-friendly, since it allows

full parameterization through a configuration file, without requiring

programming skills. Despite been written in JAVA, JUCHMME is

quite fast, especially concerning large models and multicore parallel-

ization increases further the speed (see Supplementary Material).

Thus, JUCHMME can be used for original research as well as for

educational purposes. HMMs are subjects of active research in our

lab, and thus JUCHMME will be continuously updated. We plan,
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among others, to extend JUCHMME in order to be able to handle

multiple sequence alignments (MSAs), to include silent states and to

develop a graphical editor for facilitating model design.
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