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Abstract

Motivation: Transcription factors (TFs) are key regulators of gene expression, and can activate or

repress multiple target genes, forming regulatory units, or regulons. Understanding downstream

effects of these regulators includes evaluating how TFs cooperate or compete within regulatory

networks. Here we present RTNduals, an R/Bioconductor package that implements a general

method for analyzing pairs of regulons.

Results: RTNduals identifies a dual regulon when the number of targets shared between a pair of

regulators is statistically significant. The package extends the RTN (Reconstruction of

Transcriptional Networks) package, and uses RTN transcriptional networks to identify significant

co-regulatory associations between regulons. The Supplementary Information reports two case

studies for TFs using the METABRIC and TCGA breast cancer cohorts.

Availability and implementation: RTNduals is written in the R language, and is available from the

Bioconductor project at http://bioconductor.org/packages/RTNduals/.

Contact: grobertson@bcgsc.ca or mauro.castro@ufpr.br

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene regulation in eukaryotes integrates a large number of intercon-

nected regulatory influences. Some of the major contributors in gene

regulation are transcription factors (TFs): proteins that can act as

activators or repressors of gene expression, typically by binding to

regulatory DNA regions and recruiting the transcriptional apparatus

(Yamaguchi et al., 2017). TFs are widely used in methods that re-

construct transcriptional networks, and algorithms that reconstruct
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such networks consider both positive and negative target associa-

tions, consistent with mechanistic studies that have demonstrated

the dual-function roles of TFs (Lubelsky and Shaul, 2019). In such a

network, each regulator and its target genes form a regulatory unit,

or regulon (Margolin et al., 2006). Target genes can belong to mul-

tiple regulons, and regulators may co-operate and compete in influ-

encing target gene expression.

In previous studies, we have used regulon activities to identify

TFs associated with variant risk loci in breast cancer (Castro et al.,

2016), and to characterize differences between molecular subtypes

in muscle-invasive bladder cancer (Robertson et al., 2017). Because

regulators can co-operate and compete, we anticipated that identify-

ing pairs of regulons that share targets could be informative. Here,

we report RTNduals, an R/Bioconductor package that automates

the search for co-regulation between regulons, assessing all targets

shared by pairs of regulators; when it identifies that a pair has more

shared targets than expected by chance, which we assess by overlap

and permutation analyses, it defines this pair as a dual regulon.

2 A method for identifying dual regulons

Figure 1a gives an overview of how RTNduals infers dual regulons.

The package can take two types of data as input. The first type con-

sists of a gene expression matrix (e.g. a cancer cohort’s transcrip-

tome) and, from prior biological information, a list that indicates

which genes should be regarded as regulators. The second consists

of a transcriptional regulatory network pre-computed by the RTN

package (Castro et al., 2016). The package architecture allows the

input of different classes of regulators (e.g. TFs, miRNAs).

RTNduals uses three complementary statistics to identify dual

regulons (Fig. 1a). (i) Targets are assigned to regulators based on

mutual information (MI), forming regulons. The statistical signifi-

cance of the MI values is assessed by permutation and bootstrap

analysis. Because regulators can target each other, associations be-

tween pairs of regulators are also identified. (ii) Triplets formed by

two regulators and a shared target gene are identified, and the direc-

tion of regulation is determined by correlation analysis (e.g. Pearson

or Spearman). (iii) A Fisher’s exact test assesses the number of trip-

lets shared between two regulators, and permutation analysis tests

the statistical significance of the correlation between shared targets.

The schematics in Figure 1b show the two cases that RTNduals

identifies: regulator pairs (left) that co-operate, influencing shared

target genes in the same direction (co-activation or co-repression),

and (right) that compete, influencing targets in opposite directions.

Figure 1c shows the distribution of Spearman correlations of targets

shared between ESR1 and GATA3 regulons, indicating that these

TFs either co-activate or co-repress their shared targets, while

Figure 1d shows a contrasting case with ESR1 and NFIB regulons.

3 Case studies

RTNduals allows high-throughput screening for co-regulators and

their shared targets. The Supplementary Information provides two

detailed case studies that demonstrate the package’s workflow,

using tumor samples from breast cancer cohorts. The first study

analyses a regulatory network generated by RTN from METABRIC

microarray data (Curtis et al., 2012), while the second case study

shows how to prepare harmonized RNA-seq data from the National

Cancer Institute’s Genomic Data Commons (GDC) for analysis

(TCGA, 2012).
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Fig. 1. Inference of dual regulons. (a) RTNduals computes dual regulons

using: (i) MI between a regulator and targets; (ii) triplets consisting of pairs of

regulators and a shared target; (iii) whether the number of shared targets is

statistically significant. (b) Examples showing two associated regulators and

two regulator-target triples. Left: an example in which the regulators co-oper-

ate by influencing shared target genes in the same direction (i.e. either co-

activating or co-repressing the shared targets). Right: regulators compete by

influencing shared target genes in opposite directions. (c, d) Distribution of

correlation coefficients between regulators and shared targets in two ex-

ample dual regulons, computed from the expression profiles of METABRIC

breast cancer data, n¼997 for cohort 1 (Curtis et al., 2012).
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