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Abstract

Motivation: The study of T cell receptor (TCR) repertoires has generated new insights into immune

system recognition. However, the ability to robustly characterize these populations has been lim-

ited by technical barriers and an inability to reliably infer heterodimeric chain pairings for TCRs.

Results: Here, we describe a novel analytical approach to an emerging immune repertoire

sequencing method, improving the resolving power of this low-cost technology. This method relies

upon the distribution of a T cell population across a 96-well plate, followed by barcoding and

sequencing of the relevant transcripts from each T cell. Multicell Analytical Deconvolution for High

Yield Paired-chain Evaluation (MAD-HYPE) uses Bayesian inference to more accurately extract TCR

information, improving our ability to study and characterize T cell populations for immunology and

immunotherapy applications.

Availability and implementation: The MAD-HYPE algorithm is released as an open-source project

under the Apache License and is available from https://github.com/birnbaumlab/MAD-HYPE.

Contact: mbirnb@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

T and B cells rely upon somatically recombined antigen receptor het-

erodimers to enable their recognition of pathogens and cancerous

cells. During development, each naı̈ve T and B cell uniquely recom-

bines and expresses its own antigen receptor [T cell receptors

(TCRs) and antibodies, respectively], which are the basis of immune

recognition and specificity (Fig. 1A). The overall composition of

these heterodimeric receptors is complex due to the subunits of each

receptor existing in distinct loci in the genome (a and b chains for

the TCR, heavy and light chains for antibodies), multiple possible V

and J regions for each receptor chain (and the additional D region

for TCRb and antibody heavy chain) and random nucleotides heter-

ogenously added in the junctions between gene segments (Fig. 1B).

Isolating antibodies specific for targets has long been a staple of bio-

technology and medicine, allowing for the creation and characterization

of molecules ranging from research reagents to FDA-approved

drugs. Since the advent of T cell-based immunotherapies as viable

cancer treatments in the past several years (Restifo et al., 2012),

sequencing of TCRs has seen a similar increase in interest.

Moreover, population-level studies of T cell repertoires have pro-

duced a number of insightful studies in the last year alone (Dash

et al., 2017; Emerson et al., 2017; Glanville et al., 2017).

While antigen receptor sequencing has previously been a laborious

process involving the creation of clonal cell lines or sequencing of in-

dividual T cells via Sanger sequencing (Dash et al., 2011), the wide

adoption of next-generation sequencing has enabled simultaneous

sequencing of a large number of immune cells (Fig. 1C). The most

straightforward of these approaches involves sequencing antigen

receptors from immune cell RNA or gDNA isolated in bulk to gain a

repertoire-level understanding of the immune response (Hou et al.,
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2016). While efficient in accumulating a and b chain sequences, the

chain pairings for each clone are forfeited by this approach.

Alternative approaches rely on single-cell, partition-based methods to

gain high quality paired-chain information such as Drop-Seq

(Macosko et al., 2015). In these techniques, single cells are isolated

into partitions containing barcodes (e.g. emulsified droplets, micro-

wells), followed by the amplification and sequencing of each chain.

Although reliable paired-chain data are produced, cost per sample

and limited throughput prevent these methods from becoming ubiqui-

tous. A recently developed method (Howie et al., 2015) merges

aspects of bulk and partition-based sequencing to result in a high-

throughput procedure with relatively low costs of material and no

need for specialized equipment that can recover paired-chain informa-

tion from immune cell populations.

In this experimental method, multicell-per-well sequencing distrib-

utes pools of T cells into individual wells of a 96-well plate. The subpo-

pulation in each well is then simultaneously lysed, reverse transcribed,

and amplified with well-specific barcodes. Sequencing of the sample

results in lists of a and b chains observed in each well. Analytical meth-

ods can capitalize on the co-occurrence of chain pairings across the sam-

ple to extract paired-chain information for T cell clones in the original

population. This experimental procedure was first described by Howie

et al. (2015) using a probabilistic method to score chain pairings. Lee

et al. (2017) recently advanced the ability to resolve high-frequency

clones using a heuristic scoring algorithm. Our algorithm, termed

Multicell Analytical Deconvolution for High Yield Paired-chain

Sequencing (MAD-HYPE), describes a new Bayesian approach for the

analysis of multicell-per-well sequencing data, improving the identifica-

tion rates for high-throughput antigen receptor pairing. Moreover, the

mathematical framework derived can be readily applied to datasets

with variable numbers of cells-per-well in order to further improve re-

ceptor pair identification through this emerging sequencing technology.

2 Materials and methods

2.1 Problem overview
The present problem is a pairing task between unique a and b chains

in a T cell population. Each cell belongs to a specific clone, defined

by its combination of a and b chains, with the following properties:

• Each clone has at least one a chain and one b chain
• Each clone appears multiple times within the population
• Each a or b chain can appear in multiple distinct clones.

In an experiment, the T cell population is observed by distribut-

ing a subset of these cells among a specific number of wells, W,

which is typically fixed at 96. By lysing, reverse-transcribing, and

sequencing the subpopulations in each well, the observer obtains a

list of the a chains and b chains present in each well, which can then

be used to assign ab pairings for clones in the original sample. For

justification of the assumptions, see Section 4. An overview of our

methodology is shown in Figure 2.

Fig. 2. Experimental design and algorithm workflow. (A) Multicell-per-well

samples are generated by distributing T cells from a population into each

well of a plate (typically with 96 total wells), either through flow cytometry

or pipetting. Cells in each well are then lysed, their antigen receptor mRNA

transcripts reverse transcribed into DNA, and then amplified with well-spe-

cific barcodes. Products from each well can then be pooled and sequenced

in order to identify which a and b chains occur in each well. (B) Using this

sequencing data, each ab combination can be assigned a probability that it

exists as a T cell clone. This is achieved through collecting chain-specific

parameters, estimating clonal frequencies and observational likelihoods

for both paired and non-paired cases, and computing a final match

probability

Fig. 1. T cell receptor structure, sources of molecular diversity and sequenc-

ing methods. (A) T cell receptors (TCRs) are heterodimeric proteins key for

immune recognition. The a and b chains each contain constant and variable

domains, which form a binding surface that recognizes peptides displayed by

major histocompatibility complexes. (B) Each a and b chain generates the mo-

lecular diversity required for immune recognition through V(D)J recombin-

ation. Additionally, random nucleotides can be added at each junction during

formation of the mature receptor chain. The final mRNA transcript combines

these components into a single contiguous a or b chain. (C) T cell repertoires

can be sequenced through a number of methods. Single-cell methods, such

as Drop-Seq or Seq-Well, can retain chain pairing information but typically re-

quire physical partitions, which can limit throughput. Bulk sequencing ena-

bles high-throughput acquisition of a and b sequences, but lacks the paired-

chain information that defines T cell clones. Our discussed form of multicell-

per-well sequencing attempts to maintain this throughput while acquiring

paired-chain information
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2.2 Bayesian framework
For two chains ai and bj, the probability that these chains coexist in

a clone, given an experimental observation, is:

PðHijjw* Þ ¼
Pðw* jHijÞPðHijÞ

Pðw* jHijÞPðHijÞ þ Pðw* j �H ijÞPð �HijÞ
(1)

where Hij represents this hypothesis, �Hij represents the null hypoth-

esis in which these chains do not coexist in any clone and w
*

are the

observed data in the given sample. This is the Bayesian framework

we intend to operate on and discuss in the following sections.

A complete description of assumptions and observations necessary

for the full derivation can be found in the Supplementary Material

(Technical Appendix, Section 1).

2.3 Parameterization of sequencing data
After placing a subsample of N cells in each well, a set of unique a
and b chains observed over all wells is compiled from the entire sam-

ple (N � W cells). As we apply (1) to each possible aibj pairing, we

claim the only relevant values from the sample with respect to these

two chains are:

• wij: the number of wells that contain both ai and bj

• wi: the number of wells that contain ai but not bj

• wj: the number of wells that contain bi but not aj

• wØ: the number of wells that contain neither ai and bj

• W: the total number of wells in the sample (wij þwi þwj þwØ)
• N: the number of cells allocated to each well.

This collection of parameters is contained in the vector w
*

ij and

replaces w
*

in (1). We assume samples are uniformly distributed be-

tween wells, as suggested by Howie et al. (2015), so we may con-

sider only wij, wi, wj and wØ and ignore well-specific information.

2.4 Maximum a posteriori estimation of clonal

frequency
In order to estimate the probabilities of Hij and �H ij from w

*

ij, we use

a latent variable f
*

ij to represent the frequencies of particular collec-

tions of clones in the sample. This vector f
*

ij, defined for each

possible chain pair aibj, is composed of three frequencies — fi, fj and

fij — which refer respectively to the frequency of clones with ai but

not bi, the frequency of clones with bj but not ai and the frequency

of clones containing both ai and bj. We note that fi and fj incorporate

experimental noise such as premature cell lysis and sequence attri-

tion (e.g. high sequence attrition corresponds to lower fi and fj). If

evaluating f
*

ij conditioned on �Hij, then fij ¼ 0. With these definitions,

we can write:

Pðw* ijjHijÞ ¼
ððð

T

Pðw* ijjf
*

ij;HijÞ � Pðf
*

ijjHijÞ � df
*

ij (2)

where T ¼ ½0; 1�3 is the domain of f
*

ij.

Studies characterizing T cell populations have empirically found

that

Pðf
*

ijjHijÞ / f�a

with, for a full T cell repertoire, a � 2 (Bolkhovskaya et al., 2014).

We define a here as the exponent in the probability density function

(PDF) for clonal frequency. Some authors, including Bolkhovskaya

et al. (2014), have used a for the exponent of the complementary cu-

mulative distribution function (CDF). Both PDF and complementary

CDF will follow a power law over a limited range, but exhibit differ-

ent exponents. By our definition of a, if the set of clonal frequencies

is plotted in a log–log histogram (normalized by bar width), the

slope will correspond to �a. If the cumulative CDF is shown in a

log–log plot, its slope will correspond to �ða� 1Þ. However, the

techniques described here have little sensitivity to this parameter

(see Section 4, Discussion). The likelihood function is given by the

following:

Pðw* ijjf
*

ij;HijÞ ¼
W
w
*

ij

� �
p

wij

ij pwi

i p
wj

j pwØ

Ø :

This multinomial distribution is defined under the derived

probabilities:

pØ ¼ ð1� fi;NÞð1� fj;NÞð1� fij;NÞ

pi ¼ ðfi;NÞð1� fj;NÞð1� fij;NÞ

pj ¼ ð1� fi;NÞðfj;NÞð1� fij;NÞ

pij ¼ 1� ð1� fi;N � fj;NÞð1� fij;NÞ

where fx;N ¼ 1� ð1� fxÞN is the probability of clone x being placed

in a well with N total cells. This operation is to translate the clonal

frequency among cells to the clonal frequency among wells contain-

ing N cells. For a complete derivation of these equations, see the

Supplementary Material. Integrating (2) numerically over fij, fi and fj
for all aibj pairings quickly becomes intractable for large datasets.

However, as this multinomial approaches a multivariate Gaussian

distribution, a majority of the probability mass is concentrated near

the maximum value. We therefore use a Bayes estimator for f
*

ij based

on its posterior distribution given the observed well data w
*

ij.

Specifically, we use the maximum a posteriori estimator (Robert,

2007) for f
*

ij, given by

f
*�

ij ¼ argmax

f
*

ij2½0;1�
3

�
Pðw* ijjf

*

ij;HijÞ � Pðf
*

ijjHijÞ
�

(3)

and we can estimate (2) with

Pðw* ijjHijÞ � Pðw* ijjf
*�

ij;HijÞ � Pðf
*�

ijjHijÞ: (4)

For conciseness in the equations above, we have designated f
*�

ij as

the point estimate for f
*

ij without explicit reference toHij and �Hij, al-

though this condition does change the estimate (see Supplementary

Material, Technical Appendix, Section 1.2). In order to determine

Pðw* ijj �HijÞ, we simply set fij ¼ 0 and repeat the same approach. Once

we have estimated Pðw* ijjHijÞ and Pðw* ijj �HijÞ, the values are input

into (1) to acquire a Bayesian estimate of match probability between

the given ai and bj chain. The priors PðHÞij and Pð �HijÞ are set to 1
n

and n�1
n , where n is an average of the number of unique a chains and

the number of unique b chains observed in the sample. We treat

chain creation as an effectively random process during T cell devel-

opment, and we do not apply any bias toward or away from particu-

lar ab pairings.

2.5 Data collision adjustment
The previously described Bayesian estimate computes the probabil-

ity of a particular chain pairing by analyzing every potential chain

pairing independently. However, in some cases, clones with similar

frequencies in the T cell population can introduce an additional

source of error to our predictions. In this subsection, we describe a
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filter to avoid making predictions under particular error-prone

conditions.

We aim to provide an upper bound d for the false detection rate

(FDR) of our predictions due to dependency between chain pairings.

To motivate the following analysis, consider two unique clones

occupying the same k wells, out of W total wells. Although both

pairs a1b1 and a2b2 may be correctly identified as pairs, a1b2 and

a2b1 will share equivalently good match probabilities. The analysis

in the previous sections does not account for this additional source

of error because it estimates pairing probabilities without regard to

other predicted chain pairings. For x clones occupying the same

wells, the success rate of identification is bounded by 1
x, regardless of

algorithm scoring. Data sets with more clones over the same fre-

quency range will have increased the error rates due to this effect.

This error is mitigated, however, by the vast permutation space. We

therefore use the initial distribution of unique a and b chains to de-

fine a pre-conditioned success rate filter:

1� 1

ðm� 1Þpþ 1
< d for p ¼ 1

W
k

� �

where m is the number of clones occupying the same number of

wells k.

If this constraint fails for any chain pair occupying k wells, this

potential pair is not evaluated to prevent the FDR from being

inflated. These boundaries justify limits empirically constructed in

previous studies (Howie et al., 2015). A full derivation is included in

the SI (Technical Appendix, Section 2).

2.6 Variable cells-per-well
One of the advantages of defining this algorithm within the given

framework is that it provides a principled route to analyze data

from samples with a variable number of cells in each well. This is

heuristically studied by Lee et al. (2017), but we can rigorously de-

fine a general algorithm for these cases. To begin, we still parameter-

ize our data set, but we now break each parameter into P partitions,

where P is the number of sets of wells with a distinct number of

cells-per-well. This changes w
*

ij into a vector of vectors w
*

ij;p, each

containing wij; wi; wj; wØ, W and N. This is integrated into the al-

gorithm by modifying (3) and (4):

f
*�

ij ¼ argmax

f
*

ij2½0;1�
3

�
Pðf

*

ijjHijÞ �
YP
p¼1

Pðw* ij;pjf
*

ij;HijÞ
�

(5)

Pðw* ijjHijÞ � Pðf
*�

ijjHijÞ �
YP
p¼1

Pðw* ij;pjf
*�

ij;HijÞ: (6)

Together, these modifications are used to predict pair probabil-

ities on any experimental distribution of cells across wells.

2.7 Experimental and simulated datasets
Experimental datasets were taken from Howie et al. (2015) in order

to demonstrate ability to recover paired-chain information in bio-

logical contexts. To validate the performance of the algorithm over

diverse parameter ranges, simulated T cell repertoires were used.

Each dataset was initialized using a set number of unique clones, n,

and a distribution of clonal frequencies. For the power-law distribu-

tion, observed previously in T cell populations (Bolkhovskaya et al.,

2014), two parameters were specified: a constant a that produced the

relationship for the clonal frequency PðfijÞ / f�a, and the maximum

observed frequency in the population, fmax. For uniform distributions,

as used in computational studies of T cell sampling (Sepúlveda et al.,

2010), the frequency was simply set to 1
n. To generate sequencing data-

sets from a simulated repertoire, clones were randomly distributed

according to the number of declared wells and cells-per-well. To mimic

experimental samples, sequence attrition was added, in which any chain

in a well had a fixed probability of decaying independently of other

chains in the well, and a chain misplacement probability, in which a

chain in a well has a set probability that it randomly migrates to another

well in the sample. The final result was an anonymized list of a and b
chains that were successfully observed in each well of a sample.

2.8 Implementation
The MAD-HYPE algorithm is implemented in Python 2.7, and is

publicly available at https://github.com/birnbaumlab/MAD-HYPE.

Computation time scales as Oðn2Þ with the total number of

observed chains because each pair of unique a and b chains is eval-

uated independently. We applied parallel computing and the data

collision adjustment filter, which renders a substantial number of

observed clones irrelevant to analyze when searching for matches, to

improve computation time.

3 Results

3.1 Performance on simulated datasets
In order to assess the performance of the MAD-HYPE algorithm

across diverse parameter ranges, datasets were generated that

resembled physiologically relevant clonal populations. Figure 3 dem-

onstrates our algorithm on a simulated clonal repertoire, generated

using a power-law distribution with a ¼ 2:0 (Bolkhovskaya et al.,

2014), a sequencing error attrition rate of 10%, consistent with

Howie et al. (2015), and a maximum clonal frequency of 1%. The

relationship between w
*

ij and the chain pairing probability PðHijjw* ijÞ
is shown, along with other identification metrics for this simulation.

For future simulations, we refer to two main performance metrics:

1. Clonal matches—the number or percentage of correct ab
matches made at the given FDR

2. Repertoire coverage—the sum of frequencies for correct matches

made at the given FDR.

For this particular simulation, 664 out of 1000 clonal matches

were made, and a repertoire coverage of 86.5% was achieved, both

at a FDR of 1%. If unstated, subsequent studies on simulated data

are performed using these default parameters.

Compute times required for analysis of selected experimental and

simulated datasets are shown in Supplementary Tables S1 and S2.

3.2 Variable cell-per-well counts
With the application of the Bayesian system defined in (6), we

explored the ability of the MAD-HYPE algorithm to deconvolute

chain pairings from samples explicitly designed to have a varying

number of cells-per-well. To highlight the effect this experimental

parameter can have on chain pair identification, we fixed the num-

ber of cells in the sample at 96 000 and defined two partitions of a

96-well plate. The number of wells and cells-per-well is set for one

partition, and implicitly solved for in the other partition, so as to

add up to the total cell count. The repertoire coverage is shown for

this demonstration in Figure 4A. Three distinct parameter sets are

shown in Figure 4B–E, which illustrate the effects of different ex-

perimental design choices. Predicted frequency refers to fij solved for

in (5).
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3.3 Sensitivity to experimental noise
We aimed to assess the sensitivity of our methodology to a number

of parameters used throughout the study. First, we ran simulations

in which we varied the noise parameters for chain deletion

(Supplementary Fig. S1A and B) and chain misplacement

(Supplementary Fig. S1C and D). Although performance did decay

as noise magnitude increased, observed noise ranges of chain dele-

tion (~10%, Howie et al., 2015) showed minimal loss in clonal match

count and repertoire coverage. Chain misplacement probability had

a steeper effect on clonal matches and repertoire coverage, although

we note this form of experimental noise is typically lower than chain

deletion.

3.4 Sensitivity to dual clones and chain sharing
During the T cell recombination process, both chromosomes can

produce functional TCRa and TCRb loci. This can result in two

unique a and/or b chains existing within a single clone. Mature cells

exhibiting this characteristic, termed dual clones, are observed at a

rate under one-third for a chains (Padovan et al., 1993) and 6–7%

for b chains (Eltahla et al., 2016; Stubbington et al., 2016).

Simulations incorporating this property into MAD-HYPE demon-

strate a resilience to change in both clonal match count and reper-

toire coverage (Supplementary Fig. S2A and C). A similar

confounding factor to T cell pairing is chain sharing, or the event in

which multiple clones share an identical a chain or b chain in a

repertoire. This process was experimentally addressed in Lee et al.

(2017) where they devised a clonal sharing structure that mimicked

experimentally observed distributions. The same structure was

included in MAD-HYPE simulations. While a loss was observed in

performance (Supplementary Fig. S2B and D), MAD-HYPE was still

able to retain a significant degree of repertoire identification.

3.5 Sensitivity to repertoire architecture
Simulations discussed thus far have primarily used T cell popula-

tions defined through a power-law distribution with a ¼ 2.

Although this value was chosen to mirror experimental distributions

(Bolkhovskaya et al., 2014; Sherwood et al., 2013; Zheng et al.,

2017), there exist cases where this parameter may span different val-

ues. For example, a heavily expanded population of isolated T cells

responding to a particular antigen may possess a distribution with

an a larger than 2. As such, we performed analysis on simulated rep-

ertoires with a ranging from 1.5 to 3, with and without chain shar-

ing (as defined by Lee et al., 2017). These results are shown in

Supplementary Figure S3, where we find our methodology stands

for reasonable ranges of a. We also tested the algorithm on uniform

repertoire distributions, in which all clones have equal clonal fre-

quency (Supplementary Fig. S4A and B). MAD-HYPE remained ef-

fective within a moving bandwidth which illustrated a positive

10-2

10-3

10-3 10-2

10-4

10-2

10-3

10-3 10-2

10-4

10-3

10-2

100

10-3 10-2

10-4

Repertoire Coverage at FDR = 0.01

Fig. 4. Application to samples with variable cells-per-well. (A) An advantage

of MAD-HYPE is the ability to easily extend its function to experiments

designed with a variable number of cells-per-well. Here, we consider simu-

lated repertoires with samples containing a constant number of total cells

(96 000 cells per sample). These cells are allocated in two distinct partitions,

each with a subset of wells and set number of cells-per-well. Axes indicate

the first partition’s number of wells and cells-per-well, after which all remain-

ing cells are distributed uniformly among the remaining wells. (B) Three dif-

ferent experimental designs featuring different partitioning strategies

illustrate the variety of effects that can be produced. If partitions have their

cell-per-well counts spread too far apart (B, top), mid-frequency clones can-

not be resolved (C). If partitions are designed with appropriate cell-per-well

counts (B, middle), clones with wide ranges of frequencies can be successful-

ly identified (D). If only one partition is made (B, bottom), the algorithm per-

forms well on a subset of frequencies. In this case, high-frequency clones

now fail to be resolved (E)

Fig. 3. Demonstration of MAD-HYPE performance. (A) Simulated chain pair

probabilities, where wij is fixed at 24. When wi and wj are kept low, it

becomes exceeding unlikely for 24 wells to coincidentally have both ai and bj,

which produces a high match probability. As wi and wj increase, it becomes

increasingly likely to observe wij due to chance. (B) Paired-chain identification

for simulated dataset. A repertoire of 1000 clones was simulated with clonal

frequencies following a power-law distribution. 100 cells were allocated into

each of 96 wells, with a sequence attrition rate of 10%. At an FDR of 1%, 664

clonal matches were identified, representing 86.5% repertoire coverage. (C)

Alternative representation of simulation performance. Each band represents

a clone with a given frequency, with black indicating whether the pairing was

successfully identified. Clonal index refers to the clone’s position in a list

ordered by decreasing frequency
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correlation between the number of cells per well and the clonal fre-

quencies successfully paired. We note any failure to identify clones

generally does not result from MAD-HYPE being pre-disposed to

solving certain architectures, but rather to resolving certain clonal

frequencies. As a is changed, the frequencies present in the repertoire

similarly change, which forces frequencies out of the resolving range

for the given number of wells and cells-per-well.

Lastly, we tested for sensitivity to the prior parameter, a. Despite

covering two orders of magnitude in parameter value, insignificant

changes were observed in performance (Supplementary Fig. S4C and

D). We refer here to the a used to define the frequency prior in (2).

This differs from the a referred to previously in this subsection,

which describes the true power-law distribution for a repertoire of

simulated clonal frequencies.

3.6 Comparison to pairSEQ algorithm
Multicell-per-well sequencing was first analytically framed by

Howie using a probabilistic framework (Howie et al., 2015). In

order to validate their approach, two patients, X and Y, had a subset

of their T cell repertoire isolated. Each population was genomically

sequenced to provide a reference for which patient each a and b
chain originated from. Samples from the patients were then mixed

and distributed into 96-well plates, and deep sequenced for down-

stream analysis. An implementation of their algorithm and code

base was not available. Therefore, we compared our methodology

by using MAD-HYPE on Howie et al. (2015) sequencing data and

aligning our performance to their published results. We chose to

focus on their first and second experiment since these experiments

contained a true reference that could be used to estimate FDR by

labeling predicted matches as either true positives or true negatives.

We note that the number of positives/negatives deviates slightly

(<3%) from the published values due to lack of reported hyperpara-

meters defining sequence data interpretation. However, this does

not affect the total number of matches reported at the given FDR.

The results for each of these are shown in Figure 5A. a chain and

b chain repertoires were first sequenced from each subject, so that

true positives (a/b chains originating from subject X/X or Y/Y) and

true negatives (a/b chains originating from subject X/Y or Y/X)

could be used to estimate the FDR. Furthermore, this ratio can be

used to estimate the FDR for the total number of matches that could

be made in a sample, inclusive of matches with ambiguous origin.

This metric is independent of repertoire overlap and the mapping of

chain to subject. For this reason, total matches are the most appro-

priate estimation of algorithm performance given this experimental

design. The two experiments shown have a different number of

cells-per-well (2000 and 80 000 per subject, respectively) to help

demonstrate the scales at which the system can operate. In

Experiment 1, 4 933 ab total matches were identified from subjects

X and Y at an FDR ¼1%. In Experiment 2, 176 366 clonal ab total

matches were identified from subjects X and Y. The MAD-HYPE al-

gorithm increased the identification rate of clonal pairings relative

to pairSEQ by 19.1 and 13.2% in Experiments 1 and 2, respectively.

3.7 Comparison to ALPHABETR algorithm
An alternative algorithm, ALPHABETR (Lee et al., 2017), uses a

heuristic method to score chain pairs coexisting in wells.

Performance was compared over a similar parameter range as in

Figure 4A, but with 9600 cells per sample for an average of 100

cells-per-well over the 96-well plate (Fig. 5B). In the region of high

performance (cell-per-well counts between 40 and 100, partition

sizes between 12 and 36), MAD-HYPE outperforms ALPHABETR

in repertoire coverage by an average of 5 percentage points. In gen-

eral, ALPHABETR successfully identifies more high-frequency

clones, while MAD-HYPE identifies more low-frequency clones

(Supplementary Fig. S5). This discrepancy causes ALPHABETR to

sometimes outperform MAD-HYPE in repertoire coverage despite

identifying fewer clones. Because clonal frequencies are distributed

following a power law, there will be a greater number of clones with

low frequencies than with high frequencies, so MAD-HYPE is more

effective at identifying a greater fraction of the clones present in a

repertoire. However, ALPHABETR has higher FDR in many cases.

We observe the FDR of match guesses made with highest ranked

confidence in each algorithm in Figure 5C, and continued in

Supplementary Figure S6. These simulations were performed with

300 cells-per-well and chain sharing probabilities proposed by Lee.

3.8 Experimental design recommendations
The proposed algorithm contains a predictable relationship between

the number of cells placed in each well and the clonal frequencies

identified (Supplementary Fig. S4A and B); in general, the MAD-

HYPE can be tuned to identify clones of any frequency by adjusting

these cell-per-well counts. That is, the appropriate cell-per-well

counts depend on the clonal frequencies of interest. For instance, if

high-frequency clones are of interest, then low cell-per-well counts

are necessary. Low-frequency clones are identifiable using high cell-

per-well counts.
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Fig. 5. Comparison to existing multicell-per-well algorithms, pairSEQ (Howie

et al., 2015) and ALPHABETR (Lee et al., 2017). (A) Comparison of perform-

ance of MAD-HYPE to results disclosed by Howie et al. (2015). Data were

taken from Experiments 1 and 2, in which full repertoires were sequenced

from two patients, X and Y, at two different cell-per-well counts (2000 and

80 000, respectively). MAD-HYPE was used to identify chain pairings, and the

results were compared to those disclosed in the Supplementary Material of

Howie et al. (2015). We note that each false positive detected (X/Y and Y/X)

accounts for two estimated false positive events due to the randomization of

chain origin. (B) Heatmaps show repertoire coverage of MAD-HYPE and

ALPHABETR using simulated repertoires comparable to physiological sam-

ples (1000 clones, power-law clone frequency distribution,

a ¼ 2:0; fmax ¼ 1%). Column and row labels are interpreted the same as in

Figure 4a, but with a total of 9600 cells over all 96 wells. Chain sharing proba-

bilities proposed by Lee et al. (2017) were used. Each data point is an average

of 10 simulations. (C) FDR for varying chain deletion probability over the top

250 predicted matches for MAD-HYPE and ALPHABETR, using 1000 clones,

300 cells-per-well, and chain sharing proposed by Lee, averaged across 10

simulations. More cutoffs can be observed in Supplementary Figure S6
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Variable cells-per-well can be used to broaden the resolvable fre-

quency band. To help illustrate how to use variable cells-per-well in

sample dependent ways, we aimed to provide recommendations for

experimental design based on sample type. We drew parameters

from literature for peripheral blood samples (Bolkhovskaya et al.,

2014) and lymphocytes isolated from tissues (Zheng et al., 2017).

For peripheral blood simulations, we divided a 96-well plate into

two partitions with 500 and 10 000 cells-per-well. When the diver-

sity of the T cell repertoire is high, 95.7% of the simulated repertoire

was identified (Supplementary Fig. S7A). When the repertoire is less

diverse, 68.4% of the repertoire was identified (Supplementary Fig.

S7B). For tissue-derived samples, repertoires were fit to data from

Sherwood et al. (2013) and Zheng et al. (2017). In these cases,

>99% of repertoire was identified for samples with two 48-well

partitions, while using 50 and 1000 cells-per-well (Supplementary

Fig. S7C and D).

4 Discussion

We have described here a new computational method to identify

TCRab pairings using subsampled T cell populations. Moreover, we

have focused on how to objectively design experiments to expand

the clonal frequency range identified in an experiment by varying

the number of cells-per-well. Additionally, we have described a

number of usage cases for the MAD-HYPE algorithm which outper-

forms existing standards for paired-chain identification in multicell-

per-well repertoire sequencing experiments. For biological samples

taken from Howie et al. (2015), there are modest improvements in

clonal match count. In addition, we note a few key differences be-

tween MAD-HYPE and pairSEQ:

• pairSEQ requires the approximation of error rates in samples by

an additional experimental procedure, which is not required by

MAD-HYPE (Howie et al., 2015)
• Significant effort was put forward to make methodology trans-

parent, and implementation is available at: https://github.com/

birnbaumlab/MAD-HYPE
• The framework established here can be adapted to a more robust

collection of experimental designs, such as variable cells-per-

well, which shows dramatically improved efficacy in repertoire

identification (Fig. 5A).

Using simulated data, we found MAD-HYPE to outperform

ALPHABETR under most experimental conditions. We observed

the following important performance differences:

• The computation time to perform MAD-HYPE analysis on a

sample scales as Oðn2Þ with the number of observed chains.

ALPHABETR, which internally uses the Hungarian algorithm

(Kuhn, 1955) to match a and b chains within each well, scales as

Oðn3Þ with the number of unique chains per well. For large rep-

ertoires with experimentally observed skews, we expect the num-

ber of unique chains per well to be approximately proportional

to the total number of observed chains. Thus, MAD-HYPE will

be computationally feasible for larger samples than

ALPHABETR. See Supplementary Figure S8 for side-by-side

comparison of computation times.
• MAD-HYPE consistently performed better at identifying low-

frequency clones, while ALPHABETR was more effective at

identifying high-frequency clones (Supplementary Fig. S5). We

note that multicell-per-well algorithms are generally of interest

for identifying high numbers of low-frequency clones, and that

identification of high-frequency clones may be better suited to

more conventional single-cell sequencing approaches.
• MAD-HYPE consistently identified more clonal matches.

However, under some conditions, ALPHABETR achieved

greater repertoire coverage because it identified more high-

frequency clones (Supplementary Fig. S5).
• ALPHABETR’s scoring heuristic causes many chain pairs to be

equally scored with the highest possible score. This lack of reso-

lution at the top of scoring range prevents fine-tuned choice of

the most certain clones, which may be desired in cases where the

set of all top-scoring chain pairs already surpasses the FDR.

One of the central challenges to this methodology is trying to

limit experimental noise. Each cell placed into a well ideally releases

mRNA for both chains, which is identified after sequencing.

However, if one of these chains evades detection and the other is

successfully sequenced, the algorithm will lower the probability of a

match between this pairing since there are wells that lack coexist-

ence. Therefore, any experimental efforts to minimize this attrition

rate are paramount. Although sensitivity was only moderate

(Supplementary Fig. S1), minimization of this is likely the largest

technical hurdle to large-scale application. We also note that we did

not include noise sources representing cell death, or other effects

that delete all chains of a clone simultaneously. Adjustments can be

easily made to counter this effect (e.g. if 50% of cells perish before

sequencing, simply allocate twice the number of cells as intended to

each well initially).

We note that while T cells only utilize one recombined TCR a
chain and b chain pairing to recognize any given antigen, it is pos-

sible for a T cell to contain a second V(D)J-recombined a or b chain

that can confound analysis. While these ‘extra’ chains, which arise

from recombination events that were insufficient for the T cell to

pass thymic selection, can often be computationally filtered out of

the data set (e.g. when one of the recombination events does not

produce an in-frame transcript), there are also cases where the iden-

tity of the functional chain cannot be computationally determined.

Even though functionally resolving these ambiguities is challenging

for any sequencing technique, this does not affect computational

analysis: a T cell containing one b chain but two a chains would be

regarded as two independent pairing events. If a researcher wished

to further resolve the functional chain pairing, they could either

cross-reference putative pairs with other T cells in the sample (since

a functional chain in an antigen-experienced T cell pool is more like-

ly to share homology with other sequences), or functionally test the

potential pairings.

Moreover, any multicell-per-well sequencing experiment is

restricted to the identification of clonal pairings that occur in mul-

tiple cells across the sample. Since resolving clones relies exclusively

on observing ab pairings multiple times throughout a sample, one

instance is never sufficient. Although potentially limiting, in practice

most T cell populations are expanded to some degree, ensuring a

majority of available clones have numerous copies in any given

sample.

As illustrated previously (Fig. 4), there exists a trade-off between

the number of cells-per-well and the ability to resolve clones at a cer-

tain frequency. If there are too few cells-per-well, low-frequency

clones appear too infrequently to provide a permutation space with

adequate sparsity. Likewise, if too many cells are allocated in each

well, high-frequency clones will appear in every well, again produc-

ing collisions in permutation space. In Figure 4C, the resolving

power of MAD-HYPE for each partition is discontiguous, allowing

the identification of clones at only high and low frequencies, and
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failing to identify mid-frequency clones. In Figure 4E, a single parti-

tion enables the accurate identification at mid- and low-frequency

clones, but fails to enable the identification of high-frequency clones.

Moreover, MAD-HYPE predicts these clones to have fij ¼ 100% be-

cause they appear in all wells of the sample. If the partitions are

designed correctly, as in Figure 4D, high resolving power can be

maintained throughout the entire spectrum of frequencies in the

sample without modifying the total number of cells employed.

This highlights a critical point of multicell-per-well experimenta-

tion: the choice of the number of cells-per-well has a direct impact

on the clonal frequencies that can be resolved. This is particularly

important in the case of partitioned samples, where each set of wells

at a specific number of cells-per-well resolves a certain bandwidth of

clonal frequencies. This property is evident in both Supplementary

Figures S4C and D and S9, illustrating approximate regimes where

this occurs. The recommendations for sample type are derived from

this property because well partitions should be chosen to create con-

tiguous frequency ranges in which clones can be resolved. Careful

attention should be paid to this choice during experimental design,

when the user may consider which clonal frequencies will be of

greatest value. If the high-frequency clones in a sample are of great-

est interest, a low number of cells-per-well should be used.

Conversely, if a study requires the characterization of thousands of

low-frequency clones, a higher cell-per-well count should be used.

The resolving power can be increased by choosing more parti-

tions at finer-grain resolution than that shown in Figure 4.

However, optimizing such a setup becomes computationally intract-

able to rigorously solve, as the parameter space increases by two for

each added partition (Wp, Np) and less robust as these parameters

are fitted closer to the predicted repertoire characteristics and prior

distributions. We therefore leave this topic as an accessible, but sam-

ple dependent, problem that can be solved at the user’s discretion.

The recommendations made through Supplementary Figure S7 stand

as an approximate experimental design to start from.

While this study has focused primarily on the application to

sequencing T cell repertoires, this methodology can be directly

applied to many other contexts. A direct parallel would be the

sequencing of cd T cell populations, in which one would identify

chain pairings between TCRc and TCRd chains, rather than be-

tween TCRa and TCRb chains. Similarly, B cell populations could

be sequenced to identify pairings between heavy and light chains. In

general, any sample that contains two spatially separate transcripts

with variable regions is a sufficient condition to use MAD-HYPE in

order to recompose original clonal characteristics.

5 Conclusion

The progress documented here represents a new algorithmic ap-

proach to resolve paired-chain sequencing data from multicell-per-

well sequencing experiments. Our approach has been validated in

the context of simulated datasets drawn from observed parameters,

as well as on experimental samples taken from Howie et al. (2015).

Our performance exceeded that of existing methodologies (Fig. 5)

and can be readily applied to new experimental designs that were

previously unapproachable in a non-heuristic format (Fig. 4). Future

extensions of MAD-HYPE could involve additional analysis to iden-

tify clones of the T cell population with two a and/or two b chains,

rather than only identifying ab pairings. The direct application of

our methodology to this problem is discussed in the Supplementary

Material (Technical Appendix, Section 1.4). As sequencing

power grows and we aim to characterize full T cell repertoires,

MAD-HYPE and similar algorithms represent a robust technique

with the potential to lower technical thresholds while maintaining

throughput.
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