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Abstract

Motivation: Gene annotation and pathway databases such as Gene Ontology and Kyoto

Encyclopaedia of Genes and Genomes are important tools in Gene-Set Test (GST) that describe

gene biological functions and associated pathways. GST aims to establish an association

relationship between a gene-set of interest and an annotation. Importantly, GST tests for over-

representation of genes in an annotation term. One implicit assumption of GST is that the

gene expression platform captures the complete or a very large proportion of the genome.

However, this assumption is neither satisfied for the increasingly popular boutique array nor the

custom designed gene expression profiling platform. Specifically, conventional GST is no lon-

ger appropriate due to the gene-set selection bias induced during the construction of these

platforms.

Results: We propose bcGST, a bias-corrected GST by introducing bias-correction terms in the con-

tingency table needed for calculating the Fisher’s Exact Test. The adjustment method works by esti-

mating the proportion of genes captured on the array with respect to the genome in order to assist

filtration of annotation terms that would otherwise be falsely included or excluded. We illustrate

the practicality of bcGST and its stability through multiple differential gene expression analyses in

melanoma and the Cancer Genome Atlas cancer studies.

Availability and implementation: The bcGST method is made available as a Shiny web application

at http://shiny.maths.usyd.edu.au/bcGST/.

Contact: kevin.wang@sydney.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Gene expression profiling platforms have enabled researchers to ex-

plore complex human diseases on an ever larger scale. As our know-

ledge of disease mechanisms increases, there is a greater need for

more targeted and reproducible analysis requiring ever more sensi-

tive expression platforms for clinical biomarkers. A boutique array

platform is well-suited to tackle these challenges because the built-in

probes are specially designed for the disease of interest. Depending

on manufacturer designs, these probes can measure signals with

greater sensitivity than other platforms such as microarray and

RNA-Seq. This increase in sensitivity is typically achieved by reduc-

ing the number of probes to those directly relevant to the disease of

interest, which increases the signal-to-noise ratio during competitive

hybridization.

However, this reduction in the number of probes also brings new

challenges to traditional pre-processing tools and statistical analyses

(Jung and Sohn, 2014). Specifically, many bioinformatics and statis-

tical techniques have been developed for the purpose of biological

discovery and these are not appropriate for targeted platforms like

boutique arrays. One such example is the gene-set over-

representation test, commonly referred to as Gene-Set Test (GST),

originally developed for microarray experiments (Irizarry et al.,

2009; Subramanian et al., 2005). In GST, instead of interpreting

genes directly, these genes are mapped to biologically meaningful

annotations in curated biological databases. Then, by applying

appropriate statistical tests, statistical significance is assigned to the

annotation terms instead of specific genes. Typically, genes that are

differentially expressed (DE) are of particular interest in GST

because these genes are potential biomarkers which could inform us

of the underlying disease mechanisms if their association with bio-

logical functions and pathways can be established.

When performing GST on boutique arrays, one often ignored

issue is that the probes built onto the gene expression profiling plat-

form do not necessarily match with the gene-set database that is of

interest. For example, most GST databases, such as Gene Ontology

(GO) (Consortium, 2000), were built with the whole human genome

in mind. As a result, the intended gene universe when performing

GST is the whole genome, or at least, a genome-wide gene expres-

sion profiling platform. The particular challenge for boutique arrays

is that boutique array genes are specialized by design, and thus

in much smaller quantity (ranging from 100 to a maximum of 1000

probes) compared to the whole genome. Statistical testing of annota-

tion terms is therefore restricted to genes on the boutique arrays.

We refer to this issue as gene-set selection bias. While there was a

tremendous amount of research into making evermore advanced

methods and accessible web-based tools (Backes et al., 2007;

Eden et al., 2009; Subramanian et al., 2005; Wu et al., 2010;

Zheng and Wang, 2008), there is always an implicit assumption that

end-users use a large gene expression profiling platform in experi-

ments. In light of this, there is a need to develop a GST methodology

which can produce interpretable gene-set enrichment analysis results

in the presence of gene-set selection bias.

This paper presents a bias-corrected GST, abbreviated as bcGST,

a novel method that enables the application of GST in the absence

of large parts of the genome, as we typically encounter in boutique

arrays. Using a published microarray and the Cancer Genome Atlas

(TCGA) RNA-Seq data, we create synthetic simulations of boutique

array to examine the advantages and practicality of bcGST. The

bcGST method corrects for the gene-set selection bias effect by

reducing false negatives during scoring gene-set significance. We fur-

ther demonstrate bcGST’s ability to yield stable GST results in the

presence of gene-set selection bias. Application of bcGST to a real

boutique array study and a TCGA RNA-Seq data revealed key can-

cer pathways despite low concordance between the two platforms.

We also developed a Shiny (Chang et al., 2017) web application for

the bcGST method. This application enables the detection and ex-

ploration of gene-sets through interactive visualization and

adjustments.

2 Materials and methods

2.1 Datasets
2.1.1 Microarray melanoma data

A published gene expression study (Schramm et al., 2013) from

stage III melanoma patients was used to illustrate our methods. The

platform used was Illumina Human WG-6 BeadChip microarray,

version 3. In this study, a good prognosis group (n ¼ 25) was

defined as those samples with more than four years survival with no

sign of relapse and a poor prognosis group (n ¼ 22) as those samples

that died within one year of metastasis. Raw data were processed

using the NEQC method (Shi et al., 2010). Negative control probes

were used for background correction and quantile normalization

used both negative and positive probes. The normalized data has

23 460 probes, corresponding to 17 934 unique gene symbols.

2.1.2 TCGA cancer gene expression data

TCGA RNA-Seq expression and clinical information (Weinstein

et al., 2013) were downloaded using the R (R Development Core

Team, 2017) package ExperimentHub (Maintainer, 2016) from

Gene Expression Omnibus with submission ID GSE62944, on

October 11, 2016. The voom method available in the limma

(Ritchie et al., 2015) package together with the trimmed mean of M

values was used to normalize RNA-Seq count data so the processed

data could be analyzed using available microarray analysis method-

ologies (Law et al., 2014).

There were 23 368 genes across all 19 cancers. We used this pan-

cancer data in two ways. First, for the purpose of creating simulated

boutique array experiments, patients with either tumour status or

vital status missing were discarded. Differential gene expression ana-

lysis was performed between good prognosis patients who were

both tumour-free and alive, against poor prognosis patients who

carried tumours and died. Under this classification, cancers with

<10 samples in either prognosis groups were eliminated. Second, for

the purpose of demonstrating our method on a real boutique array

dataset, we selected from the TCGA data the Skin Cutaneous

Melanoma (SKCM) patients with American Joint Committee on

Cancer (AJCC) tumour stage classification.

2.1.3 NanoString customized panel

This is a customized gene expression profiling panel containing

800 genes designed to cover a broad spectrum of melanoma biology,

immune-related genes, cellular functions and signalling pathway

transcriptional targets. See Supplementary Table S3 for a complete

list of genes. Similar to other boutique array panels, the manufactur-

er argues that due to gene co-expression, a well-designed boutique

array can measure gene expression with a smaller set of probes and

is expected to capture a significant amount of expression variability

(NanoString Technologies, 2015).

Due to the non-negligible differences between how microarrays,

RNA-Seq and NanoString collect signals from their respective panels

(Chen et al., 2016; Guo et al., 2013; Nookaew et al., 2012; Robinson
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et al., 2015), we used this panel in two different ways. First, for the

purpose of creating simulated boutique array experiments, we are

only interested in the induced biological knowledge that the

NanoString genes bring to the analysis. Hence in all simulations, we

only used the NanoString gene symbols to subset genes from the

larger platforms, namely the microarray and RNA-Seq data described

above. Second, we used the gene expression profiles of 95 samples

from a study of the effect of targeted therapy and immunotherapy

for BRAF-mutant patients in melanoma (Silva et al., 2017).

Normalization was performed using the NanoStringQCPro package

(Nickles D et al., 2017) with content normalization.

2.2 Simulated boutique array experiments
Given the microarray and TCGA RNA-Seq data, we took the subset

of NanoString PanCancer panel genes to construct smaller datasets

which resemble data collected from boutique array experiments.

We will refer to these sub-datasets as ‘simulated boutique arrays’ or

just ‘simulations’ because they contain gene expression measure-

ments for specialized gene-sets without actually performing the

experiments. Such simulations allowed for a higher degree of control

for our proposed correction method and eliminate possible experi-

mental inconsistencies. No further normalization or data processing

was performed on the simulations. During the evaluation, the ori-

ginal inference results from the larger platforms (i.e. microarray and

TCGA RNA-Seq) were treated as the gold standard against which

inference results from the simulations are compared.

The first experiment was simulated with respect to the Stage III

microarray, in which there were 663 genes common to both plat-

forms. The second experiment was simulated with respect to the

TCGA RNA-Seq data, with 775 genes common to both platforms,

across all cancer types. All samples were retained during construc-

tion of the simulations.

2.2.1 Differential expression and GO analysis

We used empirical Bayes moderated t-test statistics (Smyth, 2004)

implemented in the limma package from R (R Development Core

Team, 2017) to perform differential gene expression analysis be-

tween patient groups in each dataset.

In the simulation studies, microarray experiment genes with a

P-value <0.01 were considered as DE. For the TCGA data, genes with a

P-value <0.005 were considered as DE. These thresholds were chosen

to yield a reasonable number of DE genes so that we have a reasonable

mapping of annotation terms. In the microarray experiment, we

obtained 322 DE genes out of 11 698 genes. Only 38 of these 322 DE

genes were present on the NanoString panel. We discarded TCGA can-

cer datasets with fewer than five DE genes on the simulated boutique

array, the full list of which are on Supplementary Table S1a.

In the real data application, differential gene expression analysis

was performed between patients who were classified as AJCC Stage

IVC and those samples in either Stage IVA, IVB or IIIC (pooled).

We used a less conservative P-value of 0.05 on both the NanoString

and the TCGA SKCM RNA-Seq data as a cut-off for a gene to be

considered DE. Supplementary Table S2 shows a list of samples.

In the simulation study, DE genes were then mapped to the GO

database via Entrez ID. Enrichment tests and further parameter

extractions were all performed through topGO package (Alexa and

Rahnenfuhrer 2016). We considered only the ontology branch

‘Biological Processes’ of the GO database, keeping only terms with

at least 10 annotated genes. In the simulation, we only retained GO

terms common to both the microarray and the NanoString platform.

In the real data application, we used the BioCarta pathway

downloaded from the Molecular Signatures Database from Broad

Institute, version 6.0 (Liberzon et al., 2011; Subramanian et al.,

2005).

2.3 Gene-set enrichment analysis
2.3.1 Fisher’s exact test parameters

We used Fisher’s Exact Test (FET) to test for over-representation of

DE genes with the GO annotation terms. Under the null hypothesis

that relative proportions of one gene-set are independent of a second

gene-set, parameters on a two-by-two contingency table follow a

hypergeometric distribution, so a P-value can be calculated based on

this distribution.

To clarify the relationships between boutique array genes, DE

genes and genes assigned to pathways, we have tabulated the num-

ber of genes in each category in Tables 1 and 2.

In a FET, we refer to all genes under consideration as the ‘gene

universe’. Depending on the gene expression profiling platform

being used, the gene universe will change accordingly. For example,

if we wish to make inference only within a boutique array, then we

simply take the gene universe to be the boutique array. Equation (1)

computes the one-sided FET P-value, where numbers (a, b, e and f)

are defined in Table 1, for each pathway under consideration. If the

whole genome is the gene universe, then the P-value is calculated

using Equation (2), where the numbers (a þ c, b þ d, e þ g and

f þ h) are shown in Table 3. As most curated biological annotation

databases like GO and Kyoto Encyclopaedia of Genes and Genomes

were developed with respect to the whole genome, it is therefore im-

portant to know which gene universe is under consideration.

Misspecifying the gene universe as the boutique array genes when

the whole genome is intended can induce gene-set selection bias into

GST, see Figure 1.

Equation (1) is the standard way of calculating over-

representation P-value using FET. Here, the hypothesis is the DE

gene list is not associated with the pathway under consideration.

The competitive alternative hypothesis is that there is an over-

representation of DE genes in the pathway, hence we formulated a

one-sided test. In Table 1, a is the number of DE genes among all

genes on the pathway in a boutique array, and b; c; . . . ;h are defined

similarly by reading their corresponding column and row label in

Tables 1 and 2.

PrðX � aÞ ¼
Xaþe

k¼a

aþ b
k

� �
eþ f

ðaþ eÞ � k

� �

aþ bþ eþ f
aþ e

� � (1)

PrðX � aþ cÞ ¼
Xaþcþeþg

k¼aþc

aþ bþ cþ d
k

� �
eþ f þ gþ h

ðaþ cþ eþ gÞ � k

� �

aþ bþ cþ d þ eþ f þ gþ h
aþ cþ eþ g

� �

(2)

Table 1. Contingency table of boutique array genes, split according

to if these are differentially expressed and assigned to a given

pathway

Boutique array gene universe DE Not DE

Pathway a b

Not pathway e f

1352 K.Y.X.Wang et al.
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2.4 FET P-value grid and bcGST
In a boutique array experiment, for each pathway, parameters a and

e in Tables 1 and 3 are known while parameters c and g in Tables 2

and 3 are unknown. We define:

a ¼ a

aþ c
; and b ¼ e

eþ g
: (3)

For a gene-set of interest, the first ratio a represents the propor-

tion of DE genes on the boutique array compared to all DE genes in

the genome present in the pathway. Similarly, the second ratio b rep-

resents the proportion of DE genes on the boutique array compared

to all DE genes in the genome absent from the pathway. These two

ratios represent different proportion of DE genes built onto the bou-

tique array in relations to the gene-set. See Results for a more

detailed application of these two ratios.

If the values of (alpha) and (beta) are known, then we can com-

pute estimates (rounded to the nearest integer if necessary) of the un-

observed c and g parameters through ĉ ¼ að1=a� 1Þ and

ĝ ¼ eð1=b� 1Þ, respectively. The number of DE genes can then be

estimated with aþ ĉ þ eþ ĝ and the value a þ bþc þ d can be

obtained from curated pathway database, thus completing the con-

tingency table in Table 3. In the process of doing so, we calculated a

FET P-value by taking into account the missing genes on the bou-

tique array, and thus this process would allow us to correct for the

gene-set selection bias in a boutique array GST.

However, when performing a real boutique array experiment the

precise value of a and b is never known. We thus propose a visual-

ization-inspired technique to evaluate the FET P-value over a grid of

a and b values. The rationale behind this grid construction is that a

higher value of a and b means more DE genes was built onto the

boutique array, these proportions represent the severity of gene-set

selection bias for each pathway term. If the P-value associated with

a pathway is always significant regardless of a and b, then we can

conclude its initial statistical significance was not likely to be driven

by these proportions and thus the gene-set selection bias. Thus, we

may conclude the statistical significance is robust against this bias.

To perform this computation, we will first define a range of

plausible values for a and b, which can be as large as ½0; 1� � ½0; 1�,
where either parameter can take any value between 0 and 1. For

each (a, b) pair on this grid, we can calculate unknown FET contin-

gency table parameters as described above, thus obtaining a grid of

FET p-values.

To simplify interpretations, we propose to further summarize the

FET P-value grid into a single statistic. For each pathway or anno-

tated term, a natural way to condense this grid information is to

count the number of times which the P-value fall below a pre-

determined significance threshold. This defines a grid count statistic,

and we can thus consider a pathway to be robust against the induced

gene-set selection bias if this count statistic is high when compared

to the size of the ab grid. The bcGST method we are proposing con-

sists of both the grid of P-values and the grid count statistic.

3 Results

3.1 Gene-set selection bias presents a unique challenge

to GST in boutique array experiments
Gene-set selection bias is a particularly challenging problem for bou-

tique arrays. A large proportion of genes and their associated path-

ways/annotation terms are left out due to the design of the boutique

array and so the parameters in Table 2 will be completely ignored in

the analysis. Statistical significance of annotation terms is therefore

biased towards the genes on the boutique arrays due to selection

bias. This bias is present even in the case of well-designed boutique

arrays. See the Materials and methods section for the detailed statis-

tical formulation of the selection bias problem.

Figure 1 shows a scatter plot comparing FET P-values from the

Stage III melanoma microarray experiment and simulated

NanoString boutique array for 2078 common GO terms. Here we

regard the microarray P-values as the ‘truth’ against which we com-

pare the simulated boutique array P-values. The simulated boutique

array FET provided correct decisions for most GO terms. There is

strong monotonicity between the P-values derived from the two

gene universes as we should expect from a specialized cancer gene

panel. While a change in statistical significance was anticipated,

1519 (73%) GO terms exhibited a larger P-value. Furthermore, the

majority of false decisions originated from false negatives; i.e. GO

Table 2. Contingency table of non-boutique array genes, split

according to if these are differentially expressed and assigned to a

given pathway

Non-boutique array gene universe DE Not DE

Pathway c d

Not pathway g h

Fig. 1. A scatter plot of 2078 Gene Ontology (GO) terms common to both the

microarray data and the simulated boutique array data. The x- and y-axes are

the FDR-adjusted FET P-values from the microarray and simulated boutique

array on a � log 10 scale, respectively. A total of 1519 out of 2078 (73%) points

are below the line of no change (y ¼ x, black dashed line). By dividing the figure

at FDR-adjusted P-values <0.05 for both gene universes, we can further confirm

the majority of false decisions made by FET P-values came from false negatives

Table 3. Contingency table of all genes in a genome-wide gene uni-

verse, split according to if these are differentially expressed and

assigned to a given pathway

Genome-wide gene universe DE Not DE

Pathway a þ c b þ d

Not pathway e þ g f þ h
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terms which were significant in the underlying microarray, but failed

to be judged as significant in the simulation. Our bcGST method

addresses this issue of gene-set selection bias.

3.2 P-value correction is needed to account for selection

bias in boutique arrays
In practice, depending on the gene expression profiling platform being

used, its gene universe should change accordingly. For example, in an

Affymetrix array, the built gene-set covers the whole genome most of

the time. However, if we wish to analyze with a boutique array, then

the gene universe for the boutique array is much smaller in compari-

son. In reference to Table 1, the gene universe has a total of

a þ bþe þ f, the sum of all the parameters in the contingency table. In

the case of the NanoString platform, the collection of genes is at most

800 genes. Performing a GST directly in the latter case will result in

biased P-value calculations. To this end, we developed the bcGST cor-

rection method to account for such selection bias.

The bcGST method relies on the two key ratios defined in

Equation (3) which represent different proportion of DE genes built

onto the boutique array in relations to the gene-set. If these ratios

are known either from a pilot study or from the end-users, then we

can easily correct for the gene-set selection bias. For example look-

ing at GO: 0023014, signal transduction by protein phosphoryl-

ation, had a P-value of 0.24 in the simulation above. Let a and b
take values, 0.35 and 0.10, respectively; i.e. the boutique array cap-

tures 35 and 10% of DE genes present and absent from the micro-

array. Then we can find ĉ ¼ að1=a� 1Þ and ĝ ¼ eð1=b� 1Þ, which

are estimates of the unobserved parameters c and g in a typical bou-

tique array experiment. These estimates allow us to complete a FET

contingency table. Thus, a plausible bias-corrected P-value from our

GST analysis is 0.003 instead. Note that this correction depends

strongly on the selected (assumed but unknown) values of a and b.

3.3 The bcGST method corrects for false negatives for

unknown a and b
We propose to use bcGST, a three-step-grid-based approach to exam-

ine the statistical significance of annotation terms when the a and b
ratios are unknown. First, we consider a range of a and b values, thus

constructing a grid. Second, for each pair of ratios, we complete the

contingency table and perform FET for each (a, b) pair. This yields a

grid of P-values. Third, by counting the number of P-values that fall

below a certain level of statistical significance, we construct a count

statistic which can better assess the statistical significance of annota-

tion terms. We use the bcGST approach to correct for statistical sig-

nificance as a result of gene-set selection bias and we will refer to the

grid count statistic as the ‘bcGST statistic’.

Figure 2 shows a heatmap of P-values for GO: 0044711 (single-or-

ganism biosynthetic process) and GO: 0023014 (signal transduction

by protein phosphorylation). Under a conventional significance level

of 0.05, both of these terms would be judged as non-significant. If we

use an equally spaced (a, b) grid of size 400 to compute the grid count

statistic, i.e. counting the number of grid points that have an associ-

ated FET P-value <0.05, we obtain bcGST statistic value of 157 for

GO: 0044711 and 353 for GO: 0023014, respectively. Since a com-

prehensive range of a and b values were considered, the almost 2-fold

difference in the bcGST statistics between these two GO terms pro-

vides a good indication that the latter is more likely to be considered

significant in a genome-wide microarray. This is indeed the case, the

microarray P-value for GO: 0044711 is 0.230 and the P-value for

GO: 0023014 is 0.005. This is one example where our bcGST statistic

successfully prevents false negative conclusion (for GO: 0023014).

Figure 3 is similar to Figure 1 but all GO terms are now coloured

by grouping the bcGST statistic into four low-count/high-count cat-

egories. We note that 82% of false negatives received moderately

high (>300 grid points) or very high counts (>350 grid points). The

high bcGST statistics provide evidence for these GO terms from

being incorrectly judged as non-significant. Thus, this count statistic

supplements the boutique array FET results in overcoming the prob-

lem of false negatives caused by gene-set selection bias.

3.4 GST results are sensitive to two highly variable key

ratios
If we are given a pair of a and b, then we can complete a FET contin-

gency table using the genome or some genome-wide gene expression

Fig. 2. A pair of GO terms with similar simulated boutique array FET P-values,

but noticeably different microarray FET P-values and bcGST statistics. The

heatmaps are on a � log 10 scale, capped at 20 for ease of reading. Grid points

with a P-value <0.05 are marked with a ‘þ’ symbol. (Left) GO: 0044711, sin-

gle-organism biosynthetic process, microarray P-value ¼0.23, simulated bou-

tique array P-value ¼0.43, bcGST statistics ¼157/400. (Right) GO: 0023014,

signal transduction by protein phosphorylation, microarray P-value ¼0.005,

simulated boutique array P-value ¼0.24, bcGST statistics ¼353/400

Fig. 3. Colouring the previous scatter plot with four categories of low to high

grid count statistics. We have significantly increased detections of GO terms

in the false negative (lower right) region; 244 out of 283 (86%) GO terms had

bcGST statistics higher than 300 out of a 400 ab grid cells. The high count cat-

egories of bcGST statistics supplement the singular boutique array P-values

with an extra layer of interpretability on the annotation terms’ stability across

a range of possible a and b values
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platform as the gene universe. However, each estimate of the (a, b)

pair only assumes one plausible level of gene-set selection bias. By

running a boutique array simulation on the TCGA data, we show

that inference results are very sensitive to these two ratios and that

both ratios are difficult to estimate. Hence, a single estimate of these

ratios does not yield stable results. This (a, b) induced instability is

avoided through the proposed gird-based approach in bcGST.

3.4.1 Heterogeneity of a
First, by considering running the boutique array simulation on a set

of the TCGA gene expression data, we can show that a is highly het-

erogeneous within and between different cancer datasets. Figure 4

shows the distribution of both a and b ratios for 2219 common GO

terms between 11 cancers. The parameter a is highly variable within

individual datasets, indicated by the upper boxplot tails extending

towards one and a large number of zeros. Despite having an overall

median around 0.14 across all cancer datasets, the boxplots show

that the distribution of a values also differ between cancers. Such

variability makes estimating a for every GO term difficult, and

therefore statistical conclusions will be more prone to errors.

3.4.2 Sensitivity of b
The ratio b also has a strong overall influence on the FET P-value.

We can examine this by further studying the simulated boutique

array results on the SKCM data in TCGA.

Figure 5 is a ‘spaghetti’ plot of P-values for all GO terms. By fixing

four selected b values, we can see the collective change of all GO terms

across different values of a. The general trend of P-values is very sensi-

tive to small changes in b, particular for smaller a values; which we

know from Figure 4 is a particular feature of a. This is to be expected

since even though the range of b is smaller than that of a, the

construction of b involves the parameter g, which is the number of

non-boutique array DE genes absent from pathways—a number which

we expect to be large in applications. Small changes to this parameter

will tend to produce very different estimates for other parameters.

3.4.3 Biological significance

Figure 5 contains special features that enhance biological significance

as follows. First, we selected four b values obtained from the TCGA

cancer datasets, ranging from the cancer of lowest median b value

(COAD) to the highest median b value (OV). This provides us with a

realistic expectation of the range of b in cancer studies which we

could use in future visualization heatmaps and computation of bcGST

statistics. Second, over this selected range of b, we split the GO terms

into those which are associated with MAP kinase (blue) and those

which that are not (red). We computed the median of each grouped

GO terms for each a value and also shaded the 25th percentile and

the 75th percentile band for each group. Since the MAP kinase path-

way is known to be associated with melanoma, we expect the GO

terms associated with MAP kinase to be statistically significant across

all a, for all selected b values, when compared to the rest of GO terms.

We observed this trend in this plot, thus affirming these MAP kinase-

associated terms retained higher their statistical significance than the

rest of GO terms, and hence we can conclude these are robust against

changes in both a and b. This figure allows us to see how P-values of

a particular term (or a group of terms) changes with respect to other

terms, under a range of possible gene-set selection bias.

3.5 bcGST statistic outperforms non-bias-corrected

P-values as a classifier
While the bcGST grid count statistic has the ability to supplement

non-bias-corrected P-values from a boutique array to recover false

negatives induced by gene-set selection bias on a boutique array; it

Fig. 4. Boxplots of a and b for 11 different cancers, using a simulated boutique

array on the TCGA data. The cancers are ordered by number of DE genes on

the simulated boutique array. We observed high stability for b across differ-

ent cancers (except ovarian cancer) and a is much more heterogeneous with-

in each cancer. This suggests the estimation of a will be difficult both within

and between different cancers. Thus we should expect a grid-based approach

to be more flexible in accommodating its instability and also robust against

disease heterogeneity

Fig. 5. Each panel in the figure holds a b value fixed. a is on the x-axis, and

� log 10 of the P-value is on the y-axis. Each faint black line in the diagram rep-

resents a GO term, with the thick black horizontal line respond to the

� log 10ð0:05Þ threshold. The b grid points were chosen to be equally spaced

over 0.01 (b value for COAD in TCGA simulation) and 0.16 (b value for OV in

TCGA simulation). We note the MAP kinase-associated GO terms held their

statistical significance across all values a for all values of b, a feature which

we consider to be robust against gene-set selection bias
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can also be used as a classifier in itself to determine the significance

of annotation terms. Similar to how receiver operating characteristic

(ROC) curves are constructed, classification can be achieved by set-

ting an appropriate threshold on the counts, with those pathways

exceeding this threshold being judged as significant.

Figure 6 shows the ROC curve for the bcGST statistic and the

FDR-adjusted FET P-values in our simulated boutique array. bcGST

statistic is able to achieve similar true negative rate with a much lower

false negative rate compared to simulation. This ability to reduce false

negatives makes the count statistic strongly competitive against the

conventional FET P-value approach on top of its robustness to bias.

3.6 Application to real boutique array data revealed

meaningful biological results
Focusing on a comparison of BRAF mutants in a real melanoma

NanoString data and the TCGA-SKCM data, we were able to show

the value of our method. First, we can see that in practice, the con-

cordance of P-values on two different platforms is not guaranteed to

be strong as evident in Supplementary Figure S2. This reaffirms the

need for a correction method in the space of pathway enrichment ana-

lysis. Our grid count statistic is able to add extra insights into how

stable the pathway results are. Using the same ab grid of 400 on the

Molecular Signature Database (Subramanian et al., 2005), we showed

that, attaining high bcGST count statistic value for a number of path-

ways is possible despite low significance on either platform. Some of

these pathways include well-known pathways such as the MAPk,

ERK and EGFR pathways, see Supplementary Table S3.

3.7 A Shiny-based application enables interactive visu-

alization of adjusted-GST results for boutique array
The bcGST statistics is dependent on choices of:

• (a, b) grid resolution
• P-value significance threshold and
• number of significant grid points to qualify for robustness against

gene selection bias.

While we believe providing a strict reference manual for these

parameters is unrealistic and prohibitive, we note the following:

1. Both the grid resolution and the P-value significance threshold

do not significantly alter the behaviour of the bcGST statistics,

merely rescale the number of counts. See Supplementary Figures

S6 and S7.

2. The selection of a bcGST statistics threshold is more dynamic

and data-dependent. Through experimentation with the TCGA

data using a grid size of 400, we found most data reaches the

maximum accuracy and the F1 statistics with a bcGST threshold

about 300–350.

These recommendations are data-dependent, thus, we provide a

Shiny application to assist with the exploration of data. Users can up-

load their own boutique array dataset, change and choose parameters

accordingly to visualize the effects on the final pathway analyses. The

application is available at http://shiny.maths.usyd.edu.au/bcGST.

4 Discussion

The widespread use of boutique arrays has improved sensitivity of

gene expression measurements in addition to its relatively lower cost

compared to platforms such as genome-wide RNA-Seq profiling.

These arrays has advantages in both prediction and prognostic as-

sessment for patients. However, researchers should also be aware of

the risk of applying methodologies developed for similarly-purposed

profiling platforms onto boutique arrays without justification and

modification. Here, we evaluated the use of FET, a classical tool in

gene-set enrichment analysis in a boutique array platform and pro-

posed a grid count statistic that adjusts the over-representation

P-value for boutique array GST interpretation.

The bcGST statistic allows us to examine the stability of P-values

for each annotation term over different levels of induced gene-set selec-

tion bias. For each annotation term, each count represents a statistically

significant conclusion, assuming a particular level of gene-set selection

bias in a boutique array experiment. A higher bcGST statistic therefore

implies the statistical significance will be stable across different levels of

bias, and thus the significance is less likely to be driven by the gene-set

selection induced in the construction of the boutique array.

The gene-set selection bias issue is not unique to boutique array

platforms. The main issue in this context is that statistical tools like

the FET are only interpretable with respect to the correct underlying

gene universe. For example, with the mass spectrometry platform in

proteomics studies, where the technology was shown to only capture

up to 84% of the total annotated protein-coding genes in humans

(Kim et al., 2014). The effects of gene-set selection bias on this plat-

form remain to be explored.

The bcGST grid count statistic depends on the number of grid

points and the spacing between the grid points. Due to the heterogen-

eity of a over the interval ½0; 1�, choosing equal spacings is one possible

natural choice. Typically, the values associated with constructing b is

much larger in magnitude, thus we recommend to construct the grid

over a more restricted interval with equal or non-linear spacing. Being

aware of this issue should allow us to take note of more drastic changes

in inference results. Such changes were observed in Figure 5 with com-

paring the b ¼ 0.01 panel, where the slopes of a majority of GO terms

were large relative to three other panels of b.

Fig. 6. Setting the FDR-adjusted, FET P-value with gene universe being the

Stage III melanoma microarray <0.05 as truly significant, we can compare the

performance of classifiers at different threshold points. As smaller P-values

indicate higher level of significance, we used � log 10ðp � valueÞ scale for

comparison against the count statistic. The grid count statistic (blue) clearly

outperformed the FDR-adjusted FET P-value (red curve) at various labelled

threshold points. The two managed a similar level of true negatives with the

former achieving a noticeable reduced false negative rate
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It is well demonstrated in the literature that different normal-

ization methods can yield wildly different and incomparable results

(Dillies et al., 2013; Law et al., 2014). In practice, normalization on a

boutique array has additional analytic challenges due to the small num-

ber of genes. In the interest of generating more comparable results, we

did not perform any additional normalization on the simulated data

after we subset the boutique array genes from the microarray and the

RNA-seq platforms. This enables us to put a greater focus on the effect

of boutique arrays as opposed to the effect of normalization. In prac-

tice, the effect of normalization will be combined with gene-set selec-

tion bias as normalization methods typically utilizes additional

information from non-expressed genes or control probes. This combin-

ation of effects will add extra challenge to adjustment methods.

5 Conclusion

Gene-set selection bias is a significant issue with boutique array

technology. Such bias is expected to affect the downstream analysis

and appropriate adjustment methods are required to derive valid

results. When performing GST on the boutique array data, we pro-

pose a grid-based evaluation technique, bcGST, along with a count

statistic that is robust against the gene-set selection bias, to provide

interpretable visualizations which outperform a conventional

P-value approach. Meaningful biological results were obtained

when applied to real world data. A Shiny application is available to

facilitate interactive visualization of the results.
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