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Abstract

Motivation: The ABACUS (a backbone-based amino acid usage survey) method uses unique statis-

tical energy functions to carry out protein sequence design. Although some of its results have been

experimentally verified, its accuracy remains improvable because several important components

of the method have not been specifically optimized for sequence design or in contexts of other

parts of the method. The computational efficiency also needs to be improved to support interactive

online applications or the consideration of a large number of alternative backbone structures.

Results: We derived a model to measure solvent accessibility with larger mutual information with

residue types than previous models, optimized a set of rotamers which can approximate the side-

chain atomic positions more accurately, and devised an empirical function to treat inter-atomic

packing with parameters fitted to native structures and optimized in consistence with the rotamer

set. Energy calculations have been accelerated by interpolation between pre-determined represen-

tative points in high-dimensional structural feature spaces. Sidechain repacking tests showed that

ABACUS2 can accurately reproduce the conformation of native sidechains. In sequence design

tests, the native residue type recovery rate reached 37.7%, exceeding the value of 32.7% for

ABACUS1. Applying ABACUS2 to designed sequences on three native backbones produced pro-

teins shown to be well-folded by experiments.

Availability and implementation: The ABACUS2 sequence design server can be visited at http://bio

comp.ustc.edu.cn/servers/abacus-design.php.

Contact: chenquan@ustc.edu.cn or hyliu@ustc.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Primary tools for computational protein design include automated

sequence design programs that can identify amino acid sequences

compatible with given polypeptide backbone structures (Alford

et al., 2017; Dahiyat and Mayo, 1997; Gainza et al., 2013;

Huang et al., 2016; Liu and Chen, 2016; O’Connell et al., 2018;

Ollikainen et al., 2013; Simonson et al., 2013; Wang et al., 2018).

The ABACUS (a backbone-based amino acid usage survey) method

is one such tool, sequences designed using ABACUS having been

experimentally verified to fold into expected structures of different

fold types (Xiong et al., 2014, 2017; Zhou et al., 2016). It comprises

a structure-dependent sequence energy function with mainly

statistically-derived terms (Sun and Kim, 2017; Topham et al.,

2016; Wang et al., 2018; Xiong et al., 2014). Because of its distinct

energy function, ABACUS can find solutions located in regions in

the sequence space that are different from those explored by other

protein design programs. For example, in comparison with the well-

known RosettaDesign program (Leaver-Fay et al., 2011), ABACUS
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usually provides alternative design results (sequence identity of

about 30%) for the same target (Xiong et al., 2014).

The ABACUS energy function is composed of single residue

terms, residue pairwise terms and atomic packing terms (Xiong et al.,

2014; Zhou et al., 2016). One important characteristic of the statis-

tical energy terms in ABACUS is that the dependence on different

types of structural features is considered jointly in single terms. More

specifically, the single residue energy associated with a backbone pos-

ition simultaneously and non-additively depends on the local con-

formation (i.e. the Ramachandran angles and the secondary structure

type) as well as the solvent accessibility of that position. Likewise,

the pairwise energy between two coupled backbone positions simul-

taneously depends on the relative geometries between the two posi-

tions as well as on the local structural and environmental features of

the individual positions composing the pair. The actual derivation of

the energies associated with a particular target backbone position or

position pair involves first finding training backbone positions (for

the single residue energy) or position pairs (for the residue pairwise

energy) that are close to the target in the space spanned by the chosen

structural features, and then analyzing the amino acid compositions

at these positions or position pairs. These training backbone position

or position pairs will be called templates.

The above templates can be viewed as small, basic units of pro-

tein structures and sequences, each unit involving only one or two

backbone positions. Each energy term in ABACUS is expected to

represent information contained in such basic units extracted from

proteins of diverse overall sequences and structures. Because of this,

the applicability of the statistically-derived ABACUS model is not

restricted to proteins of particular overall sequence or structure fam-

ilies. When ABACUS is applied to design amino acid sequences, the

only absolutely required input is a target backbone structure (which

does not have to be a naturally existing one), while the computation

process does not refer to any pre-existing target-specific sequence in-

formation, including sequence information from homologous pro-

teins or structurally similar proteins. In these senses, the method is a

de novo one in terms of sequence design under given backbones (Liu

and Chen, 2016).

In the original ABACUS, the templates were identified by search-

ing over the entire training set, which contains millions or more

entries of backbone positions (or position pairs). This needed to be

carried out for every backbone position and every position pair,

which was time consuming, resulting in suboptimal computational

efficiency. It takes hours of a single central processing unit (CPU).

core to construct the single residue and the residue pairwise energy

tables for a single target backbone, the actual computational cost

being dependent on the size and shape of the target. Although such a

computational cost may not be much of a burden for on-site, non-

interactive sequence design tasks targeting a few fixed backbones, it

is expensive enough to hinder remote or online interactive applica-

tions, such as using ABACUS to design or analyze sequences through

a web server. The computational cost also limits the capability of

using ABACUS to treat a large number of alternative backbone

structures. This capability can be very useful in explicit negative

design, in which amino acid sequences can be optimized both to

stabilize a target backbone and to destabilize a potentially large set

of alternative backbones (Davey and Chica, 2014; Davey et al.,

2015). Computational efficiency is even more important if sequence

design is to be combined with backbone design, in which sequence

design may need to be carried out on a large number of candidate

target backbone structures which are generated through structure

sampling and/or optimization (Chu and Liu, 2018; Ollikainen et al.,

2013; Sun and Kim, 2017).

Another drawback of the previous ABACUS is that some of its

components, directly borrowed from earlier studies, have not been

fully optimized for the task of sequence design or in the contexts of

the remaining parts of the method. These include the measurement

of solvent accessibility of backbone positions, for which a pseudo

sidechain model from Marshall and Mayo (2001) has been used, the

rotamer set to represent sidechain conformers, which has been con-

structed by simple discretization of sidechain torsional angles

(Dunbrack and Cohen, 1997; Ota et al., 2001), and the energy func-

tion to describe atomic packing, which has been a simple modifica-

tion of molecular force field terms borrowed from an earlier study

(Pokala and Handel, 2005). Refining these components specifically

for sequence design and within the overall framework of the

ABACUS energy function may improve the accuracy of the sequence

design results.

In the current paper, we report a revision and new implementation

of the ABACUS method, which results in substantial improvement in

both accuracy and speed. To improve accuracy, a new model is

devised to quantify the solvent exposure of backbone positions. It is

shown that after parameter optimization, the computed solvent acces-

sibility indices or SAI (Xiong et al., 2014) contain more information

about amino acid types than other commonly used descriptors of this

structural feature. In addition, a new set of sidechain rotamers based

on atomic positions in a local Cartesian coordinate frame has been

optimized. Compared with torsional-angle-based rotamer sets, the

new rotamer set can approximate the sidechain atomic positions in

native proteins with a much lower root mean square deviation

(RMSD) with a similar number of rotamers. Besides these, a new em-

pirical functional form compatible with the rotamer model is intro-

duced to treat the inter-atomic packing. The parameters in this

function have been fitted to inter-atomic distance distributions

observed in native proteins. Furthermore, aromatic rings are treated

in a special way to reflect their orientation-dependent optimum pack-

ing distances.

To speed up the calculations of the statistical energy tables, the

large sets of training backbone positions and position pairs are rep-

resented by relatively small sets of discrete points in the respective

structural feature spaces. The energy tables associated with these

points are pre-calculated and stored. The energies for actual target

backbone positions or backbone position pairs are obtained via in-

terpolation between the representative points.

The revised ABACUS, which will be noted as ABACUS2, runs

about 10 times faster than the previous version. It is also more ac-

curate, as indicated by the substantially higher recover rates of na-

tive residue types in computational sequence redesign tests. In

addition, experimental evidence is provided to show that proteins

designed using the ABACUS2 for several target structures can form

stable, well-folded structures, just as the proteins designed with the

previous version of ABACUS (referred to as ABACUS1 below).

Because of the reduced computational cost, the ABACUS2 program

can be executed online through a web server.

2 Materials and methods

2.1 The ABACUS2 energy function
2.1.1 The composition of the total energy

We denote an amino acid sequence of length L as SEQaa �
ap; p ¼ 1; 2; 3; . . . ;L
� �

with its associated sequence of sidechain

rotamer states as SEQrotamer � xap
; p ¼ 1; 2; 3; . . . ;L

� �
, in which

p is the index of an amino acid position, ap refers to a specific resi-

due type and xap a specific rotamer state of that type. For a given
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polypeptide backbone structure, which is pre-specified as a complete

set of Cartesian coordinates of all main chain atoms, the total energy

as a function of the rotamer sequence is formally written as

E SEQrotamerjbackbone
� �

¼ E1 SEQaajbackbone
� �

þ E2 SEQaajbackbone
� �

þ Erotamer SEQrotamerjbackbone
� �

þ EpackingðSEQrotamerjbackboneÞ: (1)

In this equation, the terms E1 and Erotamer respectively measure

the dependences of the residue type and of the rotamer state on the

local conformation and solvent exposure of the backbone. They are

defined as sums over the contributions of individual residues or posi-

tions, namely,

E1 SEQaajbackbone
� �

¼
XL

p¼1

e1 apjbackbone
� �

(2)

and

Erotamer SEQrotamerjbackbone
� �

¼
XL

p¼1

erotamerðxapjbackboneÞ: (3)

The term E2 aaseqbackbone
� �

in Equation (1) measures the coupling

between backbone positions, and is defined as the sum over residue

pairs,

E2 SEQaajbackboneð Þ ¼
XL

p¼1

XL

q¼pþ1

e2 ap; aqjbackbone
� �

: (4)

The term Epacking is defined as the (weighted) sum over inter-

residue atom pairs and depends mainly on the inter-atomic

distances,

Epacking SEQrotamerjbackbone
� �

¼X
p;q 2 0;L½ �;

q > p

wpq
packing

X
i2xap

X
j2xaq

epackingði; jjbackboneÞ: (5)

For an illustration of the energy terms in Equations (1–5) in a

structural model, see Figure 1. In the following sections, these en-

ergy terms are described in detail.

2.1.2 The single residue energy term that depends on the

residue type

In ABACUS2, this term measures the residue type preference given

local structural features including the secondary structure (SS) type,

the Ramachandran backbone u and w torsional angles (RAMA) and

the solvent accessibility index (SAI) (Xiong et al., 2014) or formally,

e1 ap ¼ ajbackbone
� �

� e1 ajSSp;RAMAp; SAIp
� �

þ eref ðajSSpÞ (6)

in which SSp, RAMAp and SAIp represent respective structure fea-

tures of position p, which are all computed from the Cartesian coor-

dinates of main chain atoms. The SAI values are calculated based on

a refined pseudo sidechain model in ABACUS2. The SS type-

dependent reference energies eref aSSpð Þ are determined at the final

stage of the energy parameterization to reproduce the residue

type frequencies in different SS types. They will be discussed later.

Here we consider the derivation of the statistical energy e1 ajSSp;
�

RAMAp; SAIpÞ.
In the spirit of statistical energy functions (Miyazawa and

Jernigan, 1985; Sippl, 1995; Zheng and Grigoryan, 2017)

e1 ajSSp;RAMAp; SAIp
� �

¼ �lnPðajSSp;RAMAp; SAIpÞ, in which

PðajSSp;RAMAp; SAIpÞ refers to the probability of observing residue

type a conditioned on a specific combination of the structural fea-

tures. This probability is estimated from a set of training protein

structures by considering the residue type distribution at those train-

ing protein backbone positions whose structural features are similar

to those of the target position p.

In ABACUS1, the search for structurally similar positions in the

training proteins has been carried out separately for every position

in every design target. In ABACUS2, this search and the subsequent

probability estimation have been pre-executed for a set of represen-

tative points in the structural feature space, generating once-and-

for-all a set of pre-determined energy tables specifying the residue

type-dependent energies in different regions of the structural feature

space. When sequence design is carried out for an actual target back-

bone, the energy tables for the actual backbone positions are

obtained by interpolation. More details are given in Supplementary

Material.

2.1.3 The pairwise energy term that depends on the residue type

pairing

This energy term measures the preferences of residue type pairing at

two backbone positions that are sequentially or spatially close to each

other. Unlike in many other statistical energy functions, where similar

terms simply depend on certain inter-residue distances, in ABACUS,

this energy term jointly depends on the local structural features

(including the SS type and the SAI) of the two interacting sites, as well

as on the relative geometries between the two sites. Namely,

e2 ap; aqjbackbone
� �

� e2 ap; aqjSSp; SAIp; SSq; SAIq; SEPpq;RGEOMpq
� �

¼ w2 SEPseqð Þ � ln
Pðap; aqjSSp; SAIp; SSq; SAIq; SEPpq;RGEOMpqÞ

P apjSSp; SAIp
� �

� PðaqjSSq; SAIqÞ
(7)

in which p and q refer to two interacting backbone positions, SEPpq

refers to their sequence separation, and RGEOMpq their relative

Fig. 1. ABACUS energy terms. Two backbone position indices (p and q) and

two sidechain atom indices (i and j) are indicated. The e1 and e2 are functions

of residue types, erotamer is a function of the rotamer state and epacking

depends on sidechain atom positions, which are determined from backbone

positions and rotamer states. During sequence design, the backbone atoms

are fixed, the total energy is optimized with respect to the residue types and

rotamer states
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geometry. The interactions for SEPpq¼1, 2, 3 and 4 (local site pairs)

have been treated separately as to be of different interaction types,

while the interactions for SEPpq>4 (non-local site pairs) have been

jointly considered to be of the same type. The scaling factor

w2 SEPseqð Þ is used to compensate for the double counting of local

interactions between different local site pair terms. Its value is 0.5

for SEPpq�4 and 1.0 for SEPpq>4.

As in the treatment of the single residue energy term, the joint

structural feature space of backbone position pairs has been covered

with representative points. For each point an energy table has been

pre-constructed by retrieving structurally similar position pairs from

the training proteins. During sequence design, the e2 for actual site

pairs in a design target will be calculated using interpolation. More

details are given in Supplementary Material.

2.1.4 The single residue energy term that depends on the

rotamer state

Sidechain conformations and inter-atomic packing are considered

by using discrete rotamer states. The rotamer library used in

ABACUS2 has been specifically refined to improve accuracy (see

below). The backbone-dependent rotamer energy term

erotamerðxap¼xajbackboneÞ � erotamerðxajup;wpÞ for an actual back-

bone site p is obtained by interpolation using the pre-calculated

energies at nearby representative u–w points. More details are given

in Supplementary Material.

2.1.5 The packing energy

The atomic packing energy in Equation (5) epacking i; jjbackboneð Þ �
epacking rijð Þ is determined using an empirical functional form. The

parameters in this form have been derived from training proteins.

This is different from ABACUS1 which uses an adjusted Lennard-

Jones form with molecular mechanics parameters to describe pack-

ing. Based on the analysis of inter-atomic direct contacts as

described in Supplementary Material, Equation (8) has been empir-

ically defined to model the packing energy. It comprises a harmonic

repulsive part and an inverted Gaussian attractive part to describe

packing energies at inter-atomic distances below and above the opti-

mum packing distance, respectively,

epacking rijð Þ ¼
kij �

1

2
kij rij � rij

min
� �2 � epacking

min

� �
if rij < rij

min

�kij � epacking
min � exp � rij�rij

min

dij

� 	2
� �

otherwise

8>>><
>>>:

(8)

in which rij is the actual distance between atoms i and j, and rij
min �

ri
min þ rj

min the corresponding optimum packing distance. The der-

ivation of the atom type-specific half distances ri
min and rj

min is

described in Supplementary Material. The interaction strength

epacking
min depends on the polarity and aromaticity of both atoms i

and j (Supplementary Table S5). The well-depth scaling parameter

kij, the repulsive force constant kij, the well-width parameter dij, as

well as the solvent accessibility-dependent weights wpacking
pq in

Equation (5) are described in Supplementary Material.

2.2 The refined pseudo sidechain model and rotamer

library
2.2.1 Measuring solvent accessibility with a refined pseudo

sidechain model

The structural feature SAI has been used to quantify the solvent ac-

cessibility of individual amino acid positions without specifying the

types and conformations of sidechains. It has been derived using a

pseudo sidechain model (Marshall and Mayo, 2001; Zhang et al.,

2004) in which pseudo sidechains of the same type and the same in-

ternal geometry are ‘installed’ at all backbone sites. In ABACUS2, a

refined pseudo sidechain model has been used to compute SAI, so

that the mutual information between the calculated SAI and the resi-

due type in native proteins is maximized. The mutual information

has been calculated as

MI Ncsað Þ ¼
X20

a¼1

XNcsa

csa¼1

P a; csað Þlog2

P a; csað Þ
P að Þp csað Þ

; (9)

in which a is the residue type, Ncsa
the number of solvent accessible

categories, csa the solvent accessibility category defined based on the

calculated SAI and P a; csað Þ; P að Þ and P csað Þ the respective joint or

marginal probabilities. More details are given in Supplementary

Material. The data in Table 1 show that SAIs computed with the

new model have larger MI with residue type than previous methods.

2.2.2 The refined rotamer library

In ABACUS1, a previously defined rotamer library (Ota et al., 2001)

was used to consider discretely variable dihedral angles with fixed

bond lengths and bond angles for a given sidechain type. In

ABACUS2, a new rotamer library has been defined on the basis of

not the internal coordinates but the Cartesian coordinates of side-

chain atoms in a local coordinate frame determined by the backbone

atom positions. Sidechain conformers in this new library have been

taken from native protein structures. By using a Monte Carlo proto-

col similar to the one used to choose representative backbone pos-

ition pairs, the conformers to include in the library have been

optimally selected so that sidechain conformers in native proteins

can be approximated by rotamers with the smallest overall RMSD.

In addition, the number of rotamers for each residue type has been

chosen to balance accuracy with efficiency.

2.3 Protein structure sets for training and for testing
They are given in Supplementary Material.

Table 1. Mutual information between the amino acid type and the

solvent accessibility category determined by using different meth-

ods to measure the solvent accessibility of backbone positions in

native proteinsa

Method Number of solvent accessibility

categories (Ncsa
)

2 3 4 5 6

Relative SASAb 0.136 0.159 0.170 0.176 0.180

Number of Cb neighborsc 0.103 0.124 0.135 0.139 0.142

Pseudo sidechain, MEAd 0.129 0.151 0.167 0.176 0.181

Pseudo sidechain, PSDe 0.146 0.172 0.189 0.198 0.201

Note: Categorizations are based on dividing the respective measures into

bins of even width. MEA, mean sidechain; PSD, pseudo sidechain.
aA subset of TRN7258 containing 3000 native protein structures has been

used.
bSolvent accessibility is measured with the relative solvent accessible sur-

face areas (SASA) of individual residues in native protein structures with com-

plete sidechains.
cSolvent accessibility is measured with the number of neighboring residues

determined with an inter-Cb distance cutoff of 8 Å.
dThis pseudo sidechain model has been developed by Marshall and Mayo

and used in ABACUS1.
eThis is the final model used in ABACUS2.
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2.4 Sidechain conformation optimization and amino

acid sequence design
2.4.1 Sidechain optimization

Sidechain repacking have been carried out using the Monte Carlo

protocol described in Supplementary Material. The energy function

optimized during sidechain repacking included the same sidechain-

conformation-dependent rotamer energies and atomic packing ener-

gies as those considered in sequence design. One minor point is that

the current ABACUS2 does not support the design of sequences con-

taining disulfide bonds. In sidechain repacking, for cysteine side-

chain pairs forming disulfide bonds, simple harmonic energies

depending on the disulfide bond geometries (bond lengths, bond

angles and torsional angles, see Supplementary Material) have been

added. The sidechain repacking results for proteins in the TRN200

training set have been used to direct the optimization of the parame-

ters in the rotamer and the packing energies [Equation (8) in main

text and Equations (S8–S14) in Supplementary Material]. The ob-

jective has been to achieve the smallest RMSD from the native side-

chain structures. The optimization process has been started with an

initial set of intuitively selected parameters, followed by iterative

manual adjustments of the parameters. In each iteration, a series of

repacking calculations is carried with only one or two parameters

systematically varied around their current values. In the next iter-

ation, these parameters are updated with newer values that led to

smaller RMSD and other parameters are varied systematically.

Around the final set of parameters, extensive trial variations have

been tested and the RMSD could not be further reduced. The opti-

mized parameters have been used in subsequent side repacking tests

and sequence design tests on a different set of test proteins.

2.4.2 Amino acid sequence design

In Figure 2, a flowchart of the Monte Carlo simulated annealing

optimization-based protocol used in ABACUS2 to design amino

acid sequences is given. More details are given in Supplementary

Material. The sequence design results for proteins in the TRN40

training set (Supplementary Table S6) have been used to drive the

optimization of the weightings of the packing term, including the

secondary structure type-dependent reference energies, i.e.

eref ðajSSpÞ in Equation (6), and the parameters in Equation (S14) in

Supplementary Material, according to which the SAI-dependent

packing weights wpacking
pq in Equation (5) are determined. The

parameters determining the packing weights have been optimized

first, with all the reference energies set to zero. The objectives to

minimize are the differences between the designed proteins and the

native ones in their total numbers of atoms in the core, the inter-

mediate and the surface regions, respectively. A grid search in the

space of the four parameters has been carried out to find a set of op-

timum values. Then, all other parameters fixed, the residue type-spe-

cific reference energies have been iteratively adjusted so that all the

training proteins considered together, the native occurrence rates of

different residue types in different types of SS elements can be ap-

proximately reproduced by the redesigned proteins. The resulting

reference energies are given in Supplementary Table S7.

2.5 Preliminary experimental tests of sequences

designed by ABACUS2
Preliminary experimental characterization of proteins designed

using ABACUS2 have been carried out using nuclear magnetic res-

onance 1H-15N heteronuclear single quantum coherence (HSQC)

spectroscopy (Bodenhausen and Ruben, 1980) and circular dichro-

ism (CD) (Adler et al., 1973). Three native backbone structures

taken from PDB, 1ubq, 1r26 and 2qsb, have been considered as tar-

get backbones. Among them, 1ubq and 1r26 are of the aþb fold

class, and 2qsb is a helix bundle (see Supplementary Fig. S6). Details

of the experimental processes are given in the Supplementary

Material.

3 Results and discussions

3.1 Mutual information between computed SAI and

native residue type
In Table 1, the mutual information determined for the PSD pseudo

sidechain model used in ABACUS2 is compared with the pseudo

sidechain model used in ABACUS1, and with two other approaches

from the literature, one considering the number of neighboring resi-

dues determined from Cb positions, and the other considering the

relative solvent accessible surface areas of residues in all-atom pro-

tein structures. Compared with the other methods, the current

method consistently leads to larger mutual information, irrespective

of the choice of the number of solvent accessibility categories.

3.2 Errors of estimating the statistical energies through

interpolation
3.2.1 The single residue energy term

To assess if the chosen set of representative points in the space of the

single site structural features can cover that space with sufficiently

high density and if the errors contained in the energy values esti-

mated by interpolation are acceptably small, the single residue en-

ergy of each backbone position in the test proteins has been

estimated by both the interpolation approach and a direct approach,

in which the actual target position has been directly used as query to

search for structurally similar positions in the training proteins to

obtain an estimation of the single residue energy. The results are

compared in Figure 3. When the energy of an actual backbone pos-

ition is approximated using the pre-calculated energy of the single

closest representative point, the RMS error is only 0.17 (Fig. 3a). If

the interpolation scheme described in Supplementary Material is

used, the RMS error is further reduced to 0.10 (Fig. 3b). The magni-

tudes of these errors are only ca. 1�3% of the overall variable range

of this energy term, which is between 0 and 6.

3.2.2 The residue pairwise energy term

Given the optimized sets of representative backbone site pairs, the

interpolation approach to estimate the residue pairwise energies

introduces only small errors in comparison with the direct estima-

tion approach, in which each actual target position pair is used as

query to retrieve from the training proteins structurally similar

Fig. 2. Flowchart of the sequence design process. The left side shows the pre-

pare phase, while the right side shows sequence optimization via Monte

Carlo simulated annealing
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backbone position pairs to estimate the residue pairwise energies.

In Figure 4, the residue pair energies calculated using the interpol-

ation approach and the direct estimation approach are compared.

When the energy is approximated by the pre-calculated energy of

the single most similar representative position pair, the RMS error is

0.19 (Fig. 4a). If the energy is calculated using the interpolation

scheme in the Supplementary Material, the RMS error is reduced to

0.15 (Fig. 4b). These RMS errors are only 3�4% in comparison

with the variation range of this energy term, which is between

�3 and 2.

3.3 Quality of the rotamer library and the accuracy of

sidechain repacking
3.3.1 Atomic RMSDs of representing sidechain conformations by

rotamers

The quality of different rotamer libraries to represent sidechain

atomic positions has been compared by assigning native sidechain

conformations to their respective closest rotamer states, and deter-

mining the RMSDs between the actual and the rotamer atomic posi-

tions. Compared with the rotamer library used in ABACUS1, the

new library in ABACUS2 can represent sidechain atom positions in

native proteins with much smaller atomic RMSDs using approxi-

mately the same number of rotamers (Table 2), probably because in

the new library, internal coordinate other than the torsional angles,

especially the bond angles have been allowed to vary between the

different rotamer states of the same residue type.

3.3.2 Results of the sidechain repacking tests

The accuracy of sidechain repacking has been measured by the

RMSD of the predicted sidechain atom positions with respect to the

X-ray structure, and by the proportion of residues with correctly

predicted (the predicted values being within 40� of the correspond-

ing actual values) v1 torsional angles or both v1 and v2 angles.

Table 3 shows that ABACUS2 leads to notably reduced overall

RMSD in comparison with ABACUS1, a combined effect of the

refined rotamer library and the new functional forms and parame-

ters for the backbone-dependent rotamer energy and the packing en-

ergy. When compared with other programs, including SCWRL4

Fig. 3. The single residue energies estimated by using representative points

in the structural feature space compared with those estimated by direct

search. (a) Estimations using the single nearest representative points. (b)

Estimations using interpolation between multiple nearest representative

points. Backbone positions are from proteins in the TRN40 set

Fig. 4. The residue pair energies estimated by using representative points in

the structural feature space compared with those estimated by direct search.

(a) Estimations using the single nearest representative points. (b) Estimations

using interpolation between multiple nearest representative points.

Backbone positions are from proteins in the TRN40 set

Table 2. The numbers of rotamers (Nrot) for different residue types

in ABACUS1 and ABACUS2, and the RMSDs of atomic positions

(in Å) after replacing native sidechain conformations with those of

the closest rotamers

Residue type ABACUS1 ABACUS2

Nrot RMSD Nrot RMSD

ALA 1 0.0867 1 0.0458

CYS 9 0.1748 10 0.1324

ASP 24 0.333 20 0.2447

GLU 21 0.576 40 0.3974

PHE 36 0.4318 40 0.2603

GLY 1 0 1 0

HIS 24 0.4247 40 0.2983

ILE 15 0.2675 15 0.2209

LYS 38 0.6287 40 0.5106

LEU 15 0.4804 15 0.2259

MET 19 0.5643 50 0.3472

ASN 36 0.3685 30 0.2681

PRO 6 0.2911 6 0.1

GLN 24 0.6131 50 0.4228

ARG 45 0.8884 60 0.6876

SER 27 0.1507 6 0.1346

THR 27 0.1683 6 0.1434

VAL 9 0.1713 6 0.1357

TRP 72 0.5057 80 0.3323

TYR 72 0.4911 60 0.2702

Overall 521 0.381 576 0.259

Note: The RMSDs have been obtained on protein structures in the

TRN7258 set. The overall results are highlighted in bold.

Table 3. The atomic RMSD (in Å) of repacked sidechains with re-

spect to native sidechains

Method RMSD for regions of different solvent accessibility

Core Intermediate Surface All

ABACUS1 1.017 1.526 1.999 1.633

ABACUS2 0.554 1.148 1.804 1.353

SCWRL4 0.737 1.378 1.858 1.476

Rosetta default 0.850 1.422 1.910 1.531

Rosetta ex1 0.753 1.361 1.883 1.484

Rosetta ex2 0.672 1.338 1.870 1.461

Rosetta ex3 0.654 1.331 1.890 1.467

Rosetta ex4 0.673 1.326 1.891 1.467

Note: Results from different methods are given and the results of

ABACUS2 are highlighted in bold. The RMSDs have been calculated on the

TST40 set of native structures. The rows Rosetta default to Rosetta ex4 cor-

respond to results obtained using rotamer sets of increasing sizes and finer

conformation resolutions.
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(Krivov et al., 2009) and the Rosetta program with different rotamer

sets (Leaver-Fay et al., 2011), ABACUS2 gives the smallest overall

RMSD. Table 3 also includes RMSD results for sidechains in differ-

ent solvent accessibility classes. While the results of all models obey

the trend of showing decreasing accuracy (or increasing RMSD) for

positions with increasing solvent exposure, ABACUS2 seems to give

the smallest RMSD within each solvent accessibility class. Especially

for the core and the intermediate classes, the results of ABACUS2

are notably better.

In Table 4 and Supplementary Tables S8 and S9, the residue type-

specific RMSDs and ratios of residues with correctly predicted

sidechain torsional angles from sidechain repacking carried out with

different models are compared. For most residue types, ABACUS2

gives similar or lower RMSDs as well as higher ratios of correctly pre-

dicted torsional angles than SCWRL4 or Rosetta. The residue types

for which ABACUS2 gives notably better results are the aromatic

ones, including Trp, Phe and Tyr. Controlling calculations (data not

shown) suggested that to a large extent, the improvement could be

attributed to that orientation-dependence have been used to treat

packing involving aromatic rings (see Supplementary Material).

3.4 Complete sequence redesign using ABACUS2
3.4.1 Native residue type recovery rates from the sequence redesign

tests

The native residue type recovery rate refers to the proportion of sites

that were occupied by corresponding native residue types in the

redesigned sequences. We emphasize that throughout the training

and parameterization processes of the ABACUS2 model, protein-

specific or site-specific recovery of the native residue type has not

been considered as a goal to be maximally achieved. Thus this meas-

ure can be considered as an appropriate indicator for the quality of

the method, if we assume that the majority of native sequences

should be sufficiently close to the optimum ones to stabilize the re-

spective native backbones. For each target in the test set of proteins

TST40 (Supplementary Table S6), five sequences have been designed

using each method considering only the native backbone as input

without any sequence restraints, the native recovery rates averaged

over these sequences. In Table 5, the native residue type recovery

rates of ABACUS1, ABACUS2 and RosettaDesign with fixed back-

bone are compared. Supplementary Figure S7 shows that for 32 out

of 40 targets, ABACUS2 achieves increased recovery rates over

ABACUS1. The overall improvement is substantial (from 32.7 to

37.7%, Table 5). The improvements mainly come from the residue

choices at the buried (core) and the partially buried (intermediate)

positions. This is consistent with the results of the sidechain repack-

ing tests, which shows that ABACUS2 can reproduce the sidechain

atomic positions of (partially) buried sidechains with much higher

accuracy than the ABACUS1. For the solvent-exposed (surface)

backbone sites, ABACUS2 still performs slightly better than

ABACUS1, suggesting that while speeding up the computation sig-

nificantly, the interpolation approach to calculate statistical energies

in ABACUS2 does not lead to deterioration of the final design

results. Compared with the RosettaDesign fixed backbone results,

the overall native residue type recovery rate of ABACUS2 is moder-

ately larger (37.7 versus 35.9%) for the given set of test proteins.

The main difference comes from the surface positions, for which

both the ABACUS1 and ABACUS2 models are notably more likely

to choose the respective native residue types than fixed-backbone

RosettaDesign. For the partially exposed positions, only the

ABACUS2 model can outperform fixed-backbone RosettaDesign.

Table 4. The same as Table 3, only that is, results for different residue types are listed separately

ABACUS1 ABACUS2 SCWRL4 Rosetta default Rosetta ex1 Rosetta ex2 Rosetta ex3 Rosetta ex4

CYS 0.712 0.446 0.561 0.542 0.559 0.477 0.619 0.546

ASP 1.323 0.977 1.105 1.155 1.147 1.153 1.144 1.129

GLU 2.071 1.697 1.67 1.724 1.722 1.687 1.716 1.74

PHE 1.22 0.792 0.988 1.127 1.034 1.074 1.042 1.047

HIS 1.995 1.957 1.734 1.936 1.815 1.833 1.858 1.873

ILE 0.711 0.531 0.645 0.698 0.645 0.631 0.62 0.612

LYS 2.174 1.958 1.986 1.971 2.001 1.929 1.993 1.977

LEU 0.905 0.745 0.886 0.861 0.802 0.75 0.753 0.765

MET 1.644 1.207 1.496 1.53 1.477 1.385 1.405 1.415

ASN 1.521 1.321 1.311 1.306 1.283 1.286 1.285 1.261

PRO 0.48 0.315 0.297 0.287 0.286 0.288 0.278 0.281

GLN 1.949 1.701 1.836 1.812 1.738 1.801 1.741 1.789

ARG 2.809 2.445 2.745 2.746 2.694 2.607 2.644 2.627

SER 0.926 0.828 0.9 0.871 0.845 0.849 0.86 0.864

THR 0.656 0.601 0.687 0.653 0.622 0.605 0.605 0.615

VAL 0.601 0.555 0.581 0.669 0.624 0.596 0.598 0.59

TRP 1.975 1.051 1.861 2.151 2.014 2.059 1.92 1.986

TYR 1.492 0.974 1.127 1.43 1.27 1.254 1.264 1.212

Note: The results in ABACUS2 are highlighted in bold.

Table 5. The rates of recovering the native residue type in fixed-

backbone sequence designa

Method Native recovering rate for regions of different

solvent accessibility

Core Intermediate Surface All

ABACUS 1 0.501 0.274 0.263 0.327

Rosetta 0.606 0.323 0.237 0.359

ABACUS2 0.590 0.342 0.274 0.377

aThe results have been obtained on backbone structures contained in the

TST40 set of native proteins.

Note: The results in ABACUS2 are highlighted in bold.
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For the core positions, the ABACUS2 and fixed-backbone

RosettaDesign perform comparably.

3.4.2 Experimental characterization of sequences designed by

ABACUS2

Five of the nine designed proteins (Supplementary Table S10) ex-

press well in Escherichia coli using protocols described in

Supplementary Material. They are all the three designed proteins

using 1ubq as target, the 1r26_1 designed for target 1r26 and the

2qsb_2 designed for target 2qsb. There was no detectable protein

expression for the remaining designed proteins, probably because of

the lack of optimization of the protein expression conditions. The

HSQC spectra of the well-expressed proteins signal well-folded

structures (Fig. 5) (Kwan et al., 2011). Temperature-dependent CD

have been carried out on the aþb type proteins 1ubq_1 and

1r26_1, results shown in Supplementary Figure S8. Similar to other

de novo designed proteins, the CD spectrum does not show much

change with increasing temperature, indicating the high thermo-

stability of secondary structure elements (Adler et al., 1973). The

results in Figure 5 and Supplementary Figure S8 indicate that just as

proteins designed using ABACUS1, the proteins designed by

ABACUS2 for native backbone targets can be well-folded. As it has

already been shown that the experimentally solved structures of pro-

teins designed using ABACUS1 agree well with respective target

structures (Xiong et al., 2014; Zhou et al., 2016) and the accuracy

of ABACUS2 is improved over ABACUS1 according to the native

residue type recovery rate, we do not extend the experimental work

into solving the structures of these designed proteins.

3.5 Increase in speed and a web server
The computational cost of ABACUS2 is reduced by more than 90%

relative to ABACUS1 (see Supplementary Fig. S9). Typical cost of

sequence design applying the current un-optimized code for a pro-

tein of ca. 100 residue is about 10–15 min using a single core of the

CPU of a common personal computer. Future parallelization and

optimization of the code should be able to reduce the wall-clock

time by another one or two order of magnitude.

A web server is provided for the online use of ABACUS2. The user

interface is simple and straightforward. The target backbone structure

is uploaded in PDB format and the results including the sequences,

structures and energy components of the designed proteins are returned

in a downloadable compressed archive file. The amino acid residue

types contained in the input PDB file are ignored in unrestrained se-

quence design, which is the default. Alternatively, the designed sequen-

ces can be restrained by user-specified allowed amino acid residue types

at a list of positions. In addition, as the optimized sequences for differ-

ent free Monte Carlo runs are usually highly similar to each other, we

have implemented options to enforce user-specified restraints on the ex-

tent of sequence divergence between the designed sequences, or be-

tween the designed sequence and the reference sequence provided in the

input PDB data. One can also use the web server as an analytic tool,

namely, to evaluate the sequence energy of a protein structure without

redesigning the sequence. The result is broken into contributions of dif-

ferent interaction types (single position, position pair, rotamer, etc.)

associated with individual backbone positions.

We would like to emphasize to users of the server that the

ABACUS method only addresses the problem of sequence design for

given backbones, one of the essential sub problems of the overall pro-

tein design problem (Liu and Chen, 2016). To apply ABACUS, a pre-

sumably designable target backbone, either taken from an existing

protein structure or artificially constructed using other approaches, is

needed. When ABACUS is applied to existing structures, it has been

found that the designed sequences that fold into expected structures

are likely to have much higher stability than their native counter-

parts: for examples, the denaturing guanidine concentration of the

designed protein Dv_1ubq (PDB ID 2MLB) is around 7M versus 4M

of the corresponding native protein (Xiong et al., 2014); the melting

temperature of the designed protein E_1r26 (PDB ID 2NBS) (Zhou

et al., 2016) is 118�C measured by differential scanning calorimetry

versus the 54�C of the corresponding native protein (HMJ Minjie

Han et al., unpublished data). Thus besides enabling sequence design

for de novo backbones, the program can also be applied to improve

existing functional proteins, for example, by fixing the residue types

at functionally important interfaces while redesigning the rest of the

protein to gain improved stability. It may also be applied to evaluate

sequence-structure compatibility, such as the compatibility between

fragments of functional sequence (for example, an immunogenic

amino acid sequence segment) with a backbone segment embedded

in an overall protein structure.

4 Conclusions

As an automated sequence design method that relies mainly on statis-

tical energy terms, ABACUS complements most other current protein

design programs which employed physics-based interactions as major

components of their energy functions. One unique feature of

ABACUS is that various structural features are considered jointly in

single statistical energy terms. In ABACUS2, this has been realized in

a computationally much more efficient way, which employs pre-

determined representative points in respective high-dimensional

structural feature spaces. A number of components in ABACUS1 has

also been re-optimized. As a result, the accuracy as measured by the

native residue type recovery rate has also been improved from 32.7%

of ABACUS1 to 37.7% of ABACUS2. Interestingly, the ABACUS2

model seems to be able to achieve higher native sequence recovery

rate for surface positions than those mainly-physics-based methods.

The improved computational efficiency of ABACUS2 allows it to be

used in a web server. In addition, it may also be applied to construct

sequence design protocols that consider a large number of alternative

backbone structures, or to predict sequence profiles from structures

for a large structural database.

Funding

This work was supported by the National Natural Science Foundation of

China [U1732156 and 31470717 to Q.C., 21773220 and 31570719 to H.L.];

Fig. 5. 1H-15N-HSQC spectra of designed proteins. (a–c) Spectra of three

sequences designed for the target backbone 1ubq. (d) Spectrum for a se-

quence designed for the target backbone 1r26. (e) Spectrum for a sequence

designed for the target 2qsb

ABACUS 143

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/1/136/5523181 by guest on 19 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz515#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz515#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz515#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz515#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz515#supplementary-data


and Youth Innovation Promotion Association Chinese Academy of Sciences

[2017494 to Q.C.].

Conflict of Interest: none declared.

References

Adler,A.J. et al. (1973) Circular dichroism and optical rotatory dispersion of

proteins and polypeptides. Methods Enzymol., 27, 675–735.

Alford,R.F. et al. (2017) The Rosetta all-atom energy function for macromol-

ecular modeling and design. J. Chem. Theory Comput., 13, 3031–3048.

Bodenhausen,G. and Ruben,D.J. (1980) Natural abundance N-15 NMR by

enhanced heteronuclear spectroscopy. Chem. Phys. Lett., 69, 185–189.

Chu,H. and Liu,H. (2018) TetraBASE: a sidechain-independent statistical en-

ergy for designing realistically packed protein backbones. J. Chem. Inf.

Model., 58, 430–442.

Dahiyat,B.I. and Mayo,S.L. (1997) De novo protein design: fully automated

sequence selection. Science, 278, 82–87.

Davey,J.A. and Chica,R.A. (2014) Improving the accuracy of protein stability

predictions with multistate design using a variety of backbone ensembles.

Proteins, 82, 771–784.

Davey,J.A. et al. (2015) Prediction of stable globular proteins using negative

design with non-native backbone ensembles. Structure, 23, 2011–2021.

Dunbrack,R.L.,Jr and Cohen,F.E. (1997) Bayesian statistical analysis of pro-

tein side-chain rotamer preferences. Protein Sci., 6, 1661–1681.

Gainza,P. et al. (2013) OSPREY: protein design with ensembles, flexibility,

and provable algorithms. Methods Enzymol., 523, 87–107.

Huang,P.S. et al. (2016) The coming of age of de novo protein design. Nature,

537, 320–327.

Krivov,G.G. et al. (2009) Improved prediction of protein side-chain conforma-

tions with SCWRL4. Proteins, 77, 778–795.

Kwan,A.H. et al. (2011) Macromolecular NMR spectroscopy for the non--

spectroscopist. FEBS J., 278, 687–703.

Leaver-Fay,A. et al. (2011) ROSETTA3: an object-oriented software suite for

the simulation and design of macromolecules. Methods Enzymol., 487,

545–574.

Liu,H. and Chen,Q. (2016) Computational protein design for given backbone:

recent progresses in general method-related aspects. Curr. Opin. Struct.

Biol., 39, 89–95.

Marshall,S.A. and Mayo,S.L. (2001) Achieving stability and conformational

specificity in designed proteins via binary patterning. J. Mol. Biol., 305,

619–631.

Miyazawa,S. and Jernigan,R.L. (1985) Estimation of effective interresidue

contact energies from protein crystal-structures—quasi-chemical approxi-

mation. Macromolecules, 18, 534–552.

O’Connell,J. et al. (2018) SPIN2: predicting sequence profiles from protein

structures using deep neural networks. Proteins, 86, 629–633.

Ollikainen,N. et al. (2013) Flexible backbone sampling methods to model and

design protein alternative conformations. Methods Enzymol., 523, 61–85.

Ota,M. et al. (2001) Knowledge-based potential defined for a rotamer library

to design protein sequences. Protein Eng., 14, 557–564.

Pokala,N. and Handel,T.M. (2005) Energy functions for protein design: adjust-

ment with protein–protein complex affinities, models for the unfolded state,

and negative design of solubility and specificity. J. Mol. Biol., 347, 203–227.

Simonson,T. et al. (2013) Computational protein design: the Proteus software

and selected applications. J. Comput. Chem., 34, 2472–2484.

Sippl,M.J. (1995) Knowledge-based potentials for proteins. Curr. Opin.

Struct. Biol., 5, 229–235.

Sun,M.G.F. and Kim,P.M. (2017) Data driven flexible backbone protein de-

sign. PLoS Comput. Biol., 13, e1005722.

Topham,C.M. et al. (2016) An atomistic statistically effective energy

function for computational protein design. J. Chem. Theory Comput., 12,

4146–4168.

Wang,J. et al. (2018) Computational protein design with deep learning neural

networks. Sci. Rep., 8, 6349.

Xiong,P. et al. (2014) Protein design with a comprehensive statistical energy

function and boosted by experimental selection for foldability. Nat.

Commun., 5, 5330.

Xiong,P. et al. (2017) Computational protein design under a given backbone

structure with the ABACUS statistical energy function. Methods Mol. Biol.,

1529, 217–226.

Zhang,N. et al. (2004) Fast accurate evaluation of protein solvent exposure.

Proteins, 57, 565–576.

Zheng,F. and Grigoryan,G. (2017) Sequence statistics of tertiary structural

motifs reflect protein stability. PLoS One, 12, e0178272.

Zhou,X. et al. (2016) Proteins of well-defined structures can be designed with-

out backbone readjustment by a statistical model. J. Struct. Biol., 196,

350–357.

144 P.Xiong et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/1/136/5523181 by guest on 19 April 2024


	l
	l
	l
	btz515-TF1
	btz515-TF2
	btz515-TF3
	btz515-TF4
	btz515-TF5
	btz515-TF6
	l
	l
	btz515-TF7
	btz515-TF8
	l
	btz515-TF10
	btz515-TF9
	btz515-TF11
	l

