
Structural bioinformatics

MaNGA: a novel multi-niche multi-objective

genetic algorithm for QSAR modelling
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Abstract

Summary: Quantitative structure–activity relationship (QSAR) modelling is currently used in mul-

tiple fields to relate structural properties of compounds to their biological activities. This technique

is also used for drug design purposes with the aim of predicting parameters that determine drug

behaviour. To this end, a sophisticated process, involving various analytical steps concatenated in

series, is employed to identify and fine-tune the optimal set of predictors from a large dataset of

molecular descriptors (MDs). The search of the optimal model requires to optimize multiple objec-

tives at the same time, as the aim is to obtain the minimal set of features that maximizes the good-

ness of fit and the applicability domain (AD). Hence, a multi-objective optimization strategy,

improving multiple parameters in parallel, can be applied. Here we propose a new multi-niche

multi-objective genetic algorithm that simultaneously enables stable feature selection as well as

obtaining robust and validated regression models with maximized AD. We benchmarked our

method on two simulated datasets. Moreover, we analyzed an aquatic acute toxicity dataset and

compared the performances of single- and multi-objective fitness functions on different regression

models. Our results show that our multi-objective algorithm is a valid alternative to classical QSAR mod-

elling strategy, for continuous response values, since it automatically finds the model with the best com-

promise between statistical robustness, predictive performance, widest AD, and the smallest number of

MDs.

Availability and implementation: The python implementation of MaNGA is available at https://

github.com/Greco-Lab/MaNGA.

Contact: dario.greco@tuni.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Quantitative structure–activity relationship (QSAR) methods have

been widely applied in different fields such as toxicity prediction and

drug design (Cherkasov et al., 2014). QSAR models link the numerical

description of molecular structures, the molecular descriptors (MDs),

to their known physical–chemical properties and biological activities

(Cherkasov et al., 2014; Todeschini and Consonni, 2009). Despite

continuous methodological developments in the QSAR field, obtain-

ing accurate, reliable and stable models can still be challenging. A

large number of easily computable descriptors, such as topological in-

dices, two-dimensional (2D) and three-dimensional (3D) fingerprints
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are of utmost use to describe chemical structures (Todeschini and

Consonni, 2009; Tropsha, 2010). However, selecting an optimal com-

bination of predictive MDs in QSAR modelling is analytically difficult

(Goodarzi et al., 2012). A comprehensive search of the best subset of

features is computationally expensive, since as many as 2N possible

subsets of features for a dataset with N descriptors can be considered.

Different methods for feature selection have been used in QSAR stud-

ies, such as multi-variate adaptive regression splines and lasso (Eklund

et al., 2012), random forest importance selection (Svetnik et al.,

2003), univariate methods (Liu, 2004), backward elimination and for-

ward selection (Yasri and Hartsough, 2001). Particular attention has

been given to optimization search strategies such genetic algorithms

(Leardi, 2001). QSAR models should ideally contain the smallest set

of MDs with best goodness of fit. Indeed, considering the Topliss and

Costello rule (Topliss, 1972), the number of MDs should be smaller

than 1/5 of the training set compounds. Multi-objective optimization

has, therefore, been applied to identify the smallest set of MDs with

the highest predictive ability. For example, Nicolotti et al. (2002) pro-

posed two multi-objective methods that use genetic programming to

provide an adequate compromise between the number of model

descriptors and accuracy. Soto et al. (2009) developed a two-step fea-

ture selection using a multi-objective genetic algorithm that first per-

forms a preliminary screening of the possible optimal solutions and, in

a second step, enables model refinements. Recently Barycki et al. sug-

gested a multi-objective genetic algorithm as a feature selection strat-

egy for the development of ionic liquids’ quantitative toxicity–toxicity

relationship models, where the same set of features was evaluated

against multiple endpoints (Barycki et al., 2018). Another important

challenge related to the modelling of high-dimensional data is the sta-

bility of the selected features, i.e. how stable the selected features are

with respect to variations in the training set (Kalousis et al., 2007).

Model stability may become of particular concern when the number

of features is much higher than the number of compounds (Fortino

et al., 2014), as it is in QSAR datasets (Goodarzi et al., 2012).

Stability is usually neglected in traditional QSAR applications, where

a single endpoint is predicted. However, considering the role of QSAR

in the context of safe by design, stability becomes important for

obtaining more robust and reproducible models. Thus, stability should

be reported along with the other validation metrics. Moreover, the cri-

teria established by the Organization for Economic Co-operation and

Development (OECD) (OECD, 2014) must be met to ensure the valid-

ity of QSAR models. Along with the criteria addressing the transpar-

ency as well as internal and external statistical validity (Chirico and

Gramatica, 2012; Consonni et al., 2009, 2010; Golbraikh and

Tropsha, 2002; Shi et al., 2001), a QSAR model is only reliable and

valid with a defined applicability domain (AD) (Gramatica, 2007).

The AD is the theoretical extent of the structural and response spaces

in which the model is applicable to make reliable predictions for com-

pounds with no experimental data. In brief, a good QSAR model

should exhibit the best compromise between the number of MDs, pre-

dictive performance and the widest AD. To date, QSAR modelling has

been traditionally carried out by following certain sequential steps: (i)

data preprocessing (preparation of the modelable dataset and training/

test set splitting), (ii) feature selection and modelling based on the opti-

mization of individual parameters considered separately (e.g. R2), (iii)

internal and external validation of the models and (iv) AD definition

(Cherkasov et al., 2014; Gramatica, 2007, 2013; Gramatica et al.,

2013; Roy, 2007; Tropsha, 2010; Tropsha and Golbraikh, 2007). In

general, these steps are followed iteratively until the best model is

identified. Also, each step is usually considered separately, not allow-

ing a holistic evaluation.

In a multi-objective optimization problem, multiple objective

functions are involved. More formally, a multi-objective optimiza-

tion problem can be formulated as follows: min ðf1ðxÞ; f2ðxÞ; . . . ;

fkðxÞÞ; s:t: x 2 X, where k � 2 is the number of objective functions,

while X is the set of feasible decision vectors, that is defined by the

constraint functions (Konak et al., 2006). In many cases, multiple

objectives under consideration conflict with each other, thus, the op-

timization with respect to a single objective can lead to unacceptable

results with respect to the others. A good compromise is to identify

a set of solutions that satisfy the objective at different levels and are

not dominated by other solutions, meaning that they cannot be

improved with respect to any objective without worsening at least

one other objective (Konak et al., 2006). The set of all feasible

non-dominated solutions is called Pareto optimal set, and their

corresponding objective values are called Pareto front. Different

multi-objective optimization approaches have been proposed with

particular emphasis on evolutionary algorithms such as genetic algo-

rithms (Konak et al., 2006). Here, we propose a new multi-objective

strategy based on genetic algorithms that simultaneously enables

stable feature selection as well as robust and validated regression

models with an optimal AD.

2 Materials and methods

2.1 Multi-niches multi-objective genetic algorithm
Single- and multi-objective genetic algorithms were applied for

feature selection in high-dimensional QSAR modelling. A multi-

niche multi-objective genetic algorithm (MaNGA) (Fig. 1), was

Fig. 1. Multi-niches multi-objective genetic algorithm methodology: a multi-

objective multi-niches genetic algorithm that is able to identify smaller and

stable sets of molecular descriptors that better predict activity with an optimal

applicability domain (AD)
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implemented to compare the behaviour of 15 different objective

functions (Table 1) and to select the most stable solutions in terms

of feature robustness. The multi-objective non-dominated sorting

genetic algorithm II (NSGA-II) (Deb et al., 2002) was implemented

in python with the distributed evolutionary algorithms in python

(DEAP) computational framework (Fortin et al., 2012). The pseudo-

code of the MaNGA algorithm is available as Supplementary File

S1. The NSGA-II algorithm was selected since it guarantees less

computational complexity compared to other evolutionary algo-

rithms and uses elitism to prevent the loss of good solutions among

different iterations. In the proposed method, the individual solutions

are binary chromosomes of length equal to the number of MDs in

the dataset. A one (or zero) in the ith position indicates that the ith

feature is (or is not) selected to be in the solution. Niching methods

segment the genetic algorithm population P ¼ f1; . . . ; ng containing

n individuals, into k disjoint sets Ni with i 2 P, called niches, such as

Ai \ Aj ¼1 whenever i 6¼ j. These methods lead to a better cover of

the searching region and of the local optima. MaNGA is imple-

mented with a multi-niche schema with 20 different niches inde-

pendently evolving their own populations by means of crossover

and mutation. The niches interact between them by a genetic oper-

ator called migration that swap the top best 25% element of their

populations, selected with the Pareto strategy. The interaction be-

tween the niches was implemented by using a Queue structure.

Every niche contains a population of 500 individuals, with a muta-

tion rate of 5% evolving for 500 generations. The best parameters

setting was determined prior to running the genetic algorithm by

preliminary analyses.

2.2 Objective functions and evaluation criteria
MaNGA was applied to explore the feature space that optimizes the

fitness functions (Table 1). In particular, the first class of fitness

function called the R2, maximizes the R2, Q2 and Q2
F3

. The second

class of fitness function, defined as MSE minimizes the mean-

squared error in cross-validation on the training set. The third class

of objective function called NFeat is meant to minimize the number

of MDs selected by the GA. The AD objective function aims at

maximizing the AD of the models both on the training and test

set samples. These objective functions were combined to create

15 single- and multi-objective functions in which performances in

the MaNGA method were investigated. For every niche, 20% of the

original dataset was set aside as the test set, and not used in the

model selection phase, but only to externally validate the trained

model. The remaining 80% of the dataset was used to perform fea-

ture selection, train and internally validate the model, by using a

5-fold cross-validation repeated three times (Table 1). In order to

check the stability of the feature selection algorithm, for every niche,

a different training/test sets split was generated. Different regression

models were compared. In particular, linear regression model

(Freedman, 2009), support vector regression (Basak et al., 2007)

and k-nearest neighbours (kNN) for regression (Zhou and Li, 2005)

were implemented. Once the multi-objective optimization and fea-

ture selection step was performed, a pool of pareto-front optimal

solutions were identified as the first output of the MaNGA algo-

rithm. Thus, predictive performances for these models were eval-

uated in terms of the up-to-date criteria for QSAR models.

Independently from the objective function used in the optimization

process, RMSEtr (Aptula et al., 2005), the coefficient of determin-

ation R2
tr, the leave-more-out correlation coefficient Q2

LMO, the

Q2
F1
; Q2

F2
; Q2

F3
and the ADtr were computed, on the training set as

internal validation metrics, for every model. Furthermore, the

RMSEte (Aptula et al., 2005), R2
te, ADte and the concordance correl-

ation coefficient CCCte were computed as external validation met-

rics on the test set. The detailed description of the evaluation metrics

is reported in Table 2.

2.3 Number of features
An objective function minimizing the number of features to be

included in each solution was introduced (Table 1). This objective

function is optimized under the constraint that the MDs in the solu-

tions do not exceed 1
5 of the number of compounds in the training set.

Solutions that do not satisfy this requirement were heavily penalized

during the optimization process by assigning them a high fitness value.

However, the maximum number of MDs in the solutions is a param-

eter of the algorithm that the user can change arbitrarily. Moreover,

in order to easily converge to solutions satisfying the requirement, the

initial binary population in every niche was generated with a probabil-

ity of having value ‘0’ equal to 0.99 and value ‘1’ equal to 0.01.

2.4 Applicability domain
The AD was defined by means of the Williams plot based on stand-

ardized residuals and leverage values. The Williams plot helps iden-

tifying the response outliers as the ones following outside the 3r
range of the normally distributed standardized residuals that covers

Table 1. Objective functions and internal and external evaluation metrics

Original dataset

Training set Test dataset

Objective functions combination for feature selection Internal validation External validation

Min/Max Base function I II III IV V VI VII VIII IX X XI XII XIII XIV XV R2
tr R2

te

" R2 x x x x x x x x >RMSEtr RMSEte

# RMSE x x x x x x x x >ADtr ADte

" AD x x x x x x x x >Q2 CCCte

" Q2 x x x x x x x x >Q2
F1

" Q2
F3 x x x x x x x x >Q2

F2

# NFeat x x x x x x x x >Q2
F3

Note: The 15 single- and multi-objective functions implemented in this work are reported (marked with Roman number) as combination of 6 base functions:

R2, RMSE, AD, Q2, Q2
F3 and NFeat. The x symbol is used to specify which base functions compose the objective functions. Furthermore, the list of internal and

external validation metrics is reported. The threshold for the metrics are the following: ADte ¼ 100, CCCte > 0.85, Q2 > 0:6; Q2
F1 > 0:6; Q2

F2 > 0:6; Q2
F3 > 0:6,

NFeat < 1/5 of the no. of training set samples. Arrows show if the objective functions have to be minimize or maximize.
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99% of the samples. The leverage value (h) measures the distance

from the centroid of the modelled space. A warning leverage,

referred to as the critical hat value ðh�Þ, is set at 3ðpþ 1Þ=n, where

p is the number of variables appearing in the model and n is the

number of samples in the training set. Thus, a compound was con-

sidered influential and identified as a high-leverage compound if

h > h�. In a Williams plot (Gramatica, 2007), the leverage values

were mapped against the standardized residuals to define the struc-

tural and the response spaces visually. Finally, the AD was reported

as the percentile coverage for the training (ADtr) and the test (ADte)

set, respectively. Solutions with ADte less than 100% were heavily

penalized during the optimization process by assigning them a nega-

tive fitness value.

2.5 Selection of the final model
Multi-objective optimization methods, give as a result a set of opti-

mal solutions distributed over the Pareto front represent different

compromises between the best values of the multiple objectives to be

optimized. Indeed, at the end of the iterations, a pool of 200 solu-

tions was obtained by selecting the first 10 ranked solutions from

every niche. However, as per traditional QSAR, a subsequent step

for the models prioritization was carried out. Hence, every solution

was further validated on the test set. Among these solutions, the

unique sets of selected features were identified and ranked based on

their occurrence frequency over the pool of 200. The solutions were

then filtered based on thresholds already established in the litera-

ture: R2
tr > 0:6 (Golbraikh and Tropsha, 2002), R2

te > 0:6

(Golbraikh and Tropsha, 2002), Q2 > 0:5 (Golbraikh and Tropsha,

2002), Q2
F1 (Chirico and Gramatica, 2012; Shi et al., 2001), Q2

F2

and Q2
F3 > 0:6 (Chirico and Gramatica, 2012; Consonni et al.,

2009, 2010; Schüärmann et al., 2008), CCCte > 0.85 (Chirico and

Gramatica, 2012), ADte ¼ 100. Only the solutions that satisfy these

requirements were considered eligible. Finally, the most frequent so-

lution surviving the filtering was selected as the best one.

2.6 Time-complexity analysis
The computational complexity of our method is bounded by the com-

plexity of the NSGA-II algorithm, that is OðkS2Þ (Deb et al., 2002),

where k is the number of objectives to be optimized (from 1 to 5 for

our approach) and S is the population size (500 for our

approach). The time complexity of the fitness functions are reduced

to the time complexity of the regression methods for the evaluation of

the subset of features. Let n be the number of compound in the train-

ing sample, and p the number of MDs, the time complexity for the

multiple linear regression method is Oðp2nþ p3Þ, the time complex-

ity for the kernel support vector regression (SVR) a is Oðn2pþ n3Þ
and the time complexity for the kNN is O(np). Moreover, it has to be

considered that the fitness function is computed in a repeated cross-

validation strategy, with five folds and three repetitions. The compu-

tational complexity of each iteration of our MaNGA algorithm is

given by OðkRS2Þ, where R is the time complexity of the selected re-

gression model. Finally, this has to be multiplied by the number of

iterations (500 in our approach). Even though the method is computa-

tionally intensive compared with other FS methods (Guyon and

Elisseeff, 2003), CPU time is not a crucial issue provided that the algo-

rithm may be executed in a reasonable polynomial time and feature

selection is not aimed to be applied in real time.

2.7 Simulated dataset
In order to test the effectiveness of the proposed method, two simu-

lated datasets with different number of compounds and MDs were

generated, where the association between the MDs and the response

is known. First, the original matrix of descriptors from a subset of

the drugs in the connectivity map database (CMap) (Lamb et al.,

2006) was generated. For each drug, the respective 3D SDF file was

downloaded from PubChem (Kim et al., 2016) and given in input to

the DRAGON v. 7 software (Mauri et al., 2006) to compute 5325

MDs. The constant (>80%) and highly interrelated MDs (pairwise

correlation among all pairs of descriptors [>95%]) were filtered, as

suggested (Gramatica et al., 2013). Next, a population of true coef-

ficients with only 10 relevant extracted from a normal distribution

with mean 10 and standard deviation 2 were chosen, while the other

non-relevant was set to zero. The relevant values were selected in

order to obtain a full AD with all the drugs inside the AD range.

Furthermore, the error term � was defined as an independent ran-

dom normal vector, with mean 0 and standard deviation of 0.1. The

intercept value was set as b0 ¼ 0:3, and the response variable y as

y ¼ b0þXþ � was computed. Finally, the MDs correlated with the

10 relevant ones or correlated with the response y were removed.

The thresholds used for the correlation filtering were �0.2 and 0.2.

The first simulated dataset (called SimD1
) contains 77 drugs and 55

MDs. The second simulated dataset (called SimD2
) consists of 518

Table 2. Evaluation metrics formulas and their accepted thresholds

Metric Min/max Threshold References

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðyi � ŷi Þ2
q

Min Aptula et al. (2005)

R2 ¼ 1�
Pn

i¼1
ðyi�ŷi Þ2Pn

i¼1
ðyi��yi Þ2

Max R2 > 0:6 Golbraikh and Tropsha (2002)

Q2 ¼ 1�
Pn

i¼1
ðyi�ŷi Þ2Pn

i¼1
ðyi��yi Þ2

Max Q2 > 0:5 Golbraikh and Tropsha (2002)

Q2
F1
¼ 1�

Pntest

i¼1
ðyi�ŷi Þ2Pntest

i¼1
ðyi� �ytrx Þ2

Max Q2
F1
> 0:6 Chirico and Gramatica (2012), Shi et al. (2001)

Q2
F2
¼ 1�

Pntest

i¼1
ðyi�ŷi Þ2Pntest

i¼1
ðyi� �ytest Þ2

Max Q2
F2
> 0:6 Chirico and Gramatica (2012), Schüürmann et al. (2008)

Q2
F3
¼ 1�

Pntest

i¼1
ðyi�ŷi Þ2

� �
=ntestPntr

i¼1
ðyi� �ytr Þ2

� �
=ntr

Max Q2
F3
> 0:6 Chirico and Gramatica (2012), Consonni et al. (2009, 2010)

CCC ¼ 2
Pntest

i¼1 ðyi � �yÞðŷi � �̂yÞPntestðyi��yÞ2
i¼1 þ

Pntestðŷi��̂yÞ2
i¼1 þ ntestð�y��̂yÞ2

Max CCC > 0.85 Chirico and Gramatica (2012)

Note: Q2, Q2
F1
; Q2

F2
and Q2

F3
are computed with cross-validation strategies.
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drugs and 115 MDs. Details on the simulated dataset are shown in

Table 3. The two simulated datasets are available as Supplementary

Files S2 and S3.

2.8 Fathead minnow acute toxicity dataset
A dataset was retrieved from the literature (He and Jurs, 2005) con-

taining measured acute toxicity as 96-h pLC50 (in mmol/l unit) of

288 compounds to Pimephales promelas (fathead minnow). The

3D.SDF files were downloaded from PubChem (Kim et al., 2016)

and used as input in the software DRAGON v.7 (Mauri et al., 2006)

to obtain 5325 MDs. Unsupervised feature reduction was applied to

filter the constant (>80%) and highly intercorrelated descriptors

(pairwise correlation among all pairs of descriptors >95%) prior to

training/test set splitting, and variable selection (Gramatica et al.,

2013). After the preprocessing, 954 MDs were considered for fur-

ther analysis. The list of compounds used in this study is available in

Supplementary File S4.

3 Results and discussion

Here, we compared the performances of single- and multi-objective

functions (Table 1), using linear and non-linear regressions, for

QSAR modelling. We investigated the performance of our novel

algorithm, MaNGA, on two simulated datasets. Furthermore, we

present a case study on a fathead minnow acute toxicity dataset

(hereafter referred to as log-mmol-acqua) (He and Jurs, 2005).

3.1 MaNGA algorithm selects relevant features in

simulated datasets
In order to show the effectiveness of our proposed methodology, we

tested the performances of the MaNGA algorithm on two simulated

datasets with known optimal set of features. We compared different

objective functions (comprising R2, RMSE, NFeat, AD and

R2-RMSE-NFeat-AD) in combination with three regression models

(linear, SVR and kNN). MaNGA was run with the following param-

eters: 500 individuals, 50 number of iterations, 5 niches. We selected

the first 10 best solutions for every niche for a total of 50 solutions

and investigated the set of features identified by the algorithm along

with the internal and external validation metrics and the AD value.

Our results proved that the MaNGA algorithm correctly preferred

the selection of features belonging to the optimal solution, in both

datasets (Supplementary Files S5 and S6).

When using the linear regression, the number of optimal MDs in

the solutions is higher than the MDs in the solutions coming from

SVM and kNN regressors (Tables 4 and 5). Moreover, the optimal

solutions are not selected when solely minimizing the number of

Table 3. Simulated datasets

Dataset No. of comp. MDs

SimD1
77 55

YD1
¼ 0.3 þ 7.33 MD8 þ 11.65 MD11 þ 12.47 MD29 þ 0.05 MD30 þ 11.51 MD31 þ 12.65 MD33 þ 9.6 MD35 þ 9.12 MD36 þ 12.58 MD44 þ

8.05S MD55 þ �
SimD2

518 115

YD2
¼ 0.3 þ 10.09 MD10 � 9.50 MD15 þ 8.72 MD17 þ 9.79 MD22 þ 12.70 MD25. þ 7.75 MD26 þ 14.01 MD27 þ 8.32 MD55 þ 12.95 MD64

þ 8.62 MD65 þ �

Note: The number of compounds and MDs and the generative models for the two synthetic datasets.

Table 4. Selected features, internal and external validation metrics and frequencies for the solutions of MaNGA run on the SimD1
dataset

ObjFun Reg NF RMSEtr RMSEte ADtr ADte R2
tr R2

te Q2 Q2
F1

Q2
F2

Q2
F3

CCCte Freq.

R2 LR 4/10 0.09 0.12 98.55 100 0.96 0.94 0.94 0.97 0.97 0.97 0.96 10.20

RMSE LR 4/10 0.07 0.54 95.65 87.5 0.97 92.32 0.95 9.95 0.95 0.95 0.06 30.00

AD LR 1/4 0.44 0.44 98.55 100 0.06 �0.04 �0.07 0.77 0.77 �0.74 0.03 26.19

NFeat LR 0/3 0.44 0.52 97.10 100 0.09 0.10 �13.36 �12.63 �12.67 �11.93 0.12 34.00

R2-RMSE-AD-NFeat LR 2/3 0.14 0.18 100 100 0.90 0.84 0.88 0.90 0.90 0.90 0.92 26.19

R2-RMSE-AD-NFeat SVM 3/3 0.06 0.11 98.55 100 0.98 0.98 0.95 0.97 0.97 0.96 0.96 24.00

R2-RMSE-AD-NFeat kNN 3/3 0.06 0.10 98.55 100 0.99 0.99 0.97 0.97 0.97 0.97 0.97 31.03

Note: MDs column show the MDs selected by the MaNGA algorithm. The best solutions are those with: (i) RMSEtr and RMSEte values as close as possible to

zero; (ii) ADtr and ADte as close as possible to 100; (iii) R2
tr, Q2, Q2

F1; Q2
F2; Q2

F3 and CCCte as close as possible to 1.

Table 5. Selected features, internal and external validation metrics and frequencies for the solutions of MaNGA run on the SimD2 dataset

ObjFun Reg NF RMSEtr RMSEte ADtr ADte R2
tr R2

te Q2 Q2
F1

Q2
F2

Q2
F3

CCCte Freq.

R2 LR 2/5 0.07 0.06 97.85 94.23 0.90 0.92 0.89 0.91 0.91 0.91 0.94 11.63

RMSE LR 6/14 0.03 0.03 97.42 98.08 0.98 0.98 0.98 0.99 0.99 0.99 0.99 40.00

AD LR 1/13 0.17 0.17 100 100 0.37 0.35 0.33 0.91 0.91 0.92 0.52 59.38

NFeat LR 0/3 0.21 0.22 97.00 100 0.02 0.05 0.01 0.87 0.87 0.86 0.04 32.00

R2-RMSE-AD-NFeat LR 2/7 0.06 0.07 99.14 100 0.91 0.89 0.91 0.97 0.97 0.97 0.95 100

R2-RMSE-AD-NFeat SVM 2/3 0.05 0.05 99.79 100 0.95 0.95 0.94 0.88 0.88 0.87 0.97 50.00

R2-RMSE-AD-NFeat kNN 2/3 0.03 0.04 98.50 100 0.98 0.96 0.95 0.95 0.95 0.96 0.97 33.33

Note: MDs column show the MDs selected by the MaNGA algorithm. The best solutions are those with: (i) RMSEtr and RMSEte values as close as possible to

zero; (ii) ADtr and ADte as close as possible to 100; (iii) R2
tr, Q2, Q2

F1; Q2
F2; Q2

F3 and CCCte as close as possible to 1.
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features. On the other hand, when performing the multi-objective

optimization with both SVM and kNN regression, the best minimal

set of features is included both in the solutions of the SimD1
(all the

features) and SimD2
dataset (two out of three), respectively. With

regards to the evaluation metrics, good predictive abilities were

obtained by the models resulting from the optimization of the R2,

MSE and multi-objective, while low predictive capacity is achieved

by the models obtained by maximizing only the AD or minimizing

the number of MDs.

3.2 Multi-objective functions provide the best com-

promise between number of MDs, widest AD and good-

ness of fit
We applied the MaNGA algorithm to a fathead minnow acute tox-

icity dataset (He and Jurs, 2005) by using different single- and

multi-objective functions, and three regression models. The AD and

NFeat objective functions did not produce models that met all the

validation requirements, indeed R2
tr; R2

te and Q2 were lower than 0.6

and CCCte was lower than 0.85 (Table 6). On the other hand, the

models obtained by optimizing the R2, RMSE and R2-RMSE-AD-

NFeat functions fulfilled all the validation criteria. Moreover, the

number of features selected by the multi-objective function was

lower than the one selected by the single-objective ones (Table 6).

Furthermore, the AD coverages of the multi-objective function were

slightly higher than those obtained with the single-objective ones

(Table 6). This was particularly clear when investigating the scatter-

plot of the observed versus predicted values and the Williams plot

(Fig. 2). Indeed, when MaNGA was run by only optimizing the AD

values, none of the training or test set samples fell outside the AD

(Fig. 2B), but the predictive performances of the model were quite

low, with poor concordance between the predicted and experimen-

tal data (Fig. 2A). Thus, the model did not fulfill the criteria regard-

ing the goodness of fit and the internal and external validation

requirements (R2
tr < 0:45 for LR and SVR models, R2

te and Q2 <

0:45 and CCCte < 0.85 for LR, SVR and kNN models). When the

optimization was carried out in terms of the number of selected

MDs, the model contained only three features (Table 6), but there

was no high concordance between the predicted and experimental

data (Fig. 2C), and AD was not satisfactory (Fig. 2D). Moreover,

this model did not fulfil the criteria regarding the goodness of fit and

the internal and external validation requirements (R2
tr < 0:6 for LR

and SVR models and R2
te and Q2 < 0:6 for LR, SVR and kNN

models, Table 6). On the other hand, when the optimization was

performed by minimizing the MSE or maximizing the R2, the predic-

tion capability of the model was better. Indeed Figure 2E and G

A

B

C

D

E

F

G

H

Fig. 2. Comparison of the results obtained from the linear regression model with single-objective functions. The observed versus predicted log-mmol-acqua val-

ues (A) and the Williams plot representing the AD (B) of the linear model maximizing the AD. The observed versus predicted log-mmol-acqua values (C) and the

Williams plot representing the AD (D) of the linear model minimizing the NFeat. The observed versus predicted log-mmol-acqua values (E) and the Williams plot

representing the AD (F) of the linear model minimizing the MSE. The observed versus predicted log-mmol-acqua values (G) and the Williams plot representing

the AD (H) of the linear model maximizing the R2

Table 6. Multi-objective results for different training/test splits for each niche

ObjFun Reg NF RMSEtr RMSEte ADtr ADte R2
tr R2

te Q2 Q2
F1

Q2
F2

Q2
F3

CCCte Freq.

R2 LR 13 0.59 0.53 94.98 100 0.78 0.85 0.75 0.68 0.68 0.7 0.85 13.64

RMSE LR 15 0.53 0.63 94.21 100 0.82 0.74 0.79 0.61 0.61 0.6 0.88 33.33

AD LR 6 1.00 0.91 100 100 0.42 0.48 0.38 0.74 0.73 0.76 0.56 33.33

NFeat LR 3 0.93 0.83 97.30 100 0.49 0.59 0.46 0.74 0.74 0.73 0.63 28.38

R2-RMSE-AD-NFeat LR 5 0.62 0.63 95.75 100 0.78 0.83 0.76 0.88 0.88 0.86 0.86 12.82

R2-RMSE-AD-NFeat SVM 14 0.36 0.45 97.30 100 0.92 0.91 0.83 0.91 0.91 0.92 0.89 20.93

R2-RMSE-AD-NFeat kNN 10 0.39 0.44 96.91 100 0.91 0.89 0.81 0.86 0.86 0.88 0.88 22.22

Note: The table reports the results for the dataset log-mmol-acqua, for each objective function and for each regression model. Optimal solutions have R2 close

to 1, FReq close to 100, RMSE close to 0, NF as small as possible and AD close to 100. Validation criteria fulfilled are in bold. The best solutions are those with:

(i) RMSEtr and RMSEte values as close as possible to zero; (ii) ADtr and ADte as close as possible to 100; (iii) R2
tr, Q2, Q2

F1; Q2
F2; Q2

F3 and CCCte as close as pos-

sible to 1.
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shows a good concordance between the predicted and experimental

data (R2
tr > 0:6), the solutions satisfied all the requested parameter

of internal and external validation, but the AD values decreased to

94.21% on the training set when optimizing for the MSE (Fig. 2F,

Table 6) and to 94.96% on the training set when optimizing for the

R2 (Fig. 2H, Table 6). Moreover, the number of MDs in the models

increased to 15 and 13 for MSE and R2, respectively (Table 6). The

multi-objective optimization strategy allowed to meet as many

requirements as possible with the same solution, particularly, when

the optimization was performed by minimizing the number of fea-

tures and the RMSE while maximizing the R2 and AD (Fig. 3).

Moreover, using a non-linear model such as kNN (Fig. 3C and D)

or SVR (Fig. 3E and F) significantly improved the goodness of fit of

the model compared to the linear regression (Fig. 3A and B). The

selected models are available in Supplementary File S7. The pre-

dicted values for the multi-objective function R2-AD-RMSE-NFeat

for the linear, SVR and kNN models are reported in Supplementary

Files S8–S10.

3.3 Analysis of selected descriptors
Next, we analyzed the MDs selected by the MaNGA algorithm on

the fathead minnow acute toxicity dataset by their occurrence fre-

quency across the generated models. The most frequently selected

MD was BLTD48. BLTD48 is the Verhaar Daphnia (48-h) base-line

toxicity from MLOGP (mmol/l), a molecular property negatively

relating to the Moriguchi hydrophobicity (BLTD48 ¼ �0:95�
MLOGP� 1:32) (Moriguchi et al., 1992; Verhaar et al., 1992).

BLTD48 showed a negative coefficient in the two linear regression

models obtained with the MSE and R2 objective functions. The in-

verse relationship between the BLTD48 and MLOGP ultimately

suggests that increasing hydrophobicity accounts for increasing

toxicity. The second most frequently selected MD is another hydro-

phobicity term, the squared Ghose-Crippen octanol–water partition

coefficient, ALOGP2 (Ghose et al., 1998). ALOGP2 showed a

positive coefficient in the linear regression model when optimizing

for the RMSE, thus, explaining increasing aquatic toxicity. Different

octanol–water partition coefficients calculated based on different

approaches, such as atomic contribution in the case of ALOGP and

property-based methods in the case of MLOGP, have been reported

elsewhere (Martin et al., 2015). Other MDs selected by more than

one model are the Mor12s, nN, P_VSA_logP_3 and Ui. Mor12s is

the signal-12 3D-MoRSE descriptor weighted by the intrinsic state

(I-state). The I-state of an atom is the possible partitioning of the in-

fluence of non-r electrons throughout the r bonds within a molecule

starting from the atom in consideration (Todeschini and Consonni,

2009). Hence, the less partitioning of the electron influence can be

attributed to that the valence electrons are more prone to intermo-

lecular interactions, which possibly result in toxicity. nN is a consti-

tutional index counting the number of nitrogen atoms in a molecule

also reported to be correlated to fathead minnow acute toxicity

(Papa et al., 2005). P_VSA_logP_3 (P_VSA-like on LogP, bin 3) is a

MD defined as the amount of van der Waals surface area (VSA) hav-

ing a property in a certain range and is related to hydrophobicity

(Labute, 2000). Finally, Ui is another molecular property descriptor

representing the unsaturation index. The complete list of descriptors

selected by MaNGA is available in Supplementary File S11.

3.4 Comparison with previous models
We compared our models for fathead minnow acute toxicity, with

previously independent models coming from the literature

(Supplementary File S12). Different regression models were applied,

such as linear regression, PLS, neural networks and kNN. The mod-

els were not evaluated by an exhaustive set of metrics, thus we com-

pared our results based only on those available. All the models,

except one, were internally evaluated by using the R2
tr. The most

used metric for the evaluation of the external predictive performance

was the R2
te. Only the model described in Cassotti et al. (2015) was

identified by using the same MDs used in this study, and evaluated

A

B

C

D

E

F

Fig. 3. Comparison of the results obtained with multi-objective functions that maximize the R2, and AD while minimizing the number of features and MSE. The

observed versus predicted log-mmol-acqua values (A) and the Williams plot representing the AD (B) of the linear model. The observed versus predicted log-

mmol-acqua values (C) and the Williams plot representing the AD (D) of kNN model. The observed versus predicted log-mmol-acqua values (E) and the Williams

plot representing the AD (F) of the linear model minimizing the MSE. The observed versus predicted log-mmol-acqua values (G) and the Williams plot represent-

ing the AD (H) of the SVR model
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also in terms of Q2, RMSE and AD, thus we choose this model for

comparison. The model was obtained with a combination of genetic

algorithm and kNN regression model. It contains six MDs, and de-

pending on the different thresholds that were set to compute the

AD, it reached R2
tr 2 ½0:62� 0:73�; RMSEtr 2 ½0:65� 0:87�; Q2 2

½0:61� 0:79�; R2
te 2 ½0:61� 0:77� and RMSEte 2 ½0:68� 0:88�. Our

models obtained by using the R2 � RMSE� AD�NFeat multi-

objective function (Table 6) reached better performances on all the

metrics even though the models obtained by using the kNN and

SVR regression models use a higher number of MDs, while the

model obtained by using the linear regression method uses only five

MDs. Furthermore, the AD values or our models (95–97%) are

higher than those reported for the previous model (60–80%)

(Cassotti et al., 2015).

4 Conclusions

In this work, we presented MaNGA, a new multi-niche multi-

objective genetic algorithm for feature selection in QSAR studies.

We performed extensive analyses on two simulated datasets and

showed that MaNGA correctly identifies sets of optimal features.

Furthermore, we applied MaNGA to a real dataset to compare dif-

ferent single- and multi-objective functions as well as linear and

non-linear regression models. Our results suggest that multi-

objective functions outperform the single-objective ones, since they

allow to obtain the smallest possible set of features, with the widest

possible AD and the best possible goodness of fit with a single run of

the MaNGA algorithm. We also provide facilities to monitor the

stability of the selected features thus helping the evaluation of the

proposed models. Finally, we want to highlight that the MaNGA

methodology was developed for QSAR modelling with continuous

response variables. However, a similar strategy can be applied to

classification problems where the response variable is discrete.
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