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Abstract

Motivation: In bioinformatics, genome-wide experiments look for important biological differences

between two groups at a large number of locations in the genome. Often, the final analysis focuses

on a P-value-based ranking of locations which might then be investigated further in follow-up

experiments. However, this strategy may result in small effect sizes, with low P-values, being

ranked more favorably than larger more scientifically important effects. Bayesian ranking techni-

ques may offer a solution to this problem provided a good prior distribution for the collective distri-

bution of effect sizes is available.

Results: We develop an Empirical Bayes ranking algorithm, using the marginal distribution of the

data over all locations to estimate an appropriate prior. In simulations and analysis using real data-

sets, we demonstrate favorable performance compared to ordering P-values and a number of other

competing ranking methods. The algorithm is computationally efficient and can be used to rank

the entirety of genomic locations or to rank a subset of locations, pre-selected via traditional FWER/

FDR methods in a 2-stage analysis.

Availability and implementation: An R-package, EBrank, implementing the ranking algorithm is

available on CRAN.

Contact: john.ferguson@nuigalway.ie

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Traditional statistical hypothesis testing was developed based on the

ideas of P-values and levels of significance and is still in wide-spread

use today, despite well-known caveats regarding its usage (Amrhein

et al., 2019; Nickerson, 2000). A recent example is the statistical

analysis of large genomic datasets, where perhaps hundreds of thou-

sands of genetic locations are simultaneously tested for systematic

differences between two groups. Different tests need to be used de-

pending on the experimental technology that is being used, and a

surprising degree of statistical ingenuity has been spent developing

appropriate test statistics and P-values. Whereas significance testing

should do reasonably well at identifying locations where real (al-

though potentially small) biological differences exist, there is no

guarantee that small P-values correspond to scientifically interesting

differences. Nevertheless, P-values are frequently used as a ranking

criterion to produce lists of the most interesting tests/locations to

follow up.

As an example, consider Genome-Wide Association Studies

(GWAS). These are large scale observational studies where a set of

single nucleotide polymorphisms (SNPs) are genotyped for a group

of control individuals, and typically a group of individuals with

some disease (although continuous traits such as height and body

mass index have also been investigated). The genotype for a given

individual at a given SNP can be coded as 0, 1 or 2 depending on the

number of copies of the variant allele at that locus for the individual.

The associative effect of each SNP on disease risk is measured using

the population log-odds ratio (OR) between SNP genotype and dis-

ease status. While we would ideally want any list of ‘significant’

SNPs to concentrate on the largest population ORs, the variant al-

lele for some SNPs will be rare, meaning that most individuals have
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genotype 0, and relatively few have genotypes 1 and 2. As a result,

there is low power to detect a disease/control difference in the geno-

types at these rare SNPs. For example, suppose that SNP A has a dis-

ease/control OR of 1.1 and a minor allele frequency (MAF) in

controls of 0.4, whereas SNP B has an OR of 1.5 but the MAF

(again in controls) is only 0.01. Assuming the disease is rare; this

implies that having the variant allele for SNP A is associated with a

10% increase in the probability of disease, with a more important

looking increase of 50% for SNP B. However, in practice the re-

spective P-values corresponding to these two SNPs may not reflect

this information. Indeed, calculations show that the rare SNP with

the higher OR will have the lower P-value for a sample of 1000

cases and 1000 controls only 48% of the time, assuming independ-

ence of the genotypes at the two SNPs (this independence assump-

tion is referred to as ‘linkage equilibrium’ in the genetics literature).

Bayesian ranking methods provide an alternative approach to

constructing lists of interesting hypotheses, or in the cases consid-

ered here DNA locations, which de-emphasizes the influence of

varying experimental standard errors in comparison with a P-value

based ranking. Our work here is motivated by a number of previous

authors as far back as 1989, where Laird and Louis (1989) used

Empirical Bayes ranking techniques to assess relative educational

effectiveness of a number of secondary schools. In this manuscript,

we develop a general Bayesian ranking method that is applicable to

a wide range of genomic datasets. Our method is related to the

recent papers demonstrating the use of Bayesian ranking for differ-

ential expression in microarrays (Noma et al., 2010; Noma and

Matsui, 2013); however, we use a differing Bayesian model, and

demonstrate the use of Bayesian ranking in a wider set of scenarios

including determining differential expression from RNA-Sequence

data and identifying disease associations in GWAS. Simulations and

real-data analysis are used to compare the properties of our method

against multiple competing approaches. To facilitate the use of our

method, we have developed an R-package, EBrank, implementing

these methods which is downloadable from the CRAN repository.

The rest of the paper is organized as follows. In Section 2, we discuss

ranking problems from a general point of view, including a discussion

of appropriate loss functions and Bayesian techniques to produce loss-

minimizing rankings. In Section 3, we describe a novel non-parametric

Empirical Bayes ranking algorithm that is particularly suited to exam-

ples from bioinformatics. In Section 4, we examine the performance of

the algorithm using a series of simulated and real-data examples, and

compare to other approaches for ranking effect sizes. To conclude, we

discuss potential limitations of our methodology, when we would ex-

pect it to work well, and suggest some potential extensions.

2 Background

As alluded to in the previous section, using P-values to rank experi-

ments in massive parallel testing situations may give unsatisfactory

results. P-values and Bayesian ranking techniques typically optimize

different criteria, with the criterion corresponding to P-values not as

suited for ranking. To make these criteria and distinctions between

them more tangible, it is helpful to begin with a brief discussion of

loss functions that can be used for ranking problems. We conclude

the section with a description of how Bayesian ranking methods are

applied in practice, given the choice of such a loss function.

2.1 Loss functions
Suppose we observe N random variables for which the probability

distribution for the ith variable depends on an unknown real-valued

parameter hi, for i � N. Assume that large values of jhij correspond

to effects of scientific interest, whereas values hi ¼ 0 indicate no

effect. As a result, we can imagine a ‘true’ ranking of the distribu-

tions, which is any ranking consistent with decreasing values of jhij.
In other words, assuming no ties among fh1; . . . ; hN}, the true rank

vector, R ¼ ðR1; . . . ;RNÞ, is defined aS

Ri ¼ Riðh1; . . . ; hNÞ ¼
X
j�N

Ifjhjj � jhijg (1)

for i � N, with I(A) representing the indicator function for the event

A. The goal of a ranking procedure is to produce a vector of esti-

mated ranks, R̂ ¼ ðR̂1; . . . ; R̂NÞ, which is as ‘close’ as possible to the

true ranking. The chosen metric that compares how close R̂ and R

lie corresponds to a loss function. A variety of possibilities exist for

the chosen loss function (Critchlow, 2012), the appropriateness of

each depending on the scientific task at hand. For instance, in a

GWAS N can be extremely large, and most of the associated jhij
may be either 0 or minute and uninteresting. Correctly estimating

the ranks for the largest jhij is obviously of much greater importance

than the ranks corresponding to small jhij: As a more concrete ex-

ample, perhaps the investigator is only interested in producing a list

of the K largest jhij. A loss function that might be minimized to

achieve this goal is:

LOððh1; . . . ; hNÞ; R̂Þ ¼
100

K

X
i�N

IðRi > N � K; R̂i � N � KÞ (2)

with the subscript ‘O’ indicating the goal of maximizing the overlap

between the K most highly ranked parameters (by the method) and

the K truly largest parameters. Here the optimal ranking will change

depending on the value of K. This loss function (and generalizations

that also focus on mis-classifications regarding top parameter

sets) were introduced in Lin et al. (2006). ‘R-values’ are a related

approach to maximize overlap between reported and true top param-

eter lists, but instead only produce a single ranking and so might be

used instead when the rankings of all ðh1; . . . ; hN) are equally

important, or alternatively when a single percentile, represented by K,

is hard to define. In a sense, ranking according to r-values optimizes a

modified version of (2) over all K, see Henderson and Newton (2016)

for more details. Another approach that focuses on the entire param-

eter vector is to use an Lp rank-loss such as the following:

Lpððh1; . . . ; hNÞ; R̂Þ ¼
1

N

X
i�N

jRiðh1; ::; hNÞ � R̂ijp; (3)

the most analytically tractable cases being represented by P ¼ 1 (this

loss is also known as Spearman’s footrule) and with P ¼ 2, for rank

square error loss. In practice, due to the additive form of the loss func-

tion, it is likely that optimizing Lp type losses will give good results

even when only the top K parameters are of interest. Newton and

Henderson mention that in numerical experiments the results from

applying r-values is quite similar to ranking by posterior expected

ranks, which optimizes (3) when p ¼ 2. More recently, Jewett et al.

(2018) suggested a number of novel loss functions for ranking. The

idea here is that the penalty of assigning Ri to position i should de-

pend on the difference between the true parameters: hi and hðR̂ iÞ, ra-

ther than the difference in the true ranks leading to losses of the form:

LJððh1; . . . ; hNÞ; R̂Þ ¼
1

N

X
i�N

ðhi � hðR̂iÞÞ
p: (4)

While theoretically appealing, finding rank vectors to optimize the

posterior expectation of this loss is somewhat difficult when N is
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large, as explained in the Supplementary Section 2. L2 rank-loss is

much easier to optimize, and at least in the simulations we have con-

sidered generates reasonable rankings. With this in mind, we use L2

rank-loss as the default ranking criterion in the R-package EBrank.

This package also reports posterior probabilities for jhij lying among

the K largest jhjj; j � N, which can be used in minimizing (2) for vari-

ous values of K. Note that in some situations, a subset of experiments

that show high evidence for some treatment effect might be pre-

selected; a primary example being GWAS, where the main aim is to

find a subset of effects corresponding to non-zero population log-

ORs, from an initial array of perhaps hundreds of thousands of SNPs.

In such cases, ranking procedures like the one described here can be

applied to a reduced subset of experiments, used to inform the prior

distribution. Simulations (in the Supplementary Section 2) suggest

that pre-selection on P-values using a false discovery rate (or other)

threshold before ranking can improve ranking performance (as well

as reducing Monte Carlo error and speeding up computation time)

when true effect sizes are weak; indicating that this strategy might be

used as a default method for GWAS. Pre-selection using false discov-

ery rate, family wise error rate and posterior probability thresholds

can be automatically implemented using the R-package EBrank.

Ranking with P-values Under certain conditions the ranking vec-

tor produced by ordering P-values optimizes the loss function

LT1ððh1; . . . ; hNÞ; R̂Þ ¼
X
i�N

R̂iIfhi ¼ 0g; (5)

indicating that highly ranked parameters should correspond to non-

zero parameter values (or alternative hypotheses), or informally that

the number of Type 1 (T1) errors among highly ranked parameters

should be minimized. Note that (5) does not measure the proximity

between the true and estimated rank vectors and as a result esti-

mated rankings derived via minimizing (5) may perform poorly

when judged according to loss functions designed for ranking such

as (2) or (3). We give further details regarding the connection be-

tween optimizing (5) and ordering P-values in the Supplementary

Material.

2.2 Finding R̂ to minimize loss
Finding rank vectors that optimize loss criteria such as (3) within the

Frequentist paradigm is usually difficult, although some progress

regarding minimax-optimal solutions has been achieved for special

loss functions (Bansal et al., 1997). Bayesian modeling offers a com-

putationally viable and principled alternative, and is the approach

that we consider in this article. First consider a prior distribution,

pðh1; . . . ; hN jcÞ ¼
Q

i�N pðhijcÞ for the parameter vector ðh1; . . . ; hNÞ;
c being a set of hyper-parameters specifying the exact prior chosen

from a class of plausible priors. A fully hierarchical approach incor-

porates an additional hyper-prior for c. Alternatively, Empirical

Bayes first specifies a data-driven estimate ĉ for c and subsequently

uses the non-hierarchical prior distribution: pðh1; . . . ; hN jĉÞ ¼Q
i�N pðhijĉÞ. In either case, we can then derive the posterior distribu-

tion, pðh1; . . . ; hNjXÞ for ðh1; . . . ; hNÞ; given the data X using

simulation or analytic techniques using existing procedures.

Sometimes the variance of the posterior distribution may be adjusted

upwards to account for uncertainty due to error in estimating c

(Berger, 1985), although the Empirical Bayes algorithm described in

Section 3 is ‘naive’ in the sense that this extra source of variation is

not considered.

For certain classical loss functions that we consider here, a pos-

terior-loss-minimizing solution for R̂ can be easily determined, once

the posterior distribution is known. For instance, in the case of

Equation (2), any rank vector R̂ satisfying
PN

i¼1 IðPðRj >

N �KjXÞ � PðRi > N � KjXÞÞ > N � K, whenever R̂j > N � K

will minimize posterior expected loss (Shen and Louis, 1998). This

solution corresponds to selecting the K experiments with the highest

posterior probabilities that the parameter jhjj is among the K largest

jhij; i � N. As another example in the case of Lp loss, the posterior

expectation of (3) can be minimized by setting: R̂j ¼
medianðRjðh1; . . . ; hNÞjXÞ for P ¼ 1 and R̂j ¼ EðRjðh1; . . . ; hNÞjXÞ,
when p¼2 (Laird and Louis, 1989). If Markov Chain Monte Carlo

techniques are used to estimate the posterior distributions, ranks can

be sampled by transforming the sampled parameters at each iter-

ation, k: hðkÞ1 ; . . . ; hðkÞN , for k ¼ 1; . . . :;M (M being the number of

MCMC samples drawn) into ranks ðRðkÞ1 ; . . . ;R
ðkÞ
N Þ via:

R
ðkÞ
i ¼ RiðhðkÞ1 ; . . . ; hðkÞN Þ: (6)

R̂j can then be estimated easily from the sampled ranks; for instance,

we can estimate medianðRjðh1; . . . ; hNÞjXÞ by the empirical median

of R
ðkÞ
j over k �M.

3 An empirical Bayes ranking algorithm

We next develop an Empirical Bayes implementation for the ranking

techniques described in the previous section. The described algorithm

might be considered an approximation to a fully Bayesian approach,

with a clear advantage in computational feasibility. An R-package

implementing the algorithm can be downloaded from the CRAN reposi-

tory. The algorithm is designed to estimate the ranks for the absolute

values of N unknown univariate parameters ðh1; . . . ; hNÞ based on noisy

estimates ðĥ1; . . . ; ĥNÞ. This is a commonly observed set up in bioinfor-

matics, and examples from GWAS and RNA-Sequencing will be

described in the following section. While the algorithm can be used in an

ad-hoc fashion given any set of estimates, a few relative weak assump-

tions are necessary to justify the likelihood model that is implicitly used

in Empirical Bayes estimation. These assumptions are as follows:

• The estimates (ĥ1,. . .,ĥNÞ are conditionally independent, given

ðh1; . . . ; hNÞ
• ĥ i is asymptotically normally distribution in that ĥ i�hi

ri
d
!

Nð0;1Þ as

sample size n!1.
• Estimated standard errors: r̂i are available and satisfy a kind of

‘log-consistency’, i.e. r̂i=riP!
1

• ĥ i and r̂i are asymptotically independent.

The weakness of these assumptions supports the use of the algo-

rithm in a variety of settings. It should be pointed out that the algo-

rithm learns an appropriate prior using Empirical Bayes technique,

using aggregate information in the N random variables ĥ i; i � N. An

implicit assumption is that N is sufficiently large to estimate this

prior reasonably accurately. When N is small, the learned prior may

be a poor reflection of how ðh1; . . . ; hNÞ are distributed in reality,

and ranking performance may suffer.

3.1 Derivation of an approximate conditional likelihood
Asymptotic normality implies that ĥ i

ri
�� Nðhi

ri
;1Þ for large n. So since ĥ i

and r̂i are asymptotically independent, conditional on r̂i we still have
ĥ i

ri
�� Nðhi

ri
;1Þ. Now log-consistency of the estimated standard errors

implies that r̂ i ¼ rið1þ oPð1ÞÞ so that, multiplying by ri

r̂ i
, we get:

Zi ¼
ĥ i

r̂i
�� N hi

r̂i
;
r2

i

r̂2
i

 !
� Nðli; 1Þ; (7)

defining li ¼ hi

r̂ i
. Taking the product of these individual densities

over i � N gives the conditional approximate likelihood

Empirical Bayes ranking 179

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/1/177/5514040 by guest on 09 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz471#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz471#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz471#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz471#supplementary-data


Lðl1; . . . ; lNÞ ¼
Q

i�N /ðzi � liÞ, conditioned on the values of the

standard errors, r̂1; . . . ; r̂N, where / denotes the standard normal

density function.

3.2 Prior and posterior for l
We choose a flexible class of prior distributions, where iid univariate

mixture normal distributions are specified for the marginals, li for

i � N, and independence is assumed for li and lj with i 6¼ j. The

class of mixture normals is restricted so that the first component is a

point mass at l ¼ 0 and the other J � 1 components are continuous,

so that the overall prior can be written as:

pðlÞ ¼
Y
i�N

pðliÞ;

with

pðliÞ ¼ p0d 0f g þ
XJ

j¼1

pj/
li �mj

sj

� �
=sj; (8)

where ðp0; . . . ; pJÞ is a vector of probabilities summing to 1, df0g is

the delta function centered at 0 and mj and sj are means and stand-

ard deviations, characterizing the composite mixture distributions.

The mixture normal family is extremely broad, indeed any continu-

ous density function can be arbitrarily closely approximated by a fi-

nite normal mixture provided J is large enough, so in effect (8) can

be considered a non-parametric model for the distribution of li.

Proceeding now as if the approximation (7) is exact, the margin-

al density for zi can be deduced by noting that zi ¼ li þ �i, where

�i � Nð0; 1Þ, and has a similar mixture form:

f ðziÞ ¼ p0/ðziÞ þ
XJ

j¼1

pj/
zi �mjffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
j

q !
=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

j

q
:

Finally, standard calculations show that the posterior distribu-

tion for li given zi also has a mixture normal form, with a point

mass at 0, and another mixture normal with J components, as

follows:

plðlijziÞ ¼

XJ

j¼1

pjfjðziÞpjðlijziÞ

f ðziÞ
li 6¼ 0;

Pðli ¼ 0jziÞ ¼
p0/ðziÞ

f ðziÞ
;

(9)

where fjðziÞ ¼ /ððzi �miÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

j

q
Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

j

q
and pjðlijziÞ ¼

/ððli �m�j ðziÞÞ=s�j Þ; with m�j ðziÞ ¼ ðs2
j zi þmjÞ=ð1þ s2

j Þ and

s�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
j =ð1þ s2

j Þ
q

. The joint posterior can be derived as a product

of these densities over i.

3.3 Empirical Bayes estimation of prior for l
We utilize a constrained EM algorithm adapted from Muralidharan

et al. (2010) to estimate the parameters: m ¼ ðm1; . . . ;mJÞ; s ¼
ðs1; . . . ; sJÞ and p ¼ ðp0; ::;pJÞ by maximizing the marginal likelihoodQ

i�N f ðziÞ. The default algorithm constrains the mean and standard

deviation for component 0, i.e. m0 and s0, to equal 0 and 1, respect-

ively, whereas the variances are constrained to be at least 1 for com-

ponents 1,. . ., J. Finally, for the examples in this manuscript we have

forced the restrictions m1 ¼ 0 and s1 ¼ 10. Here, s1 is constrained so

that the algorithm can detect a low-probability mixing component

representing isolated extremely large parameters, as sometimes may

be observed in genome-wide association applications. If such a

component is not included, the estimated effect sizes for these extreme

parameters might be aggressively and incorrectly shrunk to an overly-

conservative prior. This restriction mostly impacts estimated posterior

means rather than estimated ranks and can be removed in EBrank if

so desired. See Supplementary Section 3 for further discussion. Ĵ is

selected by minimizing BIC over the integers J 2 f1; . . . ; Jmaxg. The

estimated mixing probabilities, p̂, and component means, m̂, are

found directly from the algorithm—while the estimated variances are

found using ŝ2 ¼ r̂2
EM � 1; where r̂EM is the vector of standard devia-

tions found via the algorithm.

3.4 Estimated posterior for hi

The posterior distribution for hi is calculated as

p̂ðhijziÞ ¼ plðhi=SEðĥ iÞÞ=SEðĥ iÞ; hi 6¼ 0

Pðhi ¼ 0jziÞ ¼ Pðli ¼ 0jziÞ;
(10)

where plð:jziÞ is given by (9) with the Empirical Bayes derived par-

ameter estimates m̂j; ŝ j and p̂j substituted for mj, sj and pj for j � Ĵ.

In effect, the continuous part of the posterior for hi is found from (9)

by multiplying the means and standard deviations of each mixing

component by r̂i: These estimated mixture posterior distributions

for differing i ¼ 1; . . . ;N are assumed independent.

3.5 Estimating ranks
While it is possible to calculate mean posterior ranks directly from

the posterior via the identity EðRijXÞ ¼
PN

j¼1 Pfhi � hjjXg, it is eas-

ier to simulate from the posterior (9), and then transform the simu-

lated values into ranks using (6). Our R-package EBrank uses a

default of M ¼10 000 draws from the posterior. Estimated poster-

ior-loss-minimizing rank vectors are then found by replacing the

population solutions by their obvious sample analogs. For instance,

R̂i ¼ EðRiðh1; . . . ; hNÞjXÞ is estimated by ~Ri ¼
P

j�M
R
ðjÞ
i

M :

4 Examples

4.1 RNA sequence example simulations
RNA-sequencing has emerged as a competitor to microarrays for

quantifying and comparing gene expression under different condi-

tions, e.g. Mortazavi et al. (2008). The data are the number of short

pieces (reads) of cDNA that have been sequenced, lying in each gene

or transcript. Gene expression is indirectly measured from the num-

ber of reads that map, or align, to a particular gene, normalized by

the gene’s length (in nucleotides) and the total count of reads over

all genes (known as the library size). Genes are typically identified as

being differentially expressed using RNA-seq data when their counts

for one condition, normalized only by library size and not by gene

lengths, are systematically different than the other. Several compet-

ing statistical approaches have been developed to identify genes dis-

playing differentially expressed genes in RNA-Seq data [see for

instance Anders and Huber (2010), Robinson et al. (2010) and

Hardcastle (2015)]. While these methods assume that the counts

over the different samples follow a negative-binomial distribution,

the test statistics used to identify differentially expressed genes are

generally asymptotically normal, at least in the case of large library

sizes, supporting the use of our model. Here, we have used the pack-

age the R-packageDESeq2, v1.18 on default settings, to measure

gene-wise fold-changes and standard errors from an RNA-Seq count

matrix.
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Data simulation

Each scenario simulates negative binomial distributed read-counts

for 36 536 genes, and 2n samples (n being 10, 20 or 50) divided into

two equal size groups. A small proportion PDE 2 f0:05; 0:1; 0:2g of

the genes are differentially expressed, in that the average read count

for those genes in group 2 differs from the average read count in

group 1 after scaling for differences in library sizes. Let hi represent

the log (base2) ratio between the mean counts for gene i in group 2

and group 1 (commonly referred to as the log of the ‘fold-change’ in

the expression analysis community). For the genes tagged as differ-

entially expressed hi is simulated using a Nð0; r2Þ distribution, with

r set as either 0.5 or 1, dependent on the simulation. For the non-

differentially expressed genes, hi ¼ 0: We denote the raw read count

for sample j of gene i as Gij. These counts are simulated according to

a negative-binomial distribution, given by (11), where NB(m, d) cor-

responds to a negative-binomial distribution having mean m and

dispersion parameter d :

Gij �
NBðSjmi;diÞ for j 2 group 1

NBðSj2
hi mi;diÞ for j 2 group 2:

(11)

The fixed parameters mi, Sj and di, representing scaled mean

counts, relative library sizes and dispersions, were determined using a

mouse expression dataset first analyzed in Bottomly et al. (2011) and

available through the Recount database (Frazee et al., 2011). A more

complete description of these simulations is given in the Supplementary

Material. After simulating the read-counts, log-fold-change estimates

ĥ i and their standard errors, SEðĥ iÞ; were calculated with DESeq2

using the data for each gene. Estimated ranks for the h vector were pro-

duced using Bayesian Ranking, as described in Section 3, by Bayesian

ranking using the Empirical prior estimated using a ‘smoothing by

roughening’ approach as illustrated by Noma and Matsui (2013) and

implemented through the GaussianSBR function within the R-package

hhsim (an approach that also uses just the effect size estimates and

standard errors), two ranking methods that use the original count ma-

trix: non-negative matrix factorization, as described in Jia et al. (2015)

and a fold-change based method, FCROS, described by Dembélé and

Kastner (2014) and finally by ordering the DESeq2 computed P-values.

We used 1000 simulations to estimate mean posterior ranks for each of

the Empirical Bayes approaches. To compare the performance of the

different methods, we examined the fraction of the genes, having

the K largest absolute-value fold-changes that are also included

in the top K genes according to a specific ranking. This implies measur-

ing the performance of the estimated ranks, R̂ in their estimation of R

via the quantity:

OKðR; R̂Þ ¼
100

K

X
i�N

IðRi > N � K; R̂i > N �KÞ (12)

for various values of K. We call this the ‘overlap’ between R and R̂.

Values of K ¼10 and 100 are examined below.

Each simulation scenario required fixing pDE 2 f0:05; 0:1; 0:2g,
n 2 f10;20;50g and average effect size, r 2 f0:5; 1g. Eight inde-

pendent repeats of each individual scenario were simulated.

In Figure 1, the distribution of OKðR; R̂Þ for Bayesian Ranking and

P-values is displayed for K 2 f10;100g and r 2 f0:5;1;2g, setting

PDE ¼ 0.05 and averaging across the settings for n. In all but one

scenario, estimated overlap is highest according to Bayesian

Ranking in Section 3. Results from alternative parameter settings

are presented in the Supplementary Material, and show similar

conclusions. In the Supplementary Material, we also investigate the

effect of a number of other factors that might influence the quality

of ranking, including pre-selection of genome-wide significant

experiments before the ranking step, loss-function choice (including

the Jewett loss and the ‘r-values’ approach detailed in Section 2) and

the effect of Monte Carlo error.

4.2 Genome-wide association data
To investigate the potential benefits of applying the ranking algorithm

in GWAS settings, we downloaded some publicly available SNP data

from the DbGAP website (Mailman et al., 2007) for four different

diseases. The number of cases and controls and original number of

genotyped SNPs for each disease are described in Table 1. For each

SNP, disease/control ORs were estimated from the data and shrunk

using an Empirical Bayes approach (Ferguson et al., 2013b).

Supplementary Figure S2.3 shows both the before and after log-ORs.

For each disease, MAF for �95% of the genotyped SNPs were found

using the UCSC genome browser website by matching rsid. The

shrunken log-ORs for the Nall SNPs where the MAF could be recov-

ered represent true ORs l1; . . . ; lNall
behind each simulation.

Simulation of data

Two scenarios were investigated: ‘weak’ signals (n ¼ 2000 cases,

n ¼ 2000 controls) and ‘strong’ signals (n ¼ 10 000 cases,

Fig. 1. RNA-seq simulation. In each sub-window, average overlaps over eight

simulations are shown for five methods (B1: Bayesian ranking as in Section 3,

p: DESeq2 P-values, M: non-negative matrix factorization, F: fold-change

based ranking using FCROS and B2: Bayesian ranking using smoothing by

roughening). Approximately 5% of genes were simulated to be differentially

expressed

Table 1. GWAS studies used in simulations

Disease # SNPs # Cases # Controls dbGap study

accession #

Parkinson’s 463 185 1713 3978 phs000501.v1.p1

Crohn’s 298 391 968 995 phs000130.v1.p1

Schizophrenia 700 490 1351 1378 phs000021.v1.p1

MS 551 642 978 883 phs000171.v1.p1

Note: Results for Crohn’s disease are displayed in Figure 2. See the

Supplementary Material for results pertaining to the other diseases.
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n ¼ 10 000 controls) via applying the ranking algorithm to 24 inde-

pendent simulated datasets based on the ‘true’ l1; . . . ; lNall
above.

Each iteration involved simulating sample ORs and associated

P-values for each of the Nall SNPs, using an asymptotic approxima-

tion for the distribution of the logistic-regression estimated log-OR,

given the true MAFs in cases and controls, true li for that SNP and

value for n. As a pre-filtering step to ease computational difficulties,

we then selected only the subset of N < Nall SNPs that had signifi-

cant P-values after adjusting for a 90% false discovery rate thresh-

old (Benjamini and Hochberg, 1995) for subsequent ranking. This

subset of SNPs was ordered based on their P-values and according

the Bayesian ranking procedure described in Section 3. However,

note that while only a subset of N SNPs was ranked, all Nall SNPs

were used to calculate the Empirical Bayes informed prior. In the

subsequent discussion, we relabel the subset of N parameters that

are chosen to be ranked for each simulation as h1; . . . ; hN.

Results

Two criteria were used to evaluate the quality of the estimated ranks

in recovering the ordering of ðh1; . . . ; hNÞ:

1. Overlap of top K SNPs—i.e. the % of the top K ranked SNPs

(according to the method either Bayes or P-value) which are in

the top K true absolute-value log-ORs (according to the

Empirical Bayes shrinkage), given by (12).

2. Percentile Rank of top K SNPs. This is the average percentile of

the top K ranked SNPs within the total list of absolute-value

logORs as given by: 1
K

P
R̂i>N�Kð100 Ri

N Þ.

Values of K ¼10 and 100 were considered for both criteria.

Boxplots, based on the 24 simulations for each scenario, are dis-

played in Figure 2 for Crohn’s disease. Each pane of the figure corre-

sponds to a particular scenario (either weak or strong signals) and

criterion function. The boxplot on the center and left correspond to

Bayesian and P-value based rankings. The center boxplot: ‘Overall’

shows the distribution PBayes � Ppvalue over these eight simulations,

where Px is the value of the criterion function for a particular simu-

lation and ranking method x. These simulations indicate that typic-

ally there is a benefit in producing ordered lists of P-values using

Bayesian ranking rather than using P-values, sometimes substantial-

ly so. For instance, from the 10 SNPs with highest true OR,

Bayesian ranking picks out either 9 or 10 of these in the top 10 esti-

mated SNPs compared to only seven when P-values are used.

Similar plots for the three other diseases are given in the

Supplementary Material.

4.3 Real-data applications
4.3.1 GWAS

In GWAS, the usual practice was to focus mostly on SNPs that were

genome-wide significant, i.e. SNPs that have P-values <0.05 after a

Bonferoni adjustment, for follow-up experiments. The reason for

this stringent selection was a concern that the selected SNPs

might demonstrate significant associations in follow-up studies.

As described in Section 4.2, Bayesian ranking can be applied just to

a selected group of SNPs, although the Empirical Bayes estimate of

the prior must be deduced from the entire set of SNPs. To illustrate

this idea, we selected ‘genome-wide significant’ SNPs for the

Crohn’s disease data reported in Table 1, which consisted of 968

cases and 995 controls. Our Empirical Bayes ranking procedure, as

described in Section 3, was then applied to these 15 SNPs (all SNPs

being used to estimate the Empirical Bayes prior, but only the top 15

used in the ranking procedure). Table 2 shows the genome-wide sig-

nificant SNPs, their ORs, standard errors and ranking according to

P-values and estimated Bayesian rankings from the procedure. Note

that the SNP ranked number 1 according to Bayesian ranking had

the largest absolute-value log-OR from the 15 SNPs; however, the

standard error (0.166) is larger than most of the SNPs on the list

and as a result, several SNPs have smaller P-values. Note that

Bayesian ranking gives almost identical results to ranking by the ab-

solute values of the estimated raw log-ORs in this example, which is

an expected feature of the procedure for a group of experiments

with low-standard errors. In this case, the Bayesian ranking proced-

ure gives results that are verifiably superior to a P-value based rank-

ing. To show this, we matched SNP ids with the most significant

signals from a more recent and comprehensive GWAS of Crohn’s

disease involving independent discovery and replication datasets of

6333 cases and 15 056 controls and 15 694 cases and 14 026 con-

trols (Franke et al., 2010). While all 15 significant SNPs from the

initial study, shown in Table 2, were involved in one of three signifi-

cant regions in the follow-up study, only rs2076756 and

rs11209026 were exact matches with the 71 ‘top’ SNPs reported in

Franke et al. (2010), with rs11209026 (which was ranked 1 by

Bayesian ranking, but only 4 using P-values) having the larger abso-

lute-value log OR.

4.3.2 RNA-Seq

To investigate how well the described Empirical Bayes ranking

method deals with ranking the most highly differently expressed

genes in real data, we obtained RNA-Seq read-counts of lympho-

blastoid cell lines for 89 Yoruban and 91 Central European individ-

uals, sequenced as part of the 1000 Genomes project (1000

Genomes Project Consortium et al., 2012; Lappalainen et al., 2013).

The counts were processed from the raw RNA-Seq files using the

Recount2 pipeline, and downloaded from the Recount2 repository

Fig. 2. Boxplots, based on eight simulations for each scenario, are displayed

for Crohn’s disease. Each pane of the figure corresponds to a particular scen-

ario (either weak or strong signals) and criterion function. The boxplot on the

left and center of each pane correspond to Bayesian and P-value based rank-

ings. The boxplots on the right show the distribution of PBayes � Ppvalue over

the simulations, where Px is the value of the criterion function for a particular

simulation and ranking method x
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(Collado-Torres et al., 2017). We applied the DESeq2 method (with-

out shrinkage of fold-changes) to estimate fold-changes and stand-

ard errors for 58 037 genes in the original sample. Subsequently, we

removed 37 597 genes where fewer than 3 samples had read-counts

per million sequenced reads exceeding 1, resulting in 20 440 genes

remaining. These genes were ranked based on their estimated fold-

changes and the resulting ranks were considered as a gold standard

in subsequent analyses.

Next, we randomly sampled n (n ¼ 5, 20 or 50) individuals from

both the Yoruban and the Central European groups. For each ran-

dom sample of 2	 n individuals, we ran DESeq2 as described before

to estimate fold-changes and standard errors for the 20 440 genes

under investigation. Subsequently, we employed the same ranking

procedures described in Section 4.1 using the associated subsampled

RNA-sequence data, fold-changes and standard errors; namely our

Empirical Bayes algorithm (from Section 3), P-values calculated via

DE-Seq2, non-negative matrix factorization (Jia et al., 2015),

FCROS (Dembélé and Kastner, 2014) and Empirical Bayes ranking

where the prior was estimated using smoothing by roughening

(Noma and Matsui, 2013). Both Empirical Bayes methods used

1000 samples from the estimated posterior to estimate mean poster-

ior ranks. This procedure of randomly sampling n Yoruban and

Central European individuals from the respective groups, using

DESeq2 to calculate fold-changes and standard errors and ranking

using the five separate approaches, was repeated independently 40

times for each sceanrio. For each of the 40 simulations, identical

overlap statistics to those calculated in Section 4.1 were reported,

i.e. the percentage match between the geneids corresponding to the

top 10 and 100 estimated ranks and the true ranks that are described

in the previous paragraph.

The results, displayed as boxplots in Figure 3, indicate an im-

provement in the performance of the both Empirical Bayes methods

as the sample size (n) increases. This relative improvement with

increasing n might be expected as these Empirical Bayes estimates

assume the standard error is known, which is only approximately

true when n gets large, and rely on accurate estimation of the

Empirical Bayes prior, which again is easier for larger n. Overall,

the Empirical Bayes methods seem to do best in this example

when the sample size is large, but the results are here sensitive to the

software that creates the gold standard ranking. In the

Supplementary Material, we recreate this figure, but instead using

Limma to create the gold standard ranking of fold-change from the

original 89 versus 91 comparisons. In this case, non-negative matrix

factorization has superior performance, particular at n ¼ 5 and

n ¼ 20. However, we observe a similar pattern of improvement of

the Bayesian methods with increasing sample size.

5 Discussion

Bayesian ranking often represents a more appropriate tradeoff be-

tween effect size and standard error than do traditional P-values

when sorting the scientific-importance of differing results in massive

multiple hypothesis testing problems. Genome-wide scans for genet-

ic or genomic differences between diseased and healthy individuals

(as seen in GWAS and RNA-Seq experiments) are typical examples

of such problems. In general the method will work well and be su-

perior to a P-value based ranking so long as the standard error of

the test statistic varies significantly over differing tests and the pro-

portion of true alternatives (for the algorithm described in this

paper, these would be fi : jhij > 0g) is large enough. This second

condition is necessary so that the learned prior distribution is an ef-

fective estimator of the true distribution of parameters over the dif-

ferent tests.

Bayesian Ranking techniques are not a new idea in the statistics

literature, an early reference being Laird and Louis (1989), but have

only recently be considered as a technique in genomics (Noma et al.,

2010). Our work is quite similar to Noma and Matsui (2013) who

considered a non-parametric Empirical Bayes ranking method, that

implements the smoothing by roughening approach first considered

by Shen and Louis (1999), and applied it to microarray data. In this

manuscript, we consider a new approach, and extend consideration

to other problems in Genomics such as ranking SNPs for disease

Table 2. Ranking of significant SNPs according to Bayesian ranking

and P-values

SNP log ÔR SE P-value Rank Rank Match

(p) (Bayes)

rs2076756 0.55 0.07 1.26	10�14 1 4 **

rs7517847 �0.50 0.07 2.99	10�13 2 6 —

rs2066843 0.51 0.07 7.87	10�13 3 5 —

rs1343151 �0.48 0.07 1.63	10�11 4 7 —

rs11209026 �1.09 0.17 4.59	10�11 5 1 **

rs10489629 �0.43 0.07 6.79	10�11 6 10 —

rs10889677 0.44 0.07 9.04 	10�11 7 8 —

rs2201841 0.43 0.07 3.57	10�10 8 11 —

rs11465804 �0.96 0.15 3.74	10�10 9 2 —

rs11209032 0.42 0.07 8.64	10�10 10 12 —

rs1004819 0.41 0.07 1.50 	10�9 11 13 —

rs8054797 �0.67 0.12 1.11	10�8 12 3 —

rs2241880 �0.36 0.07 4.40 	10�8 13 14 —

rs5743289 0.44 0.08 4.65	10�8 14 9 —

rs7194886 �0.35 0.07 1.41	10�7 15 15 —

Note: The SNPs that matched rsids with genome-wide significant SNPs in a

much larger follow-up study are marked with asterisks.

Fig. 3. Each pane of the figure corresponds to a particular Bootstrap sample

size (n ¼ 5, 20, 50) and top 10 or top 100 overlap when recovering the ‘gold

standard ranking’. The methods investigated are from right to left B1: empir-

ical Bayes algorithm (from Section 3), p: P-values calculated via DE-Seq2, M:

non-negative matrix factorization (Jia et al., 2015), F: FCROS (Dembélé and

Kastner, 2014) and B2: empirical Bayes ranking where the prior was esti-

mated using smoothing by roughening
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association and fold-change ranking in RNA-sequence data. In com-

parison with smoothing by roughening, our approach fared slightly

better when ranking the extent of differential expression in RNA-

Sequence data. A plausible explanation for this is requires estimating

separate parameters for each point on a grid covering the parameter

space. In contrast, our approach uses BIC to adaptively choose the

number of mixing components necessary to represent the prior.

While normal mixture modeling can suffer with identifiability

issues, it requires estimating far fewer parameters than smoothing

by roughening, and is less likely to give an overfitted estimate of the

prior. We implemented smoothing by roughening using the

GaussianSBR function in the R-package hhsim, which uses 200 grid

points for the approximation.

In general, we have demonstrated that Bayesian ranking can be

helpful in identifying the most important differentially expressed

genes (for particular diseases) and SNPs in GWAS to existing proce-

dures. In the case of GWAS, it has been hypothesized that some of

the genetic disease heritability, unaccounted for by the accumulation

of disease associated SNPs identified by GWAS, is a result of rare

variants (Manolio et al., 2009) which tend to go undiscovered due

to lower power and the stringent multiple testing corrections. When

these variants are included on GWAS chips, they are typically

ranked too low to be discovered by conventional methods, although

statistics that pool together several rare variants within the same

gene to increase power can help with this problem (Ferguson et al.,

2013a; Ionita-Laza et al., 2011). Running the algorithm suggested in

this manuscript may also help in this regard as it will up-weight the

ranking of rare but potentially important SNPs that have large ORs

compared to a P-value-based ranking. More recently, exon-

sequencing and whole genome sequencing studies survey perhaps

tens of millions of variant positions in the genome, many of which

will be uncommon, heightening the necessity to develop methods

that are more flexible in identifying important rare variants. When

employing the algorithm to rank SNP locations a couple of points

need to be kept in mind. First, we assume that conditional on the

true parameter vector h1; . . . ; hN, the estimated parameters

ĥ1; . . . ; ĥN are independent. Technically, SNPs need to be LD-

pruned before running the algorithm to approximately satisfy this

condition. The algorithm can in theory be modified to run with non-

independent effects, provided covariance matrices are known.

Second, rankings will likely be more biologically appealing if the in-

put SNP/disease log-ORs are adjusted for other covariates such as

age, gender or principle component loadings. Finally, memory and

computational issues might prohibit simultaneous genome-wide

ranking of all SNPs in GWAS studies. A better strategy is use all

SNPs in the Empirical Bayes estimation of the prior, but to pre-

select significant SNPs (either based on FDR or FWER rules) before

simulation of ranks from the posterior. The actual run time of the al-

gorithm will vary depending on the number of significant SNPs and

the number of simulations from the posterior, but using an FDR

threshold of 5% and a GWAS of 1 000 000 SNPs, 1000 of which are

non-null, one would expect the total run time to be <10 min on a

typical desktop PC.

An advantage of Bayesian approaches, in comparison with tar-

geted methods for ranking fold-change parameters such as non-

negative matrix factorization and FCROS, is that we can analyze

any function f ðhiÞ of the parameter, hi, rather than the parameter it-

self if we so wish. For example, if we sample posterior iterates of hi

first, we can then transform these iterates using f, and finally rank

experiments, i � N, according to their mean value of f ðhiÞ from the

simulations. As a concrete example, in the case of GWAS, popula-

tion attributable risk (PAR) is a method that can quantify disease

impact of a genetic variant on a population level. More specifically,

for a given SNP, PAR is the proportion of disease current disease

cases that would hypothetically be healthy if everybody had two

copies of the major allele at that locus. Provided the disease is rare,

PAR is related to the OR, ehi and MAF of the SNP (for cases), pE; in

a simple way as PARi � 2pEð1� pEÞehi=ðehi � 1Þþ p2
Ee2hi=ðe2hi � 1Þ,

assuming Hardy Weinberg equilibrium in cases (Claus et al., 1996).

So, by transforming the simulated true ORs into values into PARs in

this way, we can use the procedure to rank PARs.

An R-package, EBrank, to run the ranking procedures described

in this manuscript can be downloaded from the CRAN repository.
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