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Abstract

Motivation: The principal lines of research in MS/MS based Proteomics have been directed toward

the molecular characterization of the proteins including their biological functions and their implications

in human diseases. Recent advances in this field have also allowed the first attempts to apply these

techniques to the clinical practice. Nowadays, the main progress in Computational Proteomics is based

on the integration of genomic, transcriptomic and proteomic experimental data, what is known as

Proteogenomics. This methodology is being especially useful for the discovery of new clinical bio-

markers, small open reading frames and microproteins, although their validation is still challenging.

Results: We detected novel peptides following a proteogenomic workflow based on the

MiTranscriptome human assembly and shotgun experiments. The annotation approach generated

three custom databases with the corresponding peptides of known and novel transcripts of both

protein coding genes and non-coding genes. In addition, we used a peptide detectability filter to

improve the computational performance of the proteomic searches, the statistical analysis and the

robustness of the results. These innovative additional filters are specially relevant when noisy next

generation sequencing experiments are used to generate the databases. This resource,

MiTPeptideDB, was validated using 43 cell lines for which RNA-Seq experiments and shotgun

experiments were available.

Availability and implementation: MiTPeptideDB is available at http://bit.ly/MiTPeptideDB.

Contact: vsegura@unav.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the last few years, the field of Proteomics has become a promising ap-

proach in Molecular Biology and precision medicine due to its suitabil-

ity for the study of proteins and their implication in biology and disease.

The widespread use of human high-throughput proteome studies has

been possible mainly thanks to the advances made in mass spectrometry

(MS/MS-based proteomics) (Nilsson et al., 2010). The new specifica-

tions of the high resolution mass spectrometers allow the identification

and quantification of the proteins in a given biological sample with a

high coverage based on the huge number of high quality spectra

detected by these instruments in a single run (Nagaraj et al., 2011).

Although the dimensionality of the datasets obtained is still lower than

the ones obtained in Genomics and Transcriptomics using both microar-

rays and Next Generation Sequencing (NGS) technologies, the analyses

of the shotgun experiments performed in the last years have achieved

results that are worth highlighting. The characterization of proteomes

(Kim et al., 2014; Wilhelm et al., 2014), the identification of new clinic-

al biomarkers (Halvey et al., 2014) and the discovery of novel functional
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biological elements as the small open reading frames (smORFs) (Couso

and Patraquim, 2017) and the microproteins (Zhang et al., 2017)

have increased our knowledge about the molecular mechanisms of

human diseases (Tamborero et al., 2013; Zhang et al., 2014).

One of the main driving forces behind the advances in Proteomics

in the last decade has been the Human Proteome Project (HPP)

(Legrain et al., 2011), an international project launched in 2010 and

supported by the Human Proteome Organization (HUPO). The essen-

tial goal of this project is the deciphering of the complete human prote-

ome, an ambitious task divided into two initiatives: the C-HPP

(chromosome-based HPP) and the BD-HPP (biology and disease HPP).

The first one is responsible for the detection of all the human proteins

and their functional characterization using MS/MS or antibody tech-

nologies (Paik et al., 2012a), while the latter is responsible for studying

the implications of the proteins in the cellular processes and the human

diseases (Lam et al., 2016). The integration of Genomics,

Transcriptomics and Proteomics has been widely used by the HPP

groups to achieve these goals (Tabas-Madrid et al., 2015). This proteo-

genomic approach has also been applied to detect peptides that are not

present in the proteomic reference databases and therefore the gener-

ation of custom databases is required (Nesvizhskii, 2014; Zhu et al.,

2018). This is the case of single aminoacid polymorphisms (SAPs)

(Garin-Muga et al., 2016; Zhang et al., 2014) and novel peptides,

smORFs or microproteins derived from non-coding genes or novel

genes detected by NGS experiments (Choi et al., 2018; Li et al., 2018).

Cancer is one of the priority research areas of the BD-HPP, and

the cancer transcriptome has been studied in detail for cataloguing

all the transcripts expressed in this disease. The MiTranscriptome

consensus human transcriptome (Iyer et al., 2015) was obtained

from the analysis of 7256 RNA-Seq experiments and it was key to

associate lncRNA transcription with carcinogenesis. The complete

catalog contains 384 066 different transcripts, some of them are not

described in other databases as GenBank, Ensembl or GENCODE.

In the case of known lncRNAs, it has been noted that they can be

associated with ribosomes and the fact that many of them appear to

have arisen relatively recently in evolution indicates that they could

be an important source of new peptides (Ruiz-Orera et al., 2014).

This fact brings new opportunities for the research field of

Proteogenomics (Choi et al., 2018; Li et al., 2018).

In this manuscript we present MiTPeptideDB as a resource for the

detection of novel peptides using a proteogenomic approach. First, cus-

tom databases of these peptides were generated with the predicted trans-

lations of known lncRNAs and novel transcripts annotated using

GENCODE and MiTranscriptome assembly. Then, a peptide detectabil-

ity study was included to filter those peptides with a low probability of

being detected by MS. This step is one of the novelties of our approach

being especially useful to decrease the size and increase the quality of the

custom databases derived from RNA-Seq experiments instead of RIBO-

Seq experiments, in which only translated transcripts are sequenced

(Choi et al., 2018). Finally, a bioinformatic pipeline was proposed and

applied to a set of public shotgun experiments of cell lines obtained

from the NCI60 project demonstrating the feasibility of our method.

The expression and function of the detected peptides must be subse-

quently validated using the proper experiments of molecular biology.

2 Materials and methods

2.1 Bioinformatic workflow
We developed a bioinformatic pipeline to detect novel peptides in

two stages. First, proteomic databases were generated based on the

transcripts described in the human MiTranscriptome assembly (Iyer

et al., 2015) using a proteogenomic approach including for the first

time the filtering of peptides based on their detection probability by

MS (Fig. 1A). After the creation of the databases, we analyzed some

of the shotgun experiments available in the NCI60 project corre-

sponding to 43 cell lines (Fig. 1B). The analyses of the shotgun

experiments were performed using three sequential proteomic

searches with Mascot search engine and removing the assigned spec-

tra from the datasets before each new search. This approach can be

easily generalized to include additional search engines.

2.2 MiTranscriptome annotation and generation of

custom proteomic databases
The MiTranscriptome initiative represents a great computational

and biological effort to describe for the first time the whole com-

plexity of the human transcriptome, especially in the case of cancer

samples. In this study, a total of 25 datasets with 7256 poly(A) þ

A B

Fig. 1. Bioinformatic workflow developed for the identification of novel peptides in cancer using the MiTranscriptome human assembly. (A) Generation of custom

proteogenomic databases. The number of transcripts (tx) and peptides (pep) are shown. (B) Shotgun data analysis
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RNA-Seq samples from different resources (including the TCGA

and the ENCODE projects among other public datasets) were proc-

essed to define a set of 6503 high quality experiments. As a result,

the MiTranscriptome human assembly contains 384 066 predicted

transcripts that are available as a GTF file in its web page (http://

mitranscriptome.org/).

Once we downloaded the transcripts of this assembly, we first anno-

tated them in order to identify the already known transcripts correspond-

ing to both protein coding and non-coding genes. For this purpose, we

used the GENCODE version 19 annotation of the human genome that

includes 57820 genes (196520 transcripts), 20345 of them being protein

coding genes (81814 transcripts). The annotation was performed with

Cuffcompare software from the Cufflinks analysis suite and a total of

311361 transcripts were identified. However, only 165020 of these tran-

scripts had a known amino acid sequence in GENCODE database. This

analysis approach enabled us to define three different FASTA files for the

proteomic searches: (i) ProteinDB, a database with 1586522 peptide

sequences obtained from GENCODE representing 165020 transcripts of

MiTranscriptome; (ii) NonCodingDB, a database with information

about 146341 transcripts of MiTranscriptome annotated using

GENCODE, whose peptide sequences (35379040 entries) were

obtained using the 3 or 6-frame translation method (Castellana and

Bafna, 2010) taking their genome sequence as input; (iii)

NovelTranscriptDB, a database of transcripts of the MiTranscriptome

human assembly that were not present in GENCODE. In this case the

sequences of the 72597 transcripts were also obtained using the previous-

ly mentioned 3 or 6-frame translation algorithm depending if we knew

the strand of the transcript or not (7934008 peptide sequences). All the

entries of the FASTA files correspond to peptides of between 9 and 30

amino acids, obtained using the in silico digestion of Proteogest software

(Cagney et al., 2003) for the proteins with at least one tryptic peptide.

We applied the standard rules of cleavage for trypsin enzyme digestion

and allowed oxidation of methionine and one missed cleavage. Finally,

all the amino acid sequences in NonCodingDB that matched a sequence

in ProteinDB were removed from NonCodingDB, and all the amino acid

sequences in NovelDB that matched a sequence in NonCodingDB were

removed from NovelDB. These FASTA files and their annotation are

part of MiTPeptideDB and can be downloaded from http://bit.ly/

MiTPeptideDB. In addition, we have included the pipeline used for the

generation of the FASTA files (Supplementary Material S1).

2.3 Database filtering using peptide detectability
One of the main statistical problems to deal with in proteogenomic

studies is the inevitable increased size of the custom databases when

the 6-frame translation is used to infer the amino acid sequences of

the peptides derived from the genomic or transcriptomic experi-

ments. The main effect of searching MS spectra against these huge

databases is the difficulty estimating the False Discovery Rate (FDR)

and, therefore, the high probability of false spectra assignments to

peptides that are not present in the sample under study. The identifi-

cation and removal of the false positive peptide identifications is

particularly challenging when the sequence of novel peptides is pre-

dicted based on RNA-Seq experiments (Choi et al., 2018; Olexiouk

et al., 2018) due to the higher level of transcriptional noise in the sig-

nal and the identification of non-translated transcripts. Besides, the

rate of validation of these findings is very low (Choi et al., 2018;

Couso and Patraquim, 2017; Samandi et al., 2017) although their

implications in key biological functions and in the development of

diseases have been experimentally proven (Olexiouk et al., 2018;

Samandi et al., 2017; Zhang et al., 2017).

For these reasons, we recommend the use of more astringent FDR

thresholds to select the best candidates of these rare events and a new

approach to improve the quality of the databases similar to the one

previously used in Guruceaga et al. (2017). We designed a peptide

detectability classifier based on the information about the number of

peptide observations stored in GPMDB database (Craig et al., 2004)

and the evaluation of more than 550 physicochemical and biochem-

ical properties calculated for each tryptic peptide using seqinr R pack-

age (Gentleman et al., 2004). First, we filtered these characteristics

with a sampling-based t-test to obtain 106 non-redundant properties

that were used to generate a Random Forest classifier implemented

using caret R package (Gentleman et al., 2004). In the case of

MiTPeptideDB, we filtered the peptides of the custom databases based

on their detectability obtaining custom databases of proteotypic pepti-

des: FilteredProteinDB (363 896 entries, 77% smaller than

ProteinDB), FilteredNonCodingDB (8 240 422 entries, 76.7% smaller

than NonCodingDB) and FilteredNovelDB (1 816 397 entries, 77.1%

smaller than NovelDB). These FASTA files and their annotation are

part of MiTPeptideDB and can be downloaded from http://bit.ly/

MiTPeptideDB. The R script used for the mean value calculation of

peptide properties and the classification of each peptide into detect-

able or non-detectable peptide (Supplementary Material S2), and the

physicochemical and biochemical properties of all the entries for each

MiTPeptideDB database (Supplementary Material S3) are also

provided.

2.4 Proteomic and transcriptomic datasets
The NCI60 dataset was developed in the late 1980s by the US

National Cancer Institute (NCI), and it contained cell lines from nine

distinct tumour types. The proteomic experiments from the NCI60 cell

lines selected (Supplementary Table S1) were downloaded from the

NCI60 database (http://129.187.44.58: 7070/NCI60/main/index) and

analyzed using MiTPeptideDB (Supplementary Methods). The tran-

scriptome guided analysis used the experiments of the CCLE project

(https://portal.gdc.cancer.gov) corresponding to the 43 cell lines in

common with the NCI60 dataset. We processed these data to obtain

the normalized expression values of the transcripts defined in

MiTranscriptome (Supplementary Methods).

The detection of novel peptides in this cancer cell lines was per-

formed using the two sets of databases previously generated. First, the

databases obtained from the MiTranscriptome assembly without any

additional processing were used (ProteinDB, NonCodingDB and

NovelDB). In this case, when the search database was ProteinDB, the

FDR at peptide-spectrum match (PSM), peptide and protein level was

calculated using Mayu (Reiter et al., 2009) with a criteria of protein

FDR < 1%. In the following searches, against NonCodingDB and

NovelDB, only FDR at PSM level was calculated to select those results

with PSM FDR < 0.01%. In order to provide high statistical evidence

to these unusual and difficult to validate events an extremely low value

of FDR was used to select the PSMs assigned to novel peptides. In a se-

cond batch of searches, the filtered databases that include the proteo-

typic peptides predicted by our classifier of peptide detectability

(Guruceaga et al., 2017) were used. The FDR of the results obtained

with FilteredProteinDB database was calculated at PSM, peptide and

protein level using in house scripts in R programming language

(Gentleman et al., 2004), and a threshold of protein FDR < 1% was

applied. Then, PSM FDR at 0.01% was fixed for the analysis of

FilteredNonCodingDB and FilteredNovelDB results. The R code and

data necessary to test MiTPeptideDB are provided in http://bit.ly/

MiTPeptideDB (Supplementary Material S4).
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3 Results and discussion

3.1 Annotation of the MiTranscriptome assembly
The annotation process of the MiTranscriptome data using

GENCODE as reference resulted in the generation of three FASTA

databases: ProteinDB with peptides of 165 020 transcripts,

NonCodingDB with 146 341 and NovelDB with 72 597. Since

MiTranscriptome provides its own coding potential study independ-

ent to the GENCODE transcript biotype, the transcripts of these

databases were classified as: protein coding, lncRNAs, pseudogenes,

mixed read through and transcripts of unknown coding potential

(tucp). In Figure 2A we represented the distribution of the

MiTranscriptome biotypes in each of the generated databases. In the

case of ProteinDB we found 130 532 transcripts corresponding to

protein coding genes, 22 215 mixed read throughs, 11 444 lncRNAs,

784 tucps and 45 pseudogenes. NonCodingDB was constituted by

95 131 lncRNAs, 19 369 transcripts of pseudogenes, 13 805 protein

coding, 10 477 mixed read throughs and 7559 tucps. Finally, the

NovelDB database contained 69 096 lncRNAs, 3260 tucps,

188 transcripts of protein coding genes, 30 mixed read through and

23 pseudogenes. It is clear from this biotype distribution that most

of the transcripts of MiTranscriptome previously annotated in

GENCODE and with known amino acid sequences corresponded to

protein coding genes, in NonCodingDB lncRNAs and pseudogenes

were the most abundant genes and finally, the transcripts of

MiTranscriptome not included in GENCODE (NovelDB) were

mainly classified as lncRNAs.

We also compared the global transcript biotypes assignments of

MiTranscriptome and GENCODE for all the common transcripts,

that are 311 361. This comparison was performed considering the

most important categories common to both annotation databases:

‘protein coding’, ‘lncRNA’ and ‘pseudogenes’ (Fig. 2B). In general,

we found a great consistency in these assignments with discrepancies

in around the 15.89% (33 966 transcripts). The most abundant tran-

script categories were protein coding with 121 522 common tran-

scripts and lncRNA with 42 490. However the misclassified

transcripts between protein coding genes and lncRNAs are of special

interest: transcripts defined as protein coding in GENCODE that

were considered lncRNAs in MiTranscriptome (25 816 transcripts)

and transcripts defined as lncRNAs in GENCODE that were consid-

ered protein coding transcripts in MiTranscriptome (1310 tran-

scripts). Both gene sets are framed with a blue border in Figure 2B.

Therefore, the expected number of detected peptides in the prote-

omic searches of shotgun experiments would be higher using our

non-canonical bioinformatic pipeline based on a comprehensive

transcriptome obtained from thousands of experiments. While we

assume that some of the protein coding genes were misclassified as

lncRNAs by one of the annotation references, the mentioned tran-

scripts are not considered using standard reference databases. In

addition, this novel approach for the detection of new peptides can

be easily applied to other human transcriptomes obtained experi-

mentally (Supplementary Material S1).

3.2 Detection of novel peptides in cancer cell lines
The proof of concept for the detection of novel peptides of tumoral

origin was conducted in the experiments of the cell lines shared be-

tween the CCLE and the NCI60 datasets (Supplementary Table S1).

The analysis was initially performed using the complete protein data-

bases obtained after the proteogenomic analysis of MiTranscriptome

(Fig. 1) and following the restricted criteria of FDR defined by the

HPP guidelines for the identification of proteins using MS/MS experi-

ments (Paik et al., 2012b), and even a more restricted value of FDR

for the candidate novel peptides (FDR < 0.01%).

The results for the CCLE RNA-Seq samples are summarized in

Supplementary Table S2. A total and mean number of transcripts

per database expressed in the samples under study were: 161 536

and 137 912 transcripts, respectively, with a coefficient of variation

(CV) of 2.47% for ProteinDB, 127 785 and 70 087 transcripts in the

case of NonCodingDB (CV¼8.34%) and 50 143 and 13 729 tran-

scripts for NovelDB (CV¼17.92%). Interestingly, the larger the

number of lncRNAs and novel peptides in the considered database,

the fewer the number of transcripts expressed in the cell lines and

the higher the observed CV. When the results of the protein searches

were analyzed we found a similar trend, with more MS/MS detec-

tions using ProteinDB and a huge reduction of this number with

NovelDB (Supplementary Table S2). However, the number of

peptide identifications was more heterogenous across samples and

tissues compared with the large degree of uniformity found in the

transcriptomes of the same cell lines (Supplementary Fig. S1A–F).

A total and mean number of detected ProteinDB peptides were

51 210 and 11 128 (47 800 and 15 695 transcripts with a CV of

21%), 325 and 40 (1239 and 139 transcripts with a CV of 67.82%)

of NonCodingDB and 36 and 2 (131 and 7 transcripts with a CV of

88.08%) using NovelDB. The potential novel peptides were identi-

fied using the NonCodingDB and NovelDB databases with a total

number of 361 detections that comply with a very restrictive FDR

threshold given the high level of expected noise in these assignments.

However, it is already known that the number of false detections,

even with a strict control of the number of false positives, is very

high in these cases. Therefore biological validation is required to

characterize the function in the cell of the detected novel peptides

and their viability as biomarkers (Zhang et al., 2017).

A

B

Fig. 2. (A) Distribution of the number of transcripts in ProteinDB,

NonCodingDB and NovelDB databases as a function of the transcript biotype

assigned by MiTranscriptome. Percentages are shown for the biotypes with a

greater number of transcripts (>1%). (B) Heatmap with the comparison of the

biotypes assigned by MiTranscriptome and GENCODE. Common biotypes to

both annotation systems are remarked in bold and misclassifications of inter-

est are framed in blue
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The observed difference in magnitude of the results in the CCLE

and the NCI60 datasets is related to a technological issue. In the

case of the CCLE dataset RNA-Seq technology has been used and

the obtained transcriptome data are quite complete (Supplementary

Table S2). It is well known the difficulty in quantifying the

low-expressed transcripts but in this kind of experiments we obtain

transcriptome data for more than 200 000 transcripts. In contrast,

the NCI60 dataset consists of shotgun experiments that identify a

proteome of 8000 proteins at most (Supplementary Table S2).

Identification process using mass spectrometry is semi-random and

undersampling can explain the observed variability (Zhang et al.,

2013).

Combining the results of transcriptomic and proteomic experi-

ments it was possible to obtain the expressed transcripts of

MiTranscriptome for which any peptide was detected in the shotgun

experiment of the same cell line. This transcriptome guided analysis

can be a key bioinformatic and biological tool to provide an add-

itional support to the MS/MS identifications obtained from

MiTPeptideDB. In Supplementary Figure S1G–I we summarized the

results and a lower number of detected peptides that fulfilled this

proteogenomic filter can be observed: 50 968 peptides using

ProteinDB (46 517 transcripts), 267 from NonCodingDB (891 tran-

scripts) and five for NovelDB (11 transcripts). In terms of mean val-

ues of peptides and transcripts per sample we observed 11 040

peptides (14 874 transcripts) in ProteinDB, 32 peptides (110 tran-

scripts) in NonCodingDB and 1 peptide (two transcripts) in

NovelDB (Supplementary Table S2). This case study allowed us to

identify a total of 272 candidate peptides corresponding to 902 tran-

scripts that could be, after further validation studies, novel peptides

with important biological functions and implications in the molecu-

lar mechanisms of human diseases (Supplementary Material S5).

The number of detected novel peptides is in the range of the results

obtained in other studies focused on the identification of smORFs

and microproteins (Choi et al., 2018; Samandi et al., 2017), where

the authors highlighted the great number of false identifications and

the low rate of validations. This can be due to the technical limita-

tions of the MS/MS instruments when dealing with very rare and

low expressed peptides, although in the last years the new MS tech-

niques have increased the capacity of Proteomics significantly. These

results, despite their biological and clinical interest, have to be prop-

erly validated including the expression and tissue specificity of the

new transcripts, the coding potential of the novel peptides and their

molecular function (Perez-Gracia et al., 2017; Zhang et al., 2014).

Continuing the analysis of these results we tried to evaluate the

statistical and biological robustness of the novel peptide identifica-

tions. In Figure 3A we showed that the number of identifications

decreased according to the coding potential and the annotation

quality of the transcripts used to generate the databases and, as

expected, the obtained proteome coverage was not as high as the

transcriptome coverage. However, the integration of RNA-Seq and

MS/MS experiments can be used as a reference to select the best set

of novel peptide candidates. The ion score distribution obtained in

the Mascot searches for the significant PSMs (FDR < 1%) con-

firmed that the identification of novel peptides with high ion scores

is possible (Fig. 3B). Despite obtaining lower values of this score for

NonCodingDB and NovelDB assignments compared with the

ProteinDB results, in all the cases this value is higher than 40, a

value considered statistically significant in most of the Mascot

searches. In addition, the distribution of the MiTranscriptome tran-

script biotypes for the detected peptides (FDR < 1%) enhanced the

credibility of the results (Supplementary Fig. 2A): predominance of

peptides derived from protein coding genes using ProteinDB, a

mixture of protein coding and lncRNAs with NonCodingDB and

predominance of lncRNAs for NovelDB. Using the biotypes of

GENCODE the results were very similar, as can be seen in

Supplementary Figure 2B for NonCodingDB that is the most com-

plex database due to the presence of coding and non-coding tran-

scripts. Finally, the known higher tissue specificity of the non-

coding genes respect to the protein coding genes was also evident in

the peptide identifications (Supplementary Fig. 2C–E). A number of

detected transcripts shared among different tissues of origin were

higher in ProteinDB and smaller in NovelDB, where the peptide

identifications were restricted to certain tissues. This fact reinforces

our theory that the peptides of NonCodingDB and NovelDB,

although fewer in number, could be good novel candidates and de-

serve further consideration.

3.3 Quality improvement in proteogenomic databases

using peptide detectability
In order to have fully HPP compliant protein identifications and at

the same time avoid ambiguous identifications due to degenerated

peptides, we applied a peptide filter based on the peptide uniqueness

(Paik et al., 2012b). For that reason, the bioinformatic analysis

described in this study is completely suitable for the unambiguous

robust statistical detection of novel peptides with the added value of

its compatibility with the analysis guidelines of the BD-HPP project.

Another important peptide feature that is not considered in the bio-

informatic tools currently available in Proteogenomics is peptide

detectability, although its importance in high throughput proteomic

studies for protein detection and quantification (Li et al., 2010).

Peptide detectability of the MiTPeptideDB tryptic peptides was eval-

uated using a Random Forest classifier (Supplementary Material S2

and S3) obtained using more than 550 peptide properties and

trained with the information of the GPMDB database (Guruceaga

et al., 2017). Thus, MiTPeptideDB gives the possibility to perform

A

B

Fig. 3. (A) Comparison between the obtained transcriptome and proteome

coverages measured in number of transcripts. (B) Distribution of the Mascot

ion scores for the identified peptides
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proteomic analyses using databases in which the peptides with

low detection probability by MS/MS are removed. In order to evalu-

ate the differences in the obtained results, the NCI60 proteomic

analyses were also performed with the filtered databases:

FilteredProteinDB, FilteredNonCodingDB and FilteredNovelDB.

The statistical analyses were performed at PSM, peptide and protein

level (FDR < 1%) for FilteredProteinDB and only at PSM level for

FilteredNonCodingDB and FilteredNovelDB (FDR < 0.01%). In

this analysis we identified a total of 26 novel peptides corresponding

to 72 transcripts (Supplementary Material S5).

The comparison between the results obtained with the complete

and the filtered databases (Fig. 4) is specially interesting when RNA-

Seq experiments are used to identify novel peptides. In fact, this

database reduction is not only advisable but mandatory in those

cases where the decrease of the computational time is necessary or

the increase in the accuracy of the FDR calculation is essential to en-

sure reliable results as occurs with exploratory research, including

the definition of new biomarkers and biological findings with low

detection probabilities (The et al., 2016). In order to better evaluate

the differences only unique peptides were considered in this com-

parison. As expected, the results using FilteredProteinDB were better

in terms of statistical confidence and the observed differences were

homogeneous across cell lines (Fig. 4A) and their tissues of origin

(Fig. 4B) obtaining a higher number of detected peptides per

sample. The mean number of detected unique peptides with

FilteredProteinDB per sample was 7% higher than using ProteinDB

(Fig. 4C), 26% higher in the case of mean transcripts per sample.

We have also analyzed the physicochemical properties that contrib-

ute in a higher degree to the detectability of the novel peptides iden-

tified in the filtered databases compared with the identifications of

the complete databases. The statistically significant differences asso-

ciated with peptide detectability are related to the ionization cap-

ability of the peptides, their complexity, their amino acid

composition and their hydrophobicity (Supplementary Table S3), as

previously described (Tang et al., 2006). Besides, these candidate

novel peptides were searched against the current human assembly

(GENCODE 30) using BLASTP (https://blast.ncbi.nlm.nih.gov/

Blast.cgi). Considering the 361 novel peptides identified with

MiTPeptideDB, 85 would remain being novel while 10 of the 26

detected novel peptides with the filtered databases would still be

novel peptides (Supplementary Material S5).

4 Conclusion

Proteogenomics is a promising area of research in several techno-

logical and scientific areas, especially in Biology, Biomedicine and,

in the last few years, clinical biomarker discovery (Nesvizhskii,

2014) and the detection of functional and regulatory elements such

as smORFs and microproteins. In general, the optimal sequencing

technology for these analyses is RIBO-Seq. However, considering

the huge number of RNA-Seq experiments publicly available, we

developed a bioinformatic analysis pipeline capable of handling the

high noise level of these datasets. The bases of proteogenomic meth-

ods are the creation of custom databases for the proteomic searches

and the subsequent statistical analyses for the FDR estimation in the

obtained results considering the size effect of these databases

(Ansong et al., 2008). Usually, custom databases are generated from

NGS experiments using the 3 or 6-frame translation method to infer

the protein amino acid sequence of the identified DNA or RNA

structures. This approach can be useful for the development of per-

sonalized databases in the case of the multiomic study of a single pa-

tient of a disease (Garin-Muga et al., 2016).

In this manuscript, we present a new approach which takes as its

starting point the MiTranscriptome human assembly (Iyer et al.,

2015), a human de novo transcriptome assembly based on more

than 7000 samples mainly from different tumor types of the TCGA

project. We used the transcripts found after the analysis of the

RNA-Seq experiments of all these samples to generate different cus-

tom databases according to the quality of the transcript annotations

and the availability of their amino acid sequence. In addition, we

introduced two database filtering steps to reduce the number and

improve the quality of these peptides. First, we applied a filter of

peptide uniqueness in line with the guidelines proposed by the HPP

project, avoiding the ambiguous identifications derived from degen-

erate peptides. Afterward, we removed those peptides considered

non-detectable by MS/MS using a Random Forest classifier that was

an innovation in this kind of proteogenomic analyses. In this way, it

is possible to increase the computational efficiency of the searches

independently of the search engine used and mitigate the effect of

their size in the FDR estimation. In fact, the FDR must be even more

carefully controlled in the case of the spectra assignments corre-

sponding to candidate novel peptides and FDR < 0.01% was used

for these events.

The comprehensive comparison of the MiTransctriptome and

GENCODE transcript biotype assignments showed differences

between the two annotations. The most interesting ones were those

between protein coding and lncRNA biotypes, which suggested the

existence of transcripts defined as non-coding in one of the annota-

tion sources that can be considered coding using the other one.

The possibility of detecting those peptides was enhanced using our

proteogenomic approach.

As a proof of concept, we identified novel peptides in shotgun

experiments of different cancer cell lines using MiTPeptideDB with

high-throughput experiments from the CCLE and the NCI60 proj-

ects. A total of 43 cell lines from different tissue origins were

A

B C

Fig. 4. (A) Comparison of the number of detected unique peptides between

ProteinDB and FilteredProteinDB per sample and (B) tissue of origin. (C) Total

number of unique peptides detected using ProteinDB and FilteredProteinDB
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analyzed to determine the expression level of the transcripts from

the custom databases and detect proteins and peptides in the shot-

gun experiments. However, further validation experiments should

be designed, for example, using MRM, focused on the common

results to both technologies. In this manner, we would increase the

likelihood of the peptide detections in a particular cell line. This is

especially important in the case of the novel peptides because their

characterization is not straightforward although their known impli-

cation in biology and diseases. The in-depth study of these findings

must include an evaluation of the statistical significance obtained

for their detection, their molecular function and specific expression

in a certain biological matrix.

In summary, in this manuscript we introduce a bioinformatic

workflow for the detection of novel peptides and their proteoge-

nomic analysis. This resource was generated based on a human as-

sembly (MiTranscriptome), a set of custom databases and for the

first time a filtering process based on the predicted peptide detect-

ability to deal with the disadvantages of high size databases and

noisy RNA-Seq experiments. We analyzed a set of shotgun experi-

ments from cancer cell lines validating the capacity of

MiTPeptideDB to deliver good results. We provide the databases in

FASTA format, their transcript annotation, the peptide detectability

classifier and the code needed to use the bioinformatic pipeline

(http://bit.ly/MiTPeptideDB).
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