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Abstract

Motivation: The validity of model based inference, as used in systems biology, depends on the

underlying model formulation. Often, a vast number of competing models is available, that are

built on different assumptions, all consistent with the existing knowledge about the studied bio-

logical phenomenon. As a remedy for this, Bayesian Model Averaging (BMA) facilitates parameter

and structural inferences based on multiple models simultaneously. However, in fields where a

vast number of alternative, high-dimensional and non-linear models are involved, the BMA-based

inference task is computationally very challenging.

Results: Here we use BMA in the complex setting of Metabolic Flux Analysis (MFA) to infer whether

potentially reversible reactions proceed uni- or bidirectionally, using 13C labeling data and metabol-

ic networks. BMA is applied on a large set of candidate models with differing directionality settings,

using a tailored multi-model Markov Chain Monte Carlo (MCMC) approach. The applicability of our

algorithm is shown by inferring the in vivo probability of reaction bidirectionalities in a realistic net-

work setup, thereby extending the scope of 13C MFA from parameter to structural inference.

Contact: k.noeh@fz-juelich.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Quantitative models in systems biology are tools that formalize

assumptions to make inferences from data. With that, these models

are key to generating hypotheses about, and gaining insights into,

biological phenomena that are not directly measurable (Cvijovic

et al., 2014; Kremling, 2013). In particular, in the field of biochem-

ical network modeling, this process has become an accepted state-

of-the-art where models, which are operated as measurement instru-

ments, are constructed from assumptions that rest upon known bio-

chemical interactions. However, even though the biochemistry is

unquestioned, it only informs about what can happen and not what

does happen in living cells. What actually does happen depends on

many factors, for example the in vivo intracellular conditions, which

are known to be poorly characterized (Teusink et al., 2000;

Tummler and Klipp, 2018). The discrepancy between what can hap-

pen and what does happen, forces modelers to introduce assump-

tions to their models, that go way beyond firm knowledge, and are

therefore of a more subjective nature.

Becoming part of the model (as part of its mathematical structure

or as parameter), subjective assumptions pose a double edge: On the

one hand, seeing the model as a measurement instrument, they intro-

duce uncertainty into the drawn inferences. On the other hand, the

assumptions can be proven false by the data, thereby prompting the

modeler to reconsider what is known about the system. The latter is

the driver of knowledge generation in the scientific method.

However, in biology knowledge generation by model rejection faces

limitations when the space of potential model formulations grows

combinatorially with the number of subjective assumptions. In this

case, selection of a single model for making inferences is often no

longer justified by the data (Brenner, 2010; Kirk et al., 2015).

Where a large number of models, based on competing assump-

tion sets, are at hand, approaches have been introduced that com-

pensate for the lack of knowledge. One principal trait of methods

relies on the principle of parsimony (Rish and Grabarnik, 2014).

Such sparse modeling approaches deliver a single minimalistic model

that captures essential features, conditioned to the type of
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complexity punishment applied. Consequently, such approaches are

unable to yield confidence in, or disprove of, subjective assumptions.

An alternative paradigm is to compensate for the lack of knowledge

by random sampling. Sampling approaches tie hand-crafted model

classes to available data to make joint inferences with the ensuing

model ensembles (Kuepfer et al., 2007; Liu et al., 2015; Mi�skovi�c

and Hatzimanikatis, 2011; Tran et al., 2008). These ensemble meth-

ods are geared towards increasing prediction robustness, however,

they have not been formalized in a probability theoretic framework.

Hence, they do also not have the potential to evaluate the probabil-

ity of the made assumptions. Statistically rigorous approaches have

been developed within the Bayesian framework to facilitate models

as quantitative measurement instruments, despite conflicting sub-

jective assumption sets, often aiming at distinguishing and ranking

models according to their appropriateness (Toni et al., 2009;

Vyshemirsky and Girolami, 2008). A Bayesian approach, suited to

deal with many ‘on par models’, is Bayesian Model Averaging

(BMA), an established statistical technique for addressing model un-

certainty, which uses an ensemble of models and grades the import-

ance of inferences made by each of these models with the

probability of that model (Hoeting et al., 1999). BMA is rarely

applied in systems biology, with sparse exceptions (Oates et al.,

2014; Timonen et al., 2018).

Here, we explore the potential of the BMA methodology in

quantitative inference problems, where the models are assembled

partly from set-in-stone biochemistry and partly from more subject-

ive assumptions. In this context an important, yet computationally

challenging class of these problems is the flux inference problem

that originates from 13C Metabolic Flux Analysis (MFA) in the field

of fluxomics (Wiechert, 2001). The final outcome of a 13C MFA

study is a flux map, that visualizes the metabolic (net) rates of

central carbon metabolism. The unique feature of this technique is

its potential to reveal not only the net fluxes, as this is the case for

many fluxomics tools, but enables a statement about whether a

potentially reversible reaction proceeds uni- or bidirectionally (i.e.

progresses in either forward or backward direction or in forward

and backward direction simultaneously). In 13C MFA, as in the gen-

eral case, the biochemistry which governs the assembly of metabolic

models is considered set-in-stone, but in vivo aspects, such as

whether a reaction progresses in a single direction only or is bidirec-

tional, is less clear (Cornish-Bowden and Cárdenas, 2000; Wiechert,

2007). In the traditional toolbox of 13C MFA, the more subjective

assumptions on the reaction bidirectionality are typically handled in

an exhaustive way, i.e. all reactions that potentially carry a bidirec-

tional flux are made bidirectional. This single-model paradigm is

susceptible to overfitting, since it yields overly complex models with

many degrees of freedom. In contrast, BMA handles this challenge

using a multi-model approach, where each model has declared a

unique combination of reactions bidirectional. The individual

models are simpler than the exhaustive model in the single-model

approach and are, thus, less prone to overfitting. Most importantly,

instead of leaving the choice of bidirectionalities in the hands of sub-

jective assumptions, BMA infers the probability of unknown bidir-

ectionalities and simultaneously performs flux inference, taking the

model probabilities into account.

The class of 13C MFA multi-model BMA inference problems we

address here, is computationally very challenging, since typical 13C

MFA models, describing the fractional labeling enrichment of the

intracellular labeled species, are non-linear, comprise tens of flux

parameters and millions of assumption sets. To tackle this challenge

we utilize Reversible Jump Markov Chain Monte Carlo (RJMCMC)

(Green, 1995), which is a special class of MCMC sampling

algorithms for multi-model problems, which we tailor to the
13C MFA context. We test this computational strategy for bidirec-

tionality inference with respect to computational tractability and

correctness, using a community-typical 13C MFA model of the

central carbon metabolism Escherichia coli.

2 Approach

2.1 13C Metabolic Flux Analysis
13C MFA is the state-or-the-art technique to infer in vivo metabolic

reaction rates (fluxes) using data generated in carbon labeling

experiments (CLE) (Wiechert, 2001; Zamboni et al., 2009).

Inferring the fluxes h from the labeling data g is a typical inverse

problem. First, assuming that the fluxes h are known, the labeling

data of a CLE is predicted in silico using a computational modelMi

of cell metabolism. Herein, the predicted labeling is calculated by

solving a high-dimensional equation system derived from mass bal-

ancing (forward problem). Then, the unknown fluxes h are inferred

by solving the inverse problem: Starting from some initial guesses,

the fluxes are altered in an iterative manner, until the model pre-

dicted labeling is coherent with the experimentally observed one.

Coherence between the predicted and the observed labeling is meas-

ured my means of the so-called likelihood function pðgjhÞ, which

states how likely the experimental outcome is, given that the model

Mi and the inferred fluxes h are correct.

Bayesian interpretations of the flux inference problem have been

introduced by Kadirkamanathan et al. (2006) and Theorell et al.

(2017). The center piece of Bayesian inference is Bayes’ theorem

(Wasserman, 2013). In the context of 13C MFA it states that the pos-

terior probability distribution of the fluxes h conditioned on the

data g, pðhjgÞ, is proportional to the likelihood pðgjhÞ and the prior

flux distribution pðhÞ, formalizing relevant available knowledge

about the fluxes:

pðhjgÞ ¼ pðgjhÞ � pðhÞÐ
hpðgjhÞ � pðhÞdh

(1)

Herein, all probabilities are given with respect to a particular model

Mi, which is chosen prior to flux inference. Therewith, the flux in-

ference methodology essentially is a single-model approach, relying

on the assumption that the correct model structure is known.

Precisely, a 13C MFA modelMi is composed of a set of metabol-

ic reactions with specified stoichiometry, their associated atom tran-

sitions and assignments of the reactions’ (bi)directionalities, besides

inequality constraints on the fluxes to exclude physiologically mean-

ingless system states (Wiechert, 2001). Precisely, a reaction can ei-

ther be unidirectional, if operating in a single direction only, or

bidirectional, if the labeling is exchanged between the reactants.

Consequently, while the rate of a unidirectional reaction is fully

characterized by its net flux, bidirectional reactions are accompa-

nied by two flux values, the net and exchange fluxes (Wiechert and

de Graaf, 1997), constituting the flux vector h. Here, the net flux

specifies the overall reaction rate, which is the difference between

the reaction’s forward and backward flux. Complementary, an ex-

change flux quantifies the exchange of label between the reactants

(by nature, non-negative), which is oblivious of the direction.

Precisely, an exchange flux is defined as the minimum of the for-

ward and backward flux. Thus, a unidirectional reaction is charac-

terized by a zero exchange flux.

While the reaction stoichiometries and atom transitions are found

in biochemistry textbooks and reaction databases, whether a reversible

enzymatic reaction actually operates uni- or bidirectionally essentially
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depends on the thermodynamic driving forces in the in vivo condi-

tions. Therefore, in the model, the choice of the reaction bidirectional-

ities is often not clear. In this case, it is generally recommended to set

the reaction bidirectional (Wiechert, 2007).

2.2 Inferring probabilities of reaction bidirectionalities
An underlying assumption of Eq. (1) is that the chosen modelMi is

equipped with the correct reaction bidirectionality setting.

However, commonly, the reaction bidirectionality setting is subject

to uncertainty, implying that selection of any one particular setting

risks biasing the flux inference. In view of the ultimate goal of 13C

MFA, quantitative flux inference, acknowledging these sources of

model uncertainty is desirable.

In the following, instead of one single modelMi, we consider the

model, M, to be a random variable with outcomes in a family of 2n

models fMigi, where n is the number of reversible reactions (see

Supplementary Information S.2 for nomenclature used throughout).

Each model Mi is associated with a set of flux parameters hi. The

probability of the kth reaction (out of n reversible ones) being bidirec-

tional in view of the data, averaged over the model family, is denoted

pðDkjgÞ, where Dk is a binary random variable determining whether

the reaction is bidirectional. For a single modelMi; DkjMi
is 0 or 1 de-

pending on whether the kth reaction is uni- or bidirectional, respective-

ly (Dk is fully determined by outcomes of M). The posterior

probability pðDkjgÞ relates to in how many of the models in the family

fMigi the reaction is bidirectional and how probable these models are.

To calculate pðDkjgÞ, we first introduce how pðDkjgÞ is expressed

in terms of the whole model family and then transform that expres-

sion into a form that relates to the single modelsMi with their asso-

ciated fluxes hi. Expressing a single probability in terms of a model

family is formalized in BMA (Hoeting et al., 1999). Here, the prob-

ability of the kth reaction to be bidirectional, pðDkjgÞ, is averaged

over its bidirectionality probabilities determined for all single mod-

elsMi in the model family, DkjMi
, weighted with the posterior prob-

abilities of the single models:

pðDkjgÞ ¼
X

i

pðDkjMi; gÞ � pðMijgÞ ¼
X

i

DkjMi
� pðMijgÞ (2)

Herein, the second equality follows from definition, pðDkjMi; gÞ ¼
DkjMi

, since the directionality of a reaction is directly known from

the model. Eq. (2) shows where the ‘averaging’ in BMA comes from:

The probability of pðDkjgÞ is the average of DkjMi
, weighted with the

posterior probability of the model, pðMijgÞ. To calculate averaged

reaction direction probabilities, the probability pðMijgÞ for each

model out of the model family fMigi is to be determined. To calcu-

late these probabilities Bayes’ theorem is employed, analogous to

Eq. (1), but for models rather than the fluxes. Since each modelMi

relies on associated fluxes hi, we marginalize over the models’ flux

spaces. Combining Bayes’ theorem and marginalization (Wasserman,

2013), then leads to the expression for the posterior probability of the

modelMi:

pðMijgÞ ¼
Ð
hi

pðgjhi;MiÞ � pðhijMiÞ � pðMiÞ dhiP
i

Ð
hi

pðgjhi;MiÞ � pðhijMiÞ � pðMiÞ dhi
(3)

For the combined posterior probability distribution pðhi;MijgÞ
Bayes’ theorem gives:

pðhi;MijgÞ ¼
pðgjhi;MiÞ � pðhijMiÞ � pðMiÞP

i

Ð
hi

pðgjhi;MiÞ � pðhijMiÞ � pðMiÞ dhi
(4)

Inserting Eq. (3) into Eq. (2) (and recognizing that the

normalizing constants are identical), yields the expression for the

probability of the kth reaction to be bidirectional for the model fam-

ily fMigi:

pðDkjgÞ ¼
X

i

DkðMiÞ
ð

hi

pðhi;MijgÞdhi (5)

In realistic problems, evaluation of pðDkjgÞ in Eq. (5) amounts to

calculating a high dimensional integral. Since the integral does not

have a closed-form solution, numerical approximation is required.

To approximate the posterior pðDkjgÞ we use MCMC which sto-

chastically generates samples mimicking the unknown probability

distribution. The design of the MCMC sampler represents the core

algorithmic innovation of this work, which is detailed in Section 3.

2.2.1 Bridging BMA and Ockham’s Razor

Before presenting algorithmic details, a remark is appropriate con-

cerning the relation between single- and multi-model paradigms.

The posterior probability of the model Mi; pðMijgÞ, in Eq. (3) is

determined by the value of the likelihood function pðgjhi;MiÞ for

the average fluxes (average with respect to the prior, pðhijMi), ra-

ther than for the optimal flux values). This property penalizes over-

parameterized models, since these are overly flexible and therefore

have well-performing best parameter sets, but show poor perform-

ance on average (Mackay, 2003). This links Bayesian model prob-

ability to Ockham’s Razor, also known as the principle of

parsimony, which states that simple explanations are preferable to

more complex ones. BMA inherits Ockham’s Razor from the model

probabilities, since it weights the importance of each model by its

probability. This recognition relates to the single-model approach

sketched in the introduction, in which the fluxes are inferred from a

complex ‘super-model’ with all potentially bidirectional reactions

set bidirectional. Importantly, this single-model approach cannot

yield the probability of the bidirectionalities, since it, by only consid-

ering one model, neglects that simpler models are more likely.

Therefore the super-model approach does not take model probabil-

ity, and thereby Ockham’s Razor, into account. The multi-model

approach, via BMA, examines conditional probabilities of the

super-model through the candidate models, where each candidate

model is an instance of the super-model with some exchange fluxes

conditioned to be zero.

3 Algorithms

To estimate the posterior distribution of the reaction bidirectional-

ities, the high-dimensional integral in Eq. (5) needs to be approxi-

mated numerically. Solving such kind of problems has been

revolutionized by MCMC methods (Brooks et al., 2011). Using

MCMC, integrals on the form of Eq. (5) are approximated by means

of the law of large numbers (Wasserman, 2013). This requires that

the integral is reformulated in the form of an expectation:

pðDkjgÞ ¼ EpðMjgÞ½Dk� (6)

Then, to approximate the posterior probability of the reaction bidir-

ectionality, pðDkjgÞ, samples from the target distribution pðhi;MijgÞ
are generated by MCMC. According to the law of large numbers,

the average over these samples converges to the desired expected

value in the limit of large sample size. In MCMC, samples are gener-

ated by constructing a Markov Chain, which induces a series of

evolving states ht;i, with stationary distribution equal to the desired

target distribution. To create a Markov Chain with target distribu-

tion pðhi;MijgÞ, the Metropolis-Hastings (MH) algorithm is used

(Brooks et al., 2011). The MH algorithm is defined by a Markov
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Chain-inducing transition density g and an acceptance/rejection cri-

terion, which corrects the induced Markov Chain to have the desired

stationary distribution.

For single-model target distributions with a continuous state

space, a range of efficient transition densities are at hand (Brooks

et al., 2011). In this context, efficient means that consecutive states

in the Markov Chain have low autocorrelation time relative to the

computation time of the state transitions. For the multi-model case

considered in this work, we have to transition between model state

spaces, represented by fluxes hi, using the binary indicator variable

Dk. Remember, a distinct property of the model family fMigi is that

any reaction that is bidirectional contributes a net flux and a (posi-

tive) exchange flux value to hi, while all unidirectional reactions

solely contribute one net flux (the exchange flux is zero). To make

the composition of hi and its relation to the model structure explicit,

henceforth, we denote the net and exchange fluxes of model Mi, �

and �i, respectively. Here, as Dk, the net fluxes are void of the sub-

script i because they are present in all models of the family fMigi,

while the subscript i for the exchange fluxes �i stresses that these are

specific to one model Mi. Notice that only inference about the

shared entities (net fluxes � and reaction bidirectionalities Dk) is pos-

sible for the whole model family.

Operating a Markov Chain across a model family, thus, requires

the transition density to account for differing state space dimension-

alities depending on the bidirectionality (and exchange flux) setting

associated with the model states. The computational key challenge

of multi-model inference encountered when solving Eq. (6) is sam-

pling from the joint posterior distribution pð�; �i;MijgÞ in Eq. (4).

We tackle this challenge by employing RJMCMC (Green, 1995).

RJMCMC is a sub-class of MCMC methods tailored for drawing

posterior samples spanning multiple parametric models together

with their model-specific parameters, by jumping between models as

part of the sampling.

3.1 RJMCMC for multi-model sampling
The core element of our RJMCMC sampler for multi-model infer-

ence is the transition density g for sampling from the joint posterior

distribution pð�; �i;MijgÞ. This RJMCMC transition density g con-

sists of two densities: the density gp for model-specific flux explor-

ation updating the flux vectors �; �i (intra-model jumping), and the

density gm for model space exploration updating the exchange flux-

model pair �i;Mi (inter-model jumping). Notice that, for both gp

and gm, �i only contains the exchange fluxes that are part of Mi,

thus the updates never change the value of an exchange flux outside

the scope of the present model.

Before discussing the transition distributions in detail, the gen-

eral setup of the RJMCMC algorithm is outlined (Algorithm 1).

Starting from initial model and flux states, a Markov Chain of states

�t; �t;i;Mt;i is produced, indicated by the subscript t. Sampling from

the mixed RJMCMC transition density g is done in two steps: First

it is determined whether the sample is drawn from either gm or gp

with fixed probability (Algorithm 1, L3), then an inter- or intra-

model sample is drawn from the selected distribution (Algorithm 1,

L5, 14).

The proposed states (indicated by superscript $) are then accepted

or rejected according to given criteria, following the standard MH

scheme. In our case, two rejection criteria are posed, one for inter-

and one for intra-model jumping. The rejection criteria depend on the

transition densities gm, gp of the proposed states, the likelihood

pðgj�; �i;MiÞ, as well as the prior pð�; �i;MiÞ (Algorithm 1, L6, 15

using the shorthand zð�; �i;MiÞ ¼ pðgj�; �i;MiÞ�pð�; �i;MiÞ).

Depending on whether the value of the rejection criterion, a, exceeds

a random uniform number u 2 ½0;1� or not, the proposed states are

either rejected or accepted (Algorithm 1, L8–12, 17–21). In case of ac-

ceptance, the proposed state is the next state, in case of rejection, the

next state remains identical to the present state. This way, N samples

are obtained for evaluating Eq. (6).

3.2 13C MFA-tailored RJMCMC transition densities
The key for a computationally efficient RJMCMC algorithm is a

well-designed transition density g that allows the Markov Chain to

explore the state space, so that the visited states have short autocor-

relation time in relation to the computational cost of producing sam-

ples. Here, the desired behaviour of the transition density is to

suggest states that are as different from the present state as possible,

without causing high rejection rates. Next, we describe how the

transition densities for intra- and inter-model jumping are

constructed.

3.2.1 Intra-model transition density gp

The transition density gp operates on the net fluxes �, that take

values in continuous space and have fixed number of dimensions.

Thereby, it is equivalent to the transition density employed in

Theorell et al. (2017), also used in this work, which relies on a

classic hit-and-run transition density (Bélisle et al., 1993) to up-

date the flux states �; �i. For the hit-and-run direction choices, the

probability of a direction is proportional to the width of the max-

imum volume ellipsoid, fitted within the flux space (Zhang and

Gao, 2003).

Algorithm 1: RJMCMC algorithm for 13C MFA.
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3.2.2 Inter-model transition density gm

The underlying idea of the inter-model density gm is that model

jumps are proposed by going through the list of reversible reactions

and changing some of the directionalities. In the context of 13C

MFA, switching a reaction from bidirectional to unidirectional

is equivalent to annihilate the exchange of label between

substrate and product pools of the reaction, i.e. setting the exchange

flux to zero (Wiechert, 2001). Thus, in gm, model switches are

caused by either turning zero exchange fluxes to a non-zero value

(referred to as direction activation) or turning non-zero exchange

fluxes to zero (referred to as direction deactivation). In the update

mechanism that we deploy, net fluxes remain constant under inter-

model jumps.

To achieve high acceptance rates, the proposed transition density

gmð�?j ;M?
j j�t; �t;i;Mt;iÞ nullifies exchange fluxes that are close to

zero. This leads to only small changes in the simulated labeling frac-

tions and, therefore, small changes in the value of zð�; �i;MiÞ,
the product of the likelihood and the prior, implicating high accept-

ance rates. Therefore, the probability to deactivate the kth reaction

of state t is set to ð�t;i;k=maxð�t;i;kÞÞb with b > 0 controlling the de-

activation rate (Algorithm 2, L4). Here, a high (low) value for b
gives a high (low) deactivation rate. Notice that, after convergence

of the sampler, the policy of increasing the deactivation probability

for near-zero fluxes has no effect on the produced posterior, since

the increased probability is matched by an increase in MH

rejections.

For activating reactions, no heuristic, similar to the one used for

reaction deactivation, is possible, since all non-active exchange fluxes

are 0. Therefore, the activation probability c 2 ½0; 1� is introduced

and the probability for a reaction unidirectional inMt;i to become bi-

directional in M?
j , is set to c (Algorithm 2, L14). Due to so-called

dimensionality matching (Green, 1995), the activated exchange fluxes

cannot be initialized with the value 0, but must be given a random

value from some continuous distribution. Therefore, an activation

distribution pactð�?j;kÞ is introduced, from which the values of acti-

vated exchange fluxes are sampled (Algorithm 2, L16).

An important aspect of the MH algorithm is that it requires both

the forward probability of the proposed state gmð�?j ;M?
j j�t;

�t;i;Mt;iÞ and the backward probability of the current state

gmð�t;i;Mt;ij�t; �
?
j ;M?

j Þ, when jumping from the current modelMt;i

to the proposed modelM?
j (Algorithm 1, L6). This means, that the

changes in bidirectionality have to be tracked. To this end, four

index sets are introduced:

1. Ldeact: indices of the reactions that switch from bidirectional in

Mt;i to unidirectional inM?
j j (Algorithm 2, L6),

2. Linc: indices of reactions that are bidirectional in both models

(Algorithm 2, L8),

3. Lact: indices of reactions that switch from unidirectional inMt;i

to bidirectional inM?
j (Algorithm 2, L16),

4. Lexc: indices of reactions that are unidirectional in both models

(Algorithm 2, L18).

Back- and forward transition probabilities are calculated by mul-

tiplying the probability of all events recorded by the index sets. Note

that when computing the backward probability, the activation and

deactivation sets swap roles, since fluxes that are activated in one

jump direction are deactivated in the other (Algorithm 2, L21–22).

3.3 Implementation details
The presented RJMCMC algorithm for reaction direction inference

from labeling data was implemented in Cþþ. It is well-known that

MCMC methods risk displaying pseudo-convergence, which is a

state where the Markov Chain appears to have converged, but has

in fact only explored some of the target modes (Brooks et al., 2011).

To make the Markov Chains more robust towards pseudo-conver-

gence, parallel tempering with dynamic temperature selection was

used (Vousden et al., 2016). The parallel tempering scheme was par-

allelized for computational efficiency. For the simulations, 30 paral-

lel chains were run. To decrease the influence of the starting state,

all benchmark runs were preceded by a burn-in period of 105 sam-

ples. MCMC requires generation of a large number of state pro-

posals to achieve convergence of the Markov Chains, in realistic 13C

MFA settings up to millions (Theorell et al., 2017). Each new state

requires the simulation of the labeling fractions emerging from the

flux-model pairs hi;Mi. For efficient network simulation, the high-

performance computation suite 13CFLUX2 was used (Weitzel et al.,

2013). The specification of the model is given in the FluxML format

(Beyß et al., 2019).

For computations, the (de)activation parameters b and c were set

to 0.1. As activation distribution pact a normal distribution was

Algorithm 2: Transition density gm for Markov Chain jump

proposals.
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used, truncated to ½0; 1�, with zero mean and standard deviation 0.1.

To avoid changes in the prior volume when switching between mod-

els with different number of exchange fluxes, all exchange fluxes are

transformed linearly to lie in the interval [0, 1]. The influence of

these parameters on the performance of the RJMCMC-algorithm is

investigated further in a parameter sensitivity study (Supplementary

Information S.2). The parameter study shows that the RJMCMC

performance is relatively insensitive to the parameter values, as long

as extreme choice are avoided (such as b¼1 or c¼1).

4 Results and discussion

Due to the novelty of our 13C MFA multi-model approach, two

aspects are of primary interest:

• Computational feasibility: High-dimensional MCMC for trad-

itional single-model flux inference with network models of realis-

tic complexity is computationally highly intensive (Theorell

et al., 2017). A multi-model approach might increase this high

computational burden excessively. Thus, first we test the compu-

tational tractability of the RJMCMC algorithm in a realistic 13C

MFA scenario. To get insights into the computational perform-

ance of the RJMCMC-sampler, we compare it to the closest pub-

lished algorithm, namely single-model MCMC.
• Reaction bidirectionality recovery: We investigate the capacity of

our multi-model approach to quantify the probabilities of revers-

ible reactions to be uni- or bidirectional in vivo. We do this with

a network model, typical for the field of 13C MFA, and a meas-

urement configuration, that is considered cutting edge

(Kappelmann et al., 2016). Since the single-model approach does

not yield probabilities for the reaction bidirectionalities (Section

2.2.1), direct comparison between the outcomes of the single-

and multi-model approaches in this point is infeasible.

Therefore, the ability of the multi-model approach to determine

bidirectionality is studied in a setting with known reference solu-

tion and two labeling strategies at hand.

To demonstrate the utility of the multi-model approach and the

proposed RJMCMC sampler in these two aspects, we selected a real-

istic 13C MFA application with the model organism E.coli, based on

the study by Crown et al. (2015). The metabolic network, typical in

its size, includes all major metabolic pathways of central carbon me-

tabolism, lumped amino acid synthesis and biomass formation, as

this is representative for the vast majority of studies in the field.

The network model features 119 metabolites and 64 reactions,

out of which 24 are considered potentially reversible (Fig. 1). Out of

these 24 potentially reversible reactions, 23 are set reversible in the

original model (Crown et al., 2015). One additional reaction was

added to the set of reversible fluxes since it was recently discovered to

be bidirectional (Long et al., 2017). In their original study, 18 of the

23 exchange fluxes were found to be practically unidentifiable, des-

pite extensive measurement sets stemming from 14 CLEs. To generate

a reference flux map, for the net fluxes (all reactions are equipped

with net fluxes, 8 independent) the best flux estimates reported by

Crown et al. (2015) were used. For the exchange fluxes, the 24 poten-

tially bidirectional reactions were divided into two groups (see Fig. 1),

7 de facto uni- and 17 bidirectional, in which all exchange flux values

were set to 0 and 100, respectively. Using these reference fluxes, LC-

MS/MS measurements were simulated according to the setup given in

(Kappelmann et al., 2016) and equipped with Gaussian noise (abso-

lute measurement error of 0.01). The full network and measurement

specifications are provided in Supplementary Information S.1.

4.1 Computational feasibility of the RJMCMC algorithm
To assess the computational performance of the RJMCMC sampling

algorithm, it is compared to the single-model MCMC approach. A

standard measure when comparing the performance of MCMC

methods, is the relative speedup in Effective Sample Size (ESS)

(Gilks et al., 1995). To make both MCMC sampling scenarios as

similar as possible, the single-model MCMC sampler was run for

the E.coli model where all potentially bidirectional reactions were

set bidirectional. MCMC convergence was monitored with the net

fluxes, since these are shared by all models (the posterior distribu-

tions of the net and exchange fluxes are provided in Supplementary

Information S.2). The minimal obtained ESS over all covariates after

106 samples (only each 100th sample was saved to reduce disc mem-

ory usage), averaged over ten independent runs, was recorded for

both samplers. As a complement to ESS, several convergence tests

were performed (Supplementary Information S.2). These include the

Potential Scale Reduction Factor (PSRF), mixing plots to show con-

vergence for the continuous parameters, and discrete mixing plots to

show convergence in the model space. All tests indicate convergence

of the RJMCMC sampler.

The MCMC and RJMCMC samplers obtained an average ESS

of 8 6 2 and 854 6 128 respectively, showing that the RJMCMC

sampler achieves approximately a 107-fold increase in sample qual-

ity. Each of the ten independent runs took on average 16.2 and

19.7 h for MCMC and RJMCMC respectively in wall clock time.

This is a remarkable performance difference, recognizing that

the time to convergence of many MCMC samplers has been shown

to increase with the number of dimensions (Beskos et al., 2013;

Roberts et al., 1997). We conclude that the faster convergence of

RJMCMC is explained by the difference in dimensionality, where

the single-model used for MCMC had 32 (8 net, 24 exchange)

degrees of freedom (DOF) and the RJMCMC models had 21.5 DOF

on average. The faster convergence of RJMCMC implies that the

speed-up caused by the lower dimensionality outweighs the increase

in complexity of the multi-model inference task caused by the

multiplicity in model formulation. With this, we conclude that the

multi-model approach is computationally feasible, and furthermore,

introduces a significant speedup compared to the single model

approach.

4.2 Recovering bidirectional reaction steps from
13C data
After approving computational tractability, we evaluated the ability

of the RJMCMC algorithm to identify whether reactions are uni- or

bidirectional from given data. A specific characteristic of 13C MFA

is that the choice of the isotopically labeled substrate used in the

CLE crucially influences the quality of traditional flux inference

(Crown et al., 2015; Möllney et al., 1999). Therefore, we took the

same network model and measurement configuration as before, and

considered two different input labeling compositions: (i) a compar-

ably cheap, often used 1:4 mixture of uniformly [U-13C]- and un-

labeled glucose, and (ii) 100% [1,2-13C]-glucose, which has been

reported to be more informative (Crown et al., 2015).

By applying the RJMCMC algorithm to the network model, we

derived the posterior probability of each reversible reaction being bi-

directional for both labeling sets (Fig. 1). Inspecting the reactions

that were unidirectional in the reference flux map, but set potential-

ly bidirectional in the model, GOX1, AA10, PPP6, PPP7, TCA4,

AA9 and TCA6, we see that all fluxes, except TCA4 and TCA6,

were identified as unidirectional with high certainty, independently

of the tracer used. For TCA4 and TCA6, none of the two datasets
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could inform whether the reactions were uni- or bidirectional, which

is expressed in the intermediate probabilities of the reactions. The

reactions EMP2, PPP3, PPP5, PPP8, PPP9, TCA7, TCA8 and

TCA9 were correctly identified as bidirectional by both datasets,

whereas EMP4 and EMP5 were correctly identified as bidirectional

for the [1,2-13C]-glucose tracer, but remained undecided for the

tracer mixture. For the remaining reactions (all bidirectional in the

reference flux map), both datasets lacked information for uni- or

bidirectionality classification (probabilities between 0.05 and 0.95).

As shown in Supplementary Information S.2, the RJMCMC runs

are highly reproducible and also visit the true (data generating)

model several times per run. Thus, the lack of perfect recovery

whether a reaction is bidirectional does not depend on the

RJMCMC-algorithm, but shows that the information content of the

measurements is insufficient to confirm the reaction’s uni- or

bidirectionality.

In our scenario, we were able to identify the directionality of 63

and 54% of the reactions, depending on the input substrate. We

Fig. 1. Metabolic network of the central carbon metabolism of E.coli used in this study. Potentially bidirectional reactions are divided in de facto uni- and bidirec-

tional reactions, indicating their bidirectionality in the reference solution. The bars show the posterior probability of the reactions being bidirectional, for two CLE

scenarios: a 20/80 mix of [U-13C]- and [12C]-glucose and 100% [1,2-13C]-glucose labeling. Flux names written in bold correspond to the de facto unidirectional reac-

tions of the reference flux map. A probability of 0.5 means that no information whether a reaction is uni- or bidirectional is contained in the measurements. The

specification of the network model, including atom transitions, constraints and measurements is given in Supplementary Information S.1
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consider this a surprisingly large proportion, since exchange fluxes,

and therewith reaction bidirectionalities, are notoriously hard to

identify (Wiechert and de Graaf, 1997). This also highlights the im-

pact of our multi-model approach: the reactions that were left with

uncertain directionality do not restrict us from performing the ana-

lysis, nor force us to make ungrounded assumptions about their dir-

ectionality. Interestingly, the comparison of the tracer choices show

a relatively minor information gain of the expensive [1,2-13C]-glu-

cose tracer compared to the cheap mixture of unlabeled and uni-

formly labeled glucose. Though performed using simulated data,

these simulations indicate what identifiability we can expect, using

the method with real data.

5 Conclusion

In 13C MFA, inferences about the in vivo fluxes are drawn on the

basis of a metabolic network model formulation. Here, we go be-

yond the traditional flux inference approach, solely concerned with

parameter inference, and instead perform simultaneous model and

parameter inference. In particular, we consider uncertainty in the

bidirectionality of reversible reactions originating from the exchange

flux formulation. Enabled by the Bayesian paradigm, structural

inferences are drawn from a family of alternative model structures,

formalized using Bayesian Model Averaging. Computationally, a

RJMCMC sampling algorithm is constructed with a tailored, mixed

transition density, allowing the sampler to navigate through the

joint model-flux space. In terms of structural inferences, we show

that, using two different experimental setups, our multi-model

approach provides statistically solid inferences, without the need to

resolve the structure completely and without additional computa-

tional effort. Thereby, BMA, computed with RJMCMC, enables

knowledge generation in situations where the available data is insuf-

ficient to completely resolve a network structure. This is not only

relevant in 13C MFA, which was showcased here, but also in the

general setting of quantitative systems biology where models are

operated as measurement instruments.
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