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Abstract

Motivation: Classification of protein sequences is one big task in bioinformatics and has many

applications. Different machine learning methods exist and are applied on these problems, such as

support vector machines (SVM), random forests (RF) and neural networks (NN). All of these meth-

ods have in common that protein sequences have to be made machine-readable and comparable

in the first step, for which different encodings exist. These encodings are typically based on physic-

al or chemical properties of the sequence. However, due to the outstanding performance of deep

neural networks (DNN) on image recognition, we used frequency matrix chaos game representa-

tion (FCGR) for encoding of protein sequences into images. In this study, we compare the perform-

ance of SVMs, RFs and DNNs, trained on FCGR encoded protein sequences. While the original

chaos game representation (CGR) has been used mainly for genome sequence encoding and clas-

sification, we modified it to work also for protein sequences, resulting in n-flakes representation,

an image with several icosagons.

Results: We could show that all applied machine learning techniques (RF, SVM and DNN) show

promising results compared to the state-of-the-art methods on our benchmark datasets, with

DNNs outperforming the other methods and that FCGR is a promising new encoding method for

protein sequences.

Availability and implementation: https://cran.r-project.org/.

Contact: dominik.heider@uni-marburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein classification is one big challenge in bioinformatics (Heider

et al., 2009), and has therefore many applications, ranging from

genomic annotations towards clinical applications, such as drug re-

sistance prediction in human immunodeficiency virus (HIV) for per-

sonalized therapies. To this end, different machine learning methods

exist and have been applied, e.g. support vector machines (SVM)

(Beerenwinkel et al., 2003), random forests (RF) (Heider et al.,

2011; Löchel et al., 2018) or neural networks (NN) (Wang and

Larder, 2003). Generally, the protein sequences have to be made

‘machine-readable’ in a first step. Different protein encodings exist,

which can be roughly separated into sequence-based or structure-

based encodings. These sequence-based encodings include sparse

encoding (Hirst and Sternberg, 1992), amino acid composition

(Matsuda et al., 2005), reduced amino acid alphabets (Solis and

Rackovsky, 2000), physicochemical properties (Heider and

Hoffmann, 2011) or Fourier Transformation (Nagarajan et al.,

2006). Structure-based encodings include quantitative structure-

activity relationship (QSAR) (Cherkasov et al., 2014), Electrostatic

Hull (Dybowski et al., 2011) or Delaunay triangulation (Yu et al.,

2013). For a comprehensive review on encodings of protein sequen-

ces see Spänig and Heider (2019). After encoding, the encoded

sequences can be used for training of different machine learning

models, such as SVMs, RFs or deep neural networks (DNNs). Due

to the fact that DNNs have been shown to outperform other meth-

ods in image classification, we will introduce a modified chaos game

representation (CGR) for proteins and will show the performance of
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this encoding on HIV drug resistance prediction datasets in compari-

son to the state-of-the-art models. Moreover, we made our new fre-

quency matrix chaos game representation (FCGR) for protein-

encoding available as an R package kaos.

The chaos game representation (CGR) algorithm is a recurrent

iterative function system, which can be used to create fractals from

sequences of symbols, i.e. from an alphabet A ¼ {s1,. . ., sn}. For

n¼3 and A ¼ {1, 2, 3}, the CGR algorithm can be used to construct,

e.g. the Sirpinski triangle, a fractal structure constructed by smaller

triangles (Barnsley, 2012). Jeffrey (1990) was the first who applied

the CGR algorithm to DNA sequences, i.e. n¼4 and A ¼ {A, C, G,

T}, thus the resulting fractals are constructed from squares instead

of triangles. The underlying idea of the CGR algorithm for DNA is

summarized in Figure 1. Each symbol is set at one corner (here: 4).

Starting from the middle, the next dot is put half the way towards

the next symbol in the sequence. The second (and all remaining

dots) are put half the way from the last position in the direction to

the next symbol (exemplarily shown in Fig. 1B).

Since the development of the CGR and its application in life sci-

ence, it has been used mainly for the analyses and comparison of

whole genome sequences (Joseph and Sasikumar, 2006). It has been

shown that CGR is an excellent representation for genomes and that

CGR-driven phylogeny leads to reliable predictions (Deschavanne

et al., 1999). In particular the comparison between genomes by

using CGR is very easy and fast (Hoang et al., 2016). Extensions of

CGR include color grids (Deschavanne et al., 1999) and frequency

matrix CGR (FCGR) (Almeida et al., 2001). Wang et al. (2005)

used FCGR to calculate the image distance between genomes in

order to generate phylogenetic trees. Rizzo et al. (2016) showed that

DNNs trained on genomes encoded with FCGR yielded very accur-

ate predictions. They used a convolutional neural network (CNN)

to divide bacteria in three different phyla, order, family and genus

and showed a very high accuracy for the method. While these stud-

ies focused only on FCGR for DNA, there exist also a smaller num-

ber of studies dealing with the encoding of protein sequences. Yu

et al. (2004) employed the CGR algorithm for protein classification

by separating the amino acids in four groups based on their proper-

ties and used multifractal and correlation analysis to construct a

phylogenetic tree of Archaea and Eubacteria. In another approach

the amino acids were re-translated into DNA for CGR (Yang et al.,

2009). Basu et al. (1997) used CGR by grouping the amino acids in

twelve groups and used a twelve-sided regular polygon for the

representation.

Most of the studies with CGR on proteins have in common that

they make use of the original approach to create the CGR, i.e. they

go half the way of the distance to the next symbol to produce the

CGR images. However, by using this approach, resulting

CGR images are very noisy for alphabets with n > 4. In this

study, we introduce the use of Sierpinskin-gons, also known as,

n-flakes or polyflakes (Tzanov, 2015), which can be constructed

by varying the distances and thus result in well-structured fractals.

The main advantage of using n-flakes in CGR is that the resulting

points do not overlap (see Fig. 2), and thus are precisely separable

for n > 4. Moreover, we will make use of DNNs and FCGR for pro-

teins and analyze the impact of the scaling factor as well as the reso-

lution on the classification performance on HIV drug resistance

datasets.

2 Materials and methods

2.1 Dataset
HIV-1 is known for its high mutation rate, which offers the virus the

opportunity to quickly evolve drug resistance. Thus, prediction of

drug resistance is crucial for personalized therapy of the patient.

Protein sequences of the HIV-1 protease (PR) and reverse transcript-

ase (RT) originating from subtype B strains with data for seven PIs

(RTV: Ritonavir, IDV: Indinavir, SQV: Saquinavir, NFV:

Nelfinavir, APV: Amprenavir, ATV: Atazanavir, LPV: Lopinavir),

three NNRTIs (NVP: Nevirapine, EFV: Efavirenz, DLV:

Delavirdine) and five NRTIs (3TC: Lamivudine, ABC: Abacavir,

AZT: Zidovudine, D4T: Stavudine, DDI: Didanosine) with IC50

ratios were collected from the HIV Drug Resistance Database (Rhee

et al., 2003). The data was separated into susceptible and resistant

by drug-specific cutoffs. Rhee et al. (2006) We removed sequences

from the datasets for which no resistance information was available

and excluded ATV from our classification approach, since too many

sequences lacked IC50 information. Table 1 gives a summary of the

data used in the study for each drug.

A B C

Fig. 1. Chaos Game Representation for DNA. (A) Division of the square. (B) Way walked to draw points. (C) HIV genome (NCBI Reference Sequence:

NC_001802.1)

A B

Fig. 2. Construction of n-flakes. (A) Overlapping polygons; (B) n-flake
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2.2 Implementation of the chaos game representation

algorithm
We implemented an R package kaos (downloadable from CRAN),

which can be used to create CGR and FCGR with n-flakes. The

kaos package accepts any kind of alphabets and creates the (F)CGR

image based on the given sequence and user-specified resolution.

The package offers the options to create a CGR image with dots

(option ‘points’) or an FCGR (option ‘matrix’) with different gray-

levels. For the FCGR, the user has to specify a resolution to specify

the columns of the matrix. It is also possible to set the scaling factor

(‘sf’) which is needed to construct n-flakes. For protein sequences

with twenty proteinogenic amino acids, the CGR representation

results in twenty edges and twenty icosagons within a larger icosa-

gon. The contraction ratio between the outer and the inner polygon

can be calculated by the following equation (Strichartz, 2000):

r ¼
sin p

n

� �
sin p

n

� �
þ sin p

nþ 2pm
n

� � for m ¼
�

n

4

�
(1)

The ratio for the distance between the actual point and the target

edge (i.e. the scale factor sf) can be calculated by the following equation:

sf ¼ 1� r (2)

By default, the CGR package automatically creates the alphabet

based on the given symbols or words in the sequence (vector of sym-

bols or words) and takes this number as n to calculate the scaling

factor by Equation 1. The number is also needed to calculate the

coordinates for the edges of a polygon in an unit circle with the fol-

lowing equation:

x½i� ¼ r � sin
2pi

n
þ h

� 	

y½i� ¼ r � cos
2pi

n
þ h

� 	

i : edge; n : number of edges; h : angel of orientation

(3)

A CGR object contains the gray-level matrix with given reso-

lution as an encoding for further analyses. In case of n¼4, the CGR

algorithm fills the whole matrix, otherwise it uses the unit circle.

Figure 3 shows examples created with the CGR package, namely

the FCGR representation of the genomic DNA sequence of HIV with a

resolution of 200, of the HIV RT sequence with a resolution of 50 and

sf ¼ 0.5, as well as of the HIV RT sequence with a resolution of 20

and sf20, the scaling factor for protein sequences with n-flakes. As men-

tioned before, the scaling factor is crucial in order to structure the frac-

tal, which can be clearly seen by comparing the two FCGR

representations. The CGR package offers predefined alphabets for

numbers between 0 and 9, amino acids, DNA, and for the letters a–z

as capital- and lowercase letters, which can be applied to compare

sequences with different amounts of letters; e.g. for protein sequences

which may consist of less than the twenty proteinogenic amino acids.

2.3 Development of prediction models
In order to evaluate the impact of the resolution and the scaling

factor on subsequent classification, we used eight different configu-

rations for the CGR images and trained DNNs, RFs and SVMs,

with the settings for protein sequences (‘amino’), to force 20-edges

(see Fig. 4).

We performed a stratified hold-out validation scheme where

20% of the data was randomly selected for validation and 60% was

used for building the models to evaluate the machine learning mod-

els. The remaining 20% of the data was used as test data for the

DNNs, SVMs and RFs. We then performed a 10-fold cross-

validation with the remaining data (i.e. without the validation data).

We trained models for SVMs, RFs and DNNs with the different con-

figurations mentioned before. All cells containing only zeros in all

data were removed prior training of the SVMs and RFs.

We used the e1071 package for the SVMs with linear kernel and

varied the costs C between 0.1 and 1 in steps of 0.1, the randomfor-

est package (Breiman, 2001) for the RFs with default settings, 1000

trees, and varied the nodesize from 1 up to 10 in steps by 1. For the

DNNs we used the deepnet package in R. We trained the fully con-

nected DNNs with tangens hyperbolicus as activation function a

learning rate of 0.8, and a momentum of 0.5. In addition, we varied

the numbers of neurons (up to 20) in three hidden layers and num-

ber of training epochs (see Fig. 5).

Table 1. Data used in the study

NNRTI NRTI PI

DLV EFV NVP 3TC ABC AZT D4T DDI APV IDV LPV NFV RTV SQV

Positive 455 447 415 195 179 322 336 306 424 384 223 303 349 457

Negative 263 274 318 429 440 299 285 317 278 374 278 472 379 304

Fig. 3. (A) FCGR of genomic DNA sequence of HIV (NCBI Reference Sequence: NC_001802.1) with resolution of 200. (B) AAQ18891.1 reverse transcriptase, partial [Human

immunodeficiency virus 1] with resolution of 50 and sf¼ 0.5, (C) AAQ18891.1 reverse transcriptase, partial [Human immunodeficiency virus 1] resolution¼ 50, sf20
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We evaluated and compared the models based on the area

under the receiving operating characteristics curve (AUC) with the

R package pROC (Robin et al., 2011). The best hidden layer con-

figuration was selected based on the best average AUC. For the

DNNs, we calculated the AUC also for the varying training epochs.

Moreover, we used the R package ROCR (Sing et al., 2005) to

draw precision-recall curves for the best-performing models.

2.4 Evaluation of FCGR as encoding
We calculated the average FCGRs of positive and negative samples,

i.e. the average for each cell in the FCGR matrices of positive and

negative sequences, respectively, in all datasets. Next, we calculated

the differences between the average FCGR of the positive and the

average FCGR of the negative samples. Significance of the differen-

ces were calculated based on Student’s t-tests, resulting p values

were corrected for multiple testing by the method of Bonferroni.

Moreover, in order to visualize the predictive quality of the different

encodings in a model-independent manner, we used < /; d > dia-

grams as implemented in the R package phiDelta (Armano and

Giuliani, 2018). For this purpose we plotted the < /; d > diagrams

for the encoding used by Heider et al. (2011) and the FCGR encod-

ing with the different settings used in the current study. < /; d >
diagrams are two-tiered 2D tools, which have been devised to sup-

port the assessment of classifiers or features in terms of accuracy

and bias. d and / are defined as follows:

/ ¼ q� �q

d ¼ qþ �q � 1

q ¼ TP

TPþ FN

�q ¼ TN

TN þ FP

(4)

with TP, FN, TN and FP representing the number of true positives,

false negatives, true negatives and false positives, respectively

(Armano and Giuliani, 2018).

3 Results

We calculated the AUCs for the DNNs with different number of

neurons from the cross-validation. For the best performing DNNs,

we also evaluated different number of training epochs. Final evalu-

ation of the models was carried out using the validation set. The

best DNN configuration (number of neurons and epochs) in com-

parison to SVMs and RFs for the NRTIs and NNRTI, and the PIs

are shown in Figures 6 and 7, respectively.

For the NRTI 3TC, the DNN outperforms the other method in

all encoding configuration, i.e. independently from the resolution of

the FCGR. However, for the NNRTIs DLV, EFV and NVP, as well

as for the NRTIs AZT and D4T, linear SVMs give better prediction

results for lower resolutions. In all cases, the accuracy of the DNN

models increases with the resolution. Figure 7 shows the results for

the PIs. For high resolutions, the DNNs outperform the RFs and the

SVMs, or are equally good as the SVMs, comparable to the results

of the NNRTIs and NRTIs.

In Table 2 the AUCs of the best RF, SVM and DNN models are

summarized. The DNNs and SVMs outperform the RFs. For the PIs,

best results are observed with the DNNs, in most cases with sf20, ex-

cept for IDV and LPV, where the best results are observed at a scal-

ing factor of 0.5. The optimal scaling factor depends on the dataset,

e.g. for APV there are higher AUC values with sf20, however, for

DDI the best results are obtained with sf ¼ 0.5. Some datasets per-

form quite well at low resolution, especially ABC and RTV, whereas

increasing the scaling factor has a barely remarkable influence on

the AUC values. While the DNNs have the highest AUC values, the

other models still perform quite well, and thus supports the idea of

CGR for protein encoding.

Figures 8 and 9 show the precision-recall curves for the best

DNNs for the different drugs, supporting the very good prediction

results from the DNNs. For the AUCs and mean errors with growing

number of epochs for the different training- and testsets see

Supplementary Material.

Fig. 4. Different settings for producing the FCGR pictures. We used different

combinations of resolution and scale factor to produce the FCGR images. The

resolution was set to 10, 20, 100 and 200, while the scaling factor was set to

0.5 and sf20, i.e. the optimal scaling factor for n¼20

Fig. 5. Development of prediction models
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3.1 Comparison with other encodings
So far, we only compared the results from the different models,

namely DNNs, SVMs and RFs, on the same protein encoding, name-

ly the FCGR. In the following, we will compare our results with the

state-of-the-art methods.

Table 3 shows the AUC values of the best models trained on

FCGR from our approach in comparison to the models of Heider

et al. (2011) and Kierczak et al. (2009) for NRTIs and NNRTIs.

Compared to the approach of Heider et al. (2011) and Kierczak

et al. (2009), we get AUC values between 4% up to 8% and 19%

higher, respectively. Even the lower performing SVMs and RFs out-

perform or at least perform equally well compared the state-of-the-

art approaches.

Table 4 shows the calculated accuracy values for the best mod-

els, in comparison with Heider et al. (2011), Rhee et al. (2006) and

Hou et al. (2009) for the PIs. For all drugs, the FCGR approach out-

performs the state-of-the-art models.

The fact that FCGR-based classifiers were consistently outper-

forming other classification models in this study suggests that FCGR

itself is a feature encoding for protein sequences preferable to some

others. In order to test this hypothesis with regards to the data ana-

lyzed here, we compared the prediction performance of the feature

encodings used in this study with the amino acid encoding and inter-

polation based feature encoding used in Heider and Hoffmann

(2011) using < /; d > diagrams (Armano et al., 2018), which allow

for the visual inspection of model-independent feature quality with

regards to a given binary classification task (Fig. 10A and B). For all

sequence datasets analyzed here, FCGR-based features show super-

ior performance (see supporting information). To explain this

behavior of FCGR encodings, we compared FCGR matrices for the

positive and negative sequences from the different datasets. These

show clear and significant differences in a small number of pixels

(see Supporting Information). This is in accordance with the finding

that very different machine learning models trained with FCGR-

encoded sequences show consistently high performance.

4 Discussion

The performance in terms of AUC of the RFs and SVMs has a higher

variance compared to the AUCs of the DNNs, i.e. the split of test

and training data might have a larger impact on the training of these

Fig. 6. AUCs for NNRTIs and NRTIs. Results from with different training splits

and different configurations evaluated with the validation data. Triangle:

DNN; raute: RF; circle: SVM

Fig. 7. AUCs for PIs. Results from with different training splits and different

configurations valuated with the validation data. Triangle: DNN; raute: RF;

circle: SVM

Table 2. Best AUCs for NNRTIs and NRTIs on validation data

DNN RF SVM

NNRTI

DLV 0.95 (r¼ 200, sf20) 0.90 (r¼ 200, sf20 0.96 (r¼ 200, sf20)

EFV 0.98 (r¼ 200, sf ¼ 0.5) 0.96 (r¼ 100, sf20) 0.98 (r¼ 200, sf ¼ 0.5)

NVP 0.99 (r¼ 100, sf ¼ 0.5) 0.96 (r¼ 200, sf20) 0.99 (r¼ 200, sf20)

NRTI

3TC 0.99 (r¼ 100, sf ¼ 0.5) 0.96 (r¼ 200, sf20) 0.98 (r¼ 200, sf ¼ 0.5)

ABC 0.99 (r¼ 100, sf ¼ 0.5) 0.93 (r¼ 100, sf20) 0.99 (r¼ 200, sf ¼ 0.5)

AZT 0.99 (r¼ 200, sf20) 0.93 (r¼ 100, sf20) 0.99 (r¼ 100, sf20)

D4T 0.94 (r¼ 200, sf20) 0.89 (r¼ 20, sf20) 0.95 (r¼ 100, sf20)

DDI 0.90 (r¼ 100, sf ¼ 0.5) 0.85 (r¼ 100, sf20) 0.88 (r¼ 200, sf ¼ 0.5)

PI

APV 0.96 (200 sf20) 0.91 (200 sf20) 0.96 (200 sf20)

IDV 0.995 (200 sf ¼ 0.5) 0.95 (100 sf20) 0.99 (100 sf20)

LPV 0.99 (100 sf ¼ 0.5) 0.95 (200 sf20) 0.98 (100 sf20)

NFV 0.99 (100 sf20) 0.95 (100 sf20) 0.99 (100 sf20)

RTV 0.995 (200 sf20) 0.96 (200 sf20) 0.996 (100 sf20)

SQV 0.97 (200 sf20) 0.93 (100 sf20) 0.98 (200 sf20)

r, resolution; sf, scaling factor.
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models than on the DNNs. We can also observe that for some drugs

low scaling factors work quite well and that the increase barely

influences the results, whereas for other drugs the scaling factor

leads to better performance until a saturation is reached. This sug-

gests that the scaling factor somehow reveals patterns on some reso-

lution, characteristic for the classification on this dataset.

Comparing the course of the different models (Fig. 6), we can see

that the SVMs and DNNs perform equally good on a high level.

There might be a saturation for the performance of the DNNs at a

given resolution where the application of sf20 or using 0.5 has a low im-

pact on the performance. We can observe this for most of the drugs.

Except for D4T and DDI where there is a drop in prediction perform-

ance. The models trained on FCGR outperform all other evaluated

models, independent of the employed machine learning technique. This

suggests that FCGR as an encoding for protein sequences might be

more appropriate than other encodings. By using the < /; d > dia-

grams we could show that the FCGR features show superior predictive-

ness. In comparison with the method of Heider et al. (2011), the

FCGR encoding has no information loss on high resolution. Due to the

interpolation the sequence-length is changed and this can lead to a loss

of information. The advantage of the FCGR encoding is that the amino

acid as itself is not transformed in any kind of representation, e.g. phys-

icochemical properties. It can be considered as a kind of black box,

where each letter represent different unknown feature lying behind

each letter. The order of the letters is more or less kept, depending on

the resolution, which explains the increase of performance in a higher

resolution. One disadvantage is the increase of memory requirements

for one FCGR matrix compared to a string or vector, in case the string

or vector is smaller than the selected resolution. However, it can also

lead to a compression if the length of the string is larger than the

selected resolution (e.g. a whole genome plotted with a resolution of

100 � 100). The algorithm itself has a linear run time (O(n)), due to

the fact that it is just depending on the number of symbols in a given se-

quence. In particular the use of sf20, where most of the space in an

FCGR image is never used. Thus, a solution might be to finally erase

those elements of the matrix. We used comparatively long protein

sequences in this study, thus, one open question is, if the FCGR encod-

ing still works well for shorter sequences, e.g. peptides, since the forma-

tion of patterns might be less pronounced for short sequences.

5 Conclusion

FCGR as a feature encoding for proteins reveals a new approach for

classification problems, which is particularly well-suited for DNNs.

The encoding shows superior behavior compared to other encodings,

Fig. 8. Precision–recall curves for NNRTI and NRTI

Fig. 9. Precision–recall curves for PIs

Table 3. Comparison of the FCGR approach with state-of-the-art

methods for NNRTIs and NRTIs

This study Heider et al. Kierczak et al.

NNRTI

DLV 0.95*** 0.90 0.76

EFV 0.98*** 0.93 –

NVP 0.99*** 0.92 0.85

NRTI

3TC 0.99*** 0.94 0.95

ABC 0.99*** 0.92 0.83

AZT 0.99*** 0.91 0.89

D4T 0.94*** 0.90 0.85

DDI 0.90*** 0.85 0.82

–Kierczak et al. analyzed the NRTI and NNRTI datasets except EFV.

***P � 0:001.

Table 4. Comparison of the FCGR approach with state-of-the-art

methods

This study Heider et al. Rhee et al. Hou et al.

NNRTI

DLV 92%*** 87% 84% –

EFV 94%*** 88% 87% –

NVP 96%*** 87% 91% –

NRTI

3TC 97%*** 87% 90% –

ABC 95%*** 88% 84% –

AZT 94%*** 87% 84% –

D4T 87%*** 84% 78% –

DDI 85%a 79% 75% –

PI

APV 91%*** 88% 84% 89%

IDV 97%*** 93% 79% 86%

LPV 98%*** 92% 81% 91%

NFV 96%*** 91% 82% 87%

RTV 97%*** 95% 89% 93%

SQV 90%*** 89% 84% 89%

–Hou et al. used only the PI datasets.

***P � 0:001).
aOnly significant compared to Rhee et al.
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independent from the employed machine learning technique in our

study dealing with HIV-1 drug resistance. In fact, it outperforms the

state-of-the-art methods and therefore it might be preferable to other

protein classification problems. In combination with DNNs, FCGR

can give very accurate predictions. The application of the scaling fac-

tor, in order to make use of n-flakes for training, can increase the ac-

curacy, especially for RFs. Besides, the resolution of the FCGR plays an

important role and can increase the accuracy depending on the classifi-

cation problem. Since the FCGR method offers the opportunity to en-

code all kind of sequences, e.g. text and numbers, the use of FCGR in

many other kind of applications besides DNA and protein classification

problems, might be reasonable. Moreover, FCGR could, in principle,

also be applied to microbiomes or viral quasispecies by using an addi-

tive approach of FCGR, where the single sequences are all plotted into

one FCGR or to flatened network structures (Alcaraz et al., 2011).
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