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Abstract

Motivation: Alternative splicing contributes to the functional diversity of protein species and the

proteoforms translated from alternatively spliced isoforms of a gene actually execute the biological

functions. Computationally predicting the functions of genes has been studied for decades.

However, how to distinguish the functional annotations of isoforms, whose annotations are essen-

tial for understanding developmental abnormalities and cancers, is rarely explored. The main

bottleneck is that functional annotations of isoforms are generally unavailable and functional gen-

omic databases universally store the functional annotations at the gene level.

Results: We propose IsoFun to accomplish Isoform Function prediction based on bi-random walks

on a heterogeneous network. IsoFun firstly constructs an isoform functional association network

based on the expression profiles of isoforms derived from multiple RNA-seq datasets. Next, IsoFun

uses the available Gene Ontology annotations of genes, gene–gene interactions and the relations

between genes and isoforms to construct a heterogeneous network. After this, IsoFun performs a

tailored bi-random walk on the heterogeneous network to predict the association between GO

terms and isoforms, thus accomplishing the prediction of GO annotations of isoforms.

Experimental results show that IsoFun significantly outperforms the state-of-the-art algorithms and

improves the area under the receiver-operating curve (AUROC) and the area under the precision-

recall curve (AUPRC) by 17% and 44% at the gene-level, respectively. We further validated the

performance of IsoFun on the genes ADAM15 and BCL2L1. IsoFun accurately differentiates the

functions of respective isoforms of these two genes.

Availability and implementation: The code of IsoFun is available at http://mlda.swu.edu.cn/codes.

php? name¼IsoFun.

Contact: guomaozu@bucea.edu.cn or kingjun@swu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alternative splicing allows a multi-exon gene to produce multiple

isoforms through mechanisms like exon skipping, mutual exclusion

of exons, alternative 50 donor site, alternative 30 acceptor site and

intron retention (Pan, 2008). Alternative splicing takes place in 90%

of human multi-exon genes, and it significantly increases the tran-

scriptome and proteome complexity in eukaryotic cells (Wang,

2008). The proteoforms (or protein variants) translated from differ-

ent isoforms of the same gene have different amino acid sequences
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and structures, and thus may have different (even opposite) func-

tions (Smith et al., 2013). For example, two isoforms, Bcl-x(S) and

Bcl-x(L) of B-cell lymphoma-x (BCL2L1) gene, have pro-apoptotic

and anti-apoptotic biological functions, respectively (Revil et al.,

2007). The proteoforms actually carry out various biological func-

tions and maintain the normality of living cells. Increasing evidence

has shown that alternative splicing plays key roles in developmental

abnormality and is closely related with many human diseases, such

as breast cancer, colorectal cancer, spinal muscular atrophy and so

on (Climente-Gonzalez et al., 2017).

Predicting functional annotations of isoforms (or proteoforms), in-

stead of genes, can contribute to a deeper understanding of both the mo-

lecular basis of diverse genetic diseases and the evolution of phenotypic

complexity (Li et al., 2014a, 2016b). However, existing computational

solutions for function prediction are mainly at the gene level, or predict

functions of the canonical isoforms, who are the most prevalent, best

documented and often the longest. These solutions cannot differentiate

the intrinsic functions of different isoforms. This is because existing

functional databases [i.e. Gene Ontology (GO) (Gene Ontology

Consortium, 2017) and KEGG (Kanehisa et al., 2017)] universally store

the functional knowledge of gene products at the gene-level, although

some wet-lab experiments are actually conducted at the isoform-level.

In other words, there are no (or scarce) functional annotations of iso-

forms in the functional databases. It is observed that interaction profiles

of isoforms show tissue specific patterns (Ellis et al., 2012), but existing

databases still record the protein–protein interaction at the gene-level

(Chatr-Aryamontri et al., 2017; Szklarczyk et al., 2014), and they do

not record which isoforms are actually studied in the experiments.

Furthermore, isoforms of a gene have subtle variances, and sequence-

based features cannot provide reliable discriminant information. For

these reasons, it is a difficult challenge to accurately predict the func-

tional annotations of isoforms based on sequence and interaction data,

which are prevalently used in gene function prediction (Jiang et al.,

2016). Some researchers employed expression tag (Neverov et al.,

2005), full length complementary DNA (Yura et al., 2006) or exon

array data (Emig et al., 2010) to analyze isoform functions. However,

these types of data generally have low coverage and different biases,

which restrict their capability for accurate isoform function prediction.

RNA-Seq techniques can do massively parallel sequencing of the

genome-wide transcript isoforms (translated into proteoforms) at a far

higher resolution than ever before. The accumulated abundant RNA-

Seq datasets in public databases (Edgar et al., 2002) provide unprece-

dented amount of transcript-level data. In addition, some efficient

methods have also been proposed to precisely quantify the expression

levels of transcript isoforms with less bias (Patro et al., 2014). They

both pave the way for identifying alternative splicing events and pre-

dicting isoform function at large scale. Recently, some pioneers have

explored RNA-Seq data for high-resolution isoform function predic-

tion, and achieved successful predictions (Eksi et al., 2013; Li et al.,

2014b; Luo et al., 2017; Panwar et al., 2016). These methods generally

take each gene as a bag and isoforms of the gene as instances of the

bag, and then perform function prediction under the multiple instance

learning (MIL) framework (Dietterich et al., 1997; Zhou et al., 2012).

In MIL, a bag is positive for a label if at least one of its instances is posi-

tively annotated with that label; on the other hand, the bag is negative

if all its instances are not annotated with that label. Eksi et al. (2013)

developed a multiple instance support vector machine learning based

solution (miSVM) (Andrews, 2003) to differentiate isoform functions

based on RNA-seq data of mouse. miSVM uses the functional annota-

tions at the gene level and generates classifying models at the isoform

level instead of the gene level. Empirical study shows that miSVM can

identify the ‘responsible’ isoform(s) that most likely carry the function

of its originating gene and also predict novel functions of isoforms. Li

et al. (2014b) proposed a novel multiple instance-based label propaga-

tion method (iMILP) to predict functions of isoforms. iMILP firstly

constructs an isoform functional association network using the co-

expression pattern derived from multiple RNA-seq datasets of humans,

and uses available GO annotations of genes to initialize the functional

annotations of isoforms. Next, it iteratively normalizes and updates

labels in the isoform network, and allows all qualified isoforms to in-

herit positive gene’s functions in a ‘democratic’ learning manner until

convergence. In this way, iMILP achieves predictions for each isoform

to be associated with a given functional label. The aforementioned

MIL-based representative solutions treat each label separately. Given

that the functional annotations of genes are rather imbalanced, and

due to the large number of possible labels (more than 1000), these solu-

tions not only have compromised performance, but also suffer from a

heavy computational burden. This is because they ignore the hierarch-

ical dependency between labels (or GO terms), which is captured by a

direct acyclic graph, while its appropriate usage can significantly boost

the prediction performance (Fu et al., 2016; Gene Ontology

Consortium, 2017; Yu et al., 2018). Some researchers firstly con-

structed the isoform–isoform interaction network using multiple

RNA-seq datasets and the guidance of gene-level interactions, and then

identified functional modules or propagated labels on the network to

accomplish function prediction (Li et al., 2016a; Tseng et al., 2015).

However, the effectiveness of these network-based approaches is still

restricted by incomplete gene-level interactions and by the fact that the

GO hierarchy is still ignored.

In this study, we introduce an approach called IsoFun to predict

isoform functions using tailored label propagation on a heteroge-

neous network. IsoFun firstly constructs an isoform functional asso-

ciation network based on the expression profile values of isoforms

collected from multiple RNA-seq datasets, and assigns all the anno-

tations of a gene to its isoforms. Next, it constructs a heterogeneous

network composed of isoforms, genes and GO terms, to encode the

relationships between genes and isoforms, the hierarchical relation-

ship between GO terms and functional associations between iso-

forms. This heterogeneous network can achieve a synergy between

the gene-level interactions, available GO annotations of genes and

relationships between genes and isoforms, and thus reduce the im-

pact of incomplete individual data sources. IsoFun then introduces a

bi-random walk based label propagation on the constructed hetero-

geneous network to predict isoform functions. In addition, to ensure

the known function of a gene is inherited by at least one of its iso-

forms, IsoFun clamps the known function to the most ‘responsible’

isoform in each iteration. We conduct experiments on 311 Human

RNA-seq datasets collected from ENCODE (ENCODE Project

Consortium, 2012), and find that IsoFun achieves significantly bet-

ter results than other related and competitive approaches (Li et al.,

2014b; Tseng et al., 2015; Wei et al., 2017) across various evalu-

ation metrics. A case study on two genes (ADAM15 and BCL2L1)

confirms that IsoFun can differentiate the functional annotations of

different isoforms of the same gene. In addition, we also prove that

the gene-level interactions, and the hierarchical relationship between

functional labels can improve the prediction performance and re-

duce the impact of class-imbalance in isoform function prediction.

2 Materials and methods

2.1 Heterogeneous network construction
Without loss of generality, suppose there are n genes, each gene has

ni isoforms, and the total number of isoforms is m ¼
Pn

i¼1 ni.

304 G.Yu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/1/303/5524603 by guest on 10 April 2024



We denote the ith gene as Bi ¼ fxi1 ;xi2 ; . . . ;xini
g; xij 2 R

d is the

expression profile feature vector of the jth isoform of the ith gene,

T is the set of distinct GO terms (or functional labels) used to

annotate the genes, and Aþi /A�i (2 T ) are the known positive/nega-

tive annotations of the ith gene. Each GO annotation consists of

an association between a gene and a GO term. A positive

annotation means the gene carries the function described by the par-

ticular GO term, and a negative annotation means the gene does not

carry the function. Since the functional annotations of isoforms are

unknown, we initially set the isoform-term association matrix A 2
R

m�l between m isoforms and l distinct GO terms (l ¼ jT j) as

follows:

Aðk; tÞ ¼
1; if xk 2 Bi and t 2 Aþi
�1; if xk 2 Bi and t 2 A�i
0; otherwise

8<
: (1)

From Eq. (1) we can see that all the known positive (negative)

annotations of a gene are initially inherited by its isoforms. Based on

these initial annotations, iMILP (Li et al., 2014b) iteratively propa-

gates the inherited positive/negative annotations in an isoform func-

tional association network to differentiate the functional

annotations of different isoforms. At the same time, iMILP uses the

MIL principle to pin the initial negative annotations to isoforms

throughout the iterative process.

Existing computational solutions (Eksi et al., 2013; Li et al.,

2014b; Luo et al., 2017) solely depend on the isoform functional

association network constructed from multiple RNA-seq datasets.

As such, they may have a compromised performance, since the

used network is hand-crafted and it does not refer to the raw-level

but curated gene-level interaction network. Furthermore, they

treat each GO term separately, and ignore the hierarchical relation-

ship between them. Given this, we construct a heterogeneous

network (as shown in Fig. 1) to achieve a synergy between the read-

ily available gene-level interactions, the isoform functional network

and the GO hierarchy for accurate isoform function prediction.

The resulting heterogeneous network not only can reduce the

impact of incomplete data sources, but can also utilize the relation-

ship between genes and isoforms, and the dependency between GO

terms.

Suppose W 2 R
ðlþnþmÞ�ðlþnþmÞ is the weighted adjacency matrix

of the heterogeneous network. W can be presented using a block-

wise notation as follows:

W ¼
Wgg Wgp Wgm

Wpg Wpp Wpm

Wmg Wmp Wmm

2
4

3
5 (2)

where Wgg 2 R
l�l; Wpp 2 R

n�n and Wmm 2 R
m�m correspond to the

subnetworks of GO terms, genes and isoforms, respectively. Wgp 2
R

l�n; Wgm 2 R
l�m and Wpm 2 R

n�m store the known associations

between GO terms and genes, GO terms and isoforms and genes

and isoforms. Wpg; Wmg and Wmp are the transposes of the three

corresponding association matrices.

To construct the isoform functional association network Wmm,

we downloaded 588 RNA-seq runs (for a total of 311 samples) of

humans from the ENCODE project (access date: 2017-12-15).

These 311 samples are obtained from different tissues and condi-

tions. Due to space limitation, the procedure of processing and con-

trolling the quality of the original data is provided in Supplementary

Section S1 of the Supplementary File. After the processing, we

obtained a total of 8417 genes with 84 519 isoforms. Isoforms with

similar expression profiles have high profile similarity and are more

likely to have similar functions; as such we use the Pearson correl-

ation coefficient of FPKM (Fragments Per Kilobase of exon model

per Million mapped fragments) feature vectors to measure the func-

tional association between isoforms. Since there are many small co-

efficient values, which might correspond to noise, we only retain the

100 largest association values for each isoform in the isoform func-

tional association network.

For the inter-association subnetwork Wgp between genes and

GO terms, we directly use the collected GO annotations and GO

hierarchy to initialize the associations between l GO terms and n

genes. Specifically, if the GO term t, or t’s descendant terms, pro-

vide(s) a positive annotation for gene i, then Wgpði; tÞ ¼ 1. On the

other hand, if t, or its ancestor terms, give(s) a negative annotation

to gene i, Wgpði; tÞ ¼ �1. Otherwise, Wgpði; tÞ ¼ 0. For the inter-

association subnetwork Wmg between isoforms and GO terms, we

initially set Wmg ¼ A. For the inter-association subnetwork Wpm be-

tween isoforms and genes, if xk 2 Bi (namely isoform xk originates

from gene i), then Wpmði;kÞ ¼ 1; otherwise Wpmði;kÞ ¼ 0.

Wgg and Wpp encode the hierarchical dependency between GO

terms and the interaction between genes, respectively. They can be

directly specified based on the GO file and interaction data, which is

detailed in Supplementary Section S1 of the Supplementary File.

To eliminate the different scale effect and to make the transitional

probability from a node to its connected nodes equal to 1, we further

normalize ~W
0
mmði; jÞ ¼Wmmði; jÞ=

Pm
k¼1 Wmmði; kÞ and ~Wppði; jÞ ¼

Wppði; jÞ=
Pn

k¼1 Wppði; kÞ. Since Wgg is an asymmetric matrix, we nor-

malize each row of Wgg as ~Wggðs; tÞ ¼Wggðs; tÞ=
Pl

t0¼1 Wggðs; t0Þ.
Given the bag-instance relation between a gene and its isoforms,

and the lack of ground-truth isoform–isoform interactions, it is help-

ful to integrate gene interaction information to describe the func-

tional associations between isoforms (Li et al., 2016a; Tseng et al.,

2015). Here, to facilitate the follow-up random walks, we map the

interactions between genes onto their isoforms. Specifically, if

isoform u 2 Bi and v 2 Bj, and Wppði; jÞ > 0, then ~Wmmðu; vÞ ¼
~W
0
mmðu; vÞ þ ~Wppði; jÞ=ðni � njÞ.

2.2 A bi-random walk on the heterogeneous network
A straightforward solution to infer the associations between iso-

forms and GO terms is to apply random walks on the heterogeneous

Fig. 1. Illustration of the heterogeneous network composed of isoforms,

genes and GO terms. The solid line and segmented lines between subnet-

works indicate the known positive and negative associations, and the dotted

lines indicate missing associations
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network. Random walk based approaches have been widely adopted

in various bioinformatics problems due to their simplicity and effect-

iveness (Codling et al., 2008). However, our constructed heteroge-

neous network has different types of edges and nodes, and each type

of edges has a different meaning. Furthermore, each subnetwork has a

different structure. For example, the GO term subnetwork is a directed

acyclic graph, and the isoform functional association subnetwork can

be viewed as an undirected network. Applying a global random walk

on the whole network may enshroud the intrinsic structures of differ-

ent networks and result in a compromised performance (Yu et al.,

2018). To account for the structural differences of the subnetworks

and for the MIL principle, we introduce a tailored bi-random walk on

the heterogeneous network to predict the GO annotations of isoforms.

Our bi-random walk solution is also inspired by the observation that

the functional association between isoforms and GO terms can be pre-

dicted in two ways: (i) A random walker first moves from an isoform

to another isoform based on the functional association between them,

and it stops at a GO term node based on the inherited/inferred

isoform-term associations. (ii) A random walker first walks from an

isoform node to a GO term node based on the updated isoform-term

associations, and then moves downwards towards a descendant term

of the current one based on the hierarchial relationship between them.

Based on the above analysis, we can formulate the two random

walks as follows:

Fs
1ði; tÞ ¼

Xm
k¼1

Wmmði;kÞ � Fðs�1Þðk; tÞ (3)

Fs
2ði; tÞ ¼

X
t2childðsÞ

Fðs�1Þði; sÞ �Wggðs; tÞ (4)

Fs ¼ ð1m�l �HÞ � ðFs
1 þ Fs

2Þ þH� F0 (5)

where Fs 2 R
m�l is the predicted likelihood associations between m

isoforms and l terms in the sth iteration, F0 ¼ A and � denotes the

Hadamard product. H 2 f0;1gm�l is introduced to pin the negative

GO annotations of isoforms, and ensure the positive annotations of

a single-isoform gene are inherited by its isoform. In particular, if

isoform i is alternatively spliced from a gene which is negatively

annotated by term t, or if this isoform is from a single-isoform gene,

which is annotated with t, then Hði; tÞ ¼ 1. Otherwise Hði; tÞ ¼ 0.

This setup is motivated by the bag-instance relation between gene

and its isoforms, and also by the convention of GO annotations.

With the sequential application of Eqs. (3–5), we can iteratively

update the association likelihoods between m isoforms and l GO

terms. In each iteration, to ensure the annotated terms of a multi-

isoform gene are inherited by its isoforms, we introduce a clamp

process that assigns the term to its ‘responsible’ isoform as follows:

Fsðk�; tÞ ¼ 1; if k� ¼ argmax
xk2Bi

Fsðk; tÞ and t 2 T i (6)

where k� is the isoform that has the maximum prediction score with

respect to t. Since all the entries of Wmp; Wpg; Wmm and Wgg are at

most one, and Eqs. (3, 4) are geometric sequences, Fs converges after

a finite number of iterations. At convergence, we obtain the pre-

dicted association likelihoods between m isoforms and l terms.

3 Results and discussion

3.1 Experimental setup
To study the performance of IsoFun for function prediction, we col-

lected two releases of GO annotation (GOA) files of Human

archived in different years from the GO website (http://geneontol

ogy.org/ page/download-annotations/). The historical GOA file was

archived on 2016-04-30, and the recent GOA file was archived on

2018-03-15. We train IsoFun on the historical (released in 2016)

GOA file, and validate its predictions on the recent (released in

2018) GOA file with the new annotations archived between 2016

and 2018. To avoid the impact of GO structure changes, we also

downloaded the contemporary GO files (http://geneontology.org/

page/download-ontology/) and used the shared GO structure for the

experiments. The biological functions of genes are divided into three

branches by GO: Biological Process Ontology (BPO), Molecular

Function Ontology (MFO) and Cellular Function Ontology (CCO).

Each ontology structures GO terms via a direct acyclic graph to rep-

resent the hierarchical relationships between them. The GOA file

stores known associations between genes and GO terms. To avoid

circular prediction, direct annotations with evidence code ‘IEA’

(inferred from electronic annotations) were excluded. We filter out

sparse GO terms that are associated to very few (<10) genes. The

processed GO annotations of genes and isoforms are listed in

Table 1. From this table, we can see that many new annotations of

genes were appended during a two year interval.

The functional annotations of isoforms are generally unknown.

To enable prediction evaluation, we need to aggregate the isoform-

level predictions to the gene-level. For this aggregation, we simply

summarize the predicted scores of all isoforms of a gene with respect

to term t as the aggregated score as follows:

Yði; tÞ ¼
P

xk2Bi
F�ðk; tÞ

ni
(7)

where F� is the finally predicted likelihoods obtained by Eqs. (3–5),

and Y 2 R
n�l is the aggregated likelihood scores between n genes

and l terms. Y can then be used as a surrogate to evaluate the per-

formance of IsoFun and of comparing methods at the gene level.

The performance of gene function prediction can be evaluated by

different evaluation metrics. To reach a comprehensive comparison,

we use five representative evaluation metrics to evaluate the per-

formance of the methods, namely AUROC, AUPRC, Fmax, Smin

and RankLoss. We compare the performance of IsoFun against mi-

SVM, MI-SVM (Eksi et al., 2013), iMILP (Li et al., 2014b), miFV

and miVLAD (Wei et al., 2017). The first three methods were

reviewed in the Introduction. miFV and miVLAD are two efficient

and scalable MIL algorithms, which learn new feature vector repre-

sentations of bags and linear classifiers for bag-level prediction. We

used the expression profile values of isoforms across all the collected

RNA-seq datasets to construct one isoform functional association

network for these comparing methods. For page limitation, details

on the evaluation metrics and on the comparing methods are pro-

vided in Supplementary Section S2 of the Supplementary File.

Table 1. Statistics of GO annotations of Human

]genes(n) 8714

]isoforms(m) 84 519

Dimensions of isoforms(d) 311

BPO MFO CCO

History 396 936 73 851 168 084

Recent 491 729 88 287 202 274

]terms(l) 3357 658 537

Note: ‘history’ is the number of positive and negative annotations in the

historical GOA file (archived date: 2016-04-30), and ‘recent’ is the number of

positive and negative annotations in the recent GOA file (archived date:

2018-03-15).
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3.2 Network contribution analysis
To investigate the contribution of accounting for dependencies be-

tween functional labels and gene-level interactions, we introduce

two variants of IsoFun: IsoFun(P) and IsoFun(G). IsoFun(P) propa-

gates functional annotations on the isoform association network

and on the gene–gene interaction network, and it does not account

for the dependency between GO terms. As such, Eq. (4) is not used

in this case. IsoFun(G) only propagates functional annotations on

the isoform subnetwork and GO term subnetwork. This means

that the gene-level interactions are disregarded and are not mapped

onto the isoform functional association network. The differences be-

tween these two variants and iMILP are summarized in Table 2.

Figure 2 reports the Fmax and Smin values of these comparing meth-

ods under the historical to recent experimental protocol. This proto-

col is adopted by CAFA (Jiang et al., 2016) and is more challenging

than the widely adopted cross-validation protocol.

IsoFun has consistently larger Fmax and smaller Smin values

than its two variants and iMILP; in turn, the two variants are super-

ior to iMILP with respect to both Fmax and Smin values. Given the

performance margin achieved between IsoFun(G) and iMILP, and

the margin between IsoFun(P) and iMILP, we can conclude that

both the gene-level interactions and the GO hierarchy should be

used for accurate isoform function prediction. The improvement of

IsoFun(P) against iMILP is smaller than that of IsoFun(G) against

iMILP. This is because the isoform-level network can describe the

interactions between genes/proteins with higher resolution, and has

overlaps with gene–gene interactions. If there is an interaction be-

tween two genes, there exists at least one interaction between the re-

spective isoforms of the two genes. But the interactions between the

respective isoforms are rarely known. Although both IsoFun(P) and

iMILP computationally construct the isoform network from mul-

tiple RNA-seq datasets and do not use the dependency between GO

terms, IsoFun(P) still obtains a better performance than iMILP. This

is because IsoFun(P) additionally uses the gene-level interaction in

constructing the isoform functional association network. Another

reason is that the newly gathered GO annotations of genes often

provide more specific functional knowledge of genes. The related

GO terms of these new annotations correspond to descendants of

the terms already annotated to genes, and the downward random

process in Eq. (4) can take advantage of this pattern. For these

reasons, IsoFun(G) achieves better results than IsoFun(P), and in

turn IsoFun achieves a better performance than IsoFun(G). The per-

formance margin between IsoFun and IsoFun(G) is more obvious in

the BPO, which includes more GO terms than MFO and CCO. The

reason is that the GO terms are annotated to genes/isoforms in a ra-

ther imbalanced way, and the imbalance effect is more serious in

BPO. This observation corroborates the fact that IsoFun can lever-

age the dependency between GO terms to reduce the impact of class

imbalance in isoform function prediction.

The experiments are conducted on archived GO annotations in

different years, without random partition of the training set and test-

ing set, so there is no standard deviation to report. To statistically

compare the performance of the methods, we use the Wilcoxon

signed-rank test (Wilcoxon, 1945) to assess the difference in per-

formance between IsoFun and the other methods across the evalu-

ation metrics and ontologies; the test has shown that all the P-values

are smaller than 0.031. In summary, these results confirm that both

gene-level interactions and dependency between functional labels

should be considered in isoform function prediction.

Since we only selected the k¼100 most correlated isoforms of

each isoform to construct the network, we conducted additional

experiments to investigate the sensitivity of IsoFun to k. The

obtained results show that an effective k can be easily selected from

a wide range of values. Due to page limitation, the experimental

results and analysis are provided in Supplementary Figure S1 and

Supplementary Section S3 of the Supplementary File.

3.3 Comparison results at the gene-level
Following the experimental protocol used in Eksi et al. (2013) and

Li et al. (2014b), we conduct fivefold cross validation experiments

on the recent GOA data to study the performance of IsoFun. Due to

the prohibitive runtimes of miFV, miVLAD, mi-SVM and MI-SVM

on such a large number of isoforms and of functional labels, we re-

filtered the data. Particularly, we set all FPKM values less than 0.3

as 0, and then filtered out isoform with all FPKM values of 0. To en-

sure data filtered at the gene level, we did a further filtering: if an

isoform of a gene is filtered, this gene and its all isoforms will be fil-

tered out. We exclude the terms annotated to fewer than 30 genes,

and the too general terms annotated to more than 300 genes. After

that, the numbers of genes, isoforms, GO terms used for the experi-

ments are 4738, 30 251, 204 (CCO), 210 (MFO) and 1113 (BPO),

respectively. For a comprehensive comparison, we introduce other

two variants of IsoFun, IsoFun(Y) and IsoFun(M). IsoFun(Y) is simi-

lar to IsoFun, but it does not manually clamp the positive annota-

tions of a gene to its most ‘responsible’ isoform in each iteration.

As such, Eq. (6) is not used in this case. IsoFun(M) is also similar to

IsoFun, but it only selects the isoform with the maximum score as

the ‘responsible’ isoform of a gene for a function. Table 3 lists the

results of the comparing methods.

IsoFun significantly outperforms the other methods across dif-

ferent evaluation metrics, except Smin. Also IsoFun(Y) and

IsoFun(M) frequently achieve a better performance than the com-

peting methods. Both IsoFun and iMILP often have a larger Smin

value than other comparing methods. The reason is that both

IsoFun and iMILP are label propagation based solutions. The nega-

tive associations between gene and GO terms, and those between

isoforms and terms, are over-propagated in the random walk pro-

cess, and thus expand the semantic distance between the predic-

tions and ground-truths, whereas miFV, miVLAD, mi-SVM and

MI-SVM adopt binary classifiers and the negative annotations can

enhance the discriminant ability of the classifiers. Furthermore, the
Fig. 2. Results comparison on the new archived GO annotations between

2016 and 2018

Table 2. Differences between IsoFun, iMILP and the variants of

IsoFun

iMILP IsoFun(P) IsoFun(G) IsoFun

Isoform–Isoform network � � � �
Gene–Gene network � � � �
GO hierarchy � � � �
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used metrics evaluate the prediction performance from different

perspectives, and it’s unlikely for an approach to outperform an-

other solution across all the metrics. For example, the performance

margin between IsoFun and other comparing methods is very

prominent on Rankloss, which is also a gene-centric metric and it

computes the average fraction of incorrectly predicted annotations

ranking ahead of ground-truth annotations. For the two GO term-

centric metrics (AUROC and AUPRC), IsoFun consistently per-

forms better than other comparing methods. The advantage of

IsoFun and its variants is mainly due to the fact that IsoFun fuses

both the gene-level and isoform-level data, and accounts for the de-

pendency between GO terms, whereas the comparing methods

solely utilize isoform-level data, although they resort to different

machine learning techniques to predict the annotations of iso-

forms. This observation supports our motivation of constructing a

heterogeneous network to achieve a synergy between gene-level

interactions, GO hierarchy and isoform-level interactions for func-

tion prediction.

iMILP does not give comparable AUROC values as reported in

the original paper, that is because it directly works on a composite

isoform functional association networks derived from all RNA-seq

datasets, without time-consuming multiple network selection, which

was done in each iteration of the original paper. Another cause is

that we test iMILP and other comparing methods on both single-

isoform and multi-isoform genes, whereas iMILP was tested on

single-isoform genes. Although we filtered out the gene once its iso-

form (if any) was filtered out, we still did not get a comparable

AUROC value of mi-SVM and MI-SVM as the authors reported.

The possible cause is that the adopted processing toolkits are differ-

ent from those used by mi-SVM; and original mi-SVM filters out

gene with cutoff less than 0.5, but IsoFun does not. The samples

with cutoff less than 0.5 are usually obtained by single-end sequenc-

ing with low quality.

IsoFun(Y) does not apply the clamp step in the bi-random walk

process. In other words, it does not force the isoforms of a gene to

inherit the known functions of the gene. As a result, the MIL prin-

ciple, which states that if a gene is annotated with a GO term, then

at least one of its isoform should be annotated with that term, might

be violated. For this reason, it always loses to IsoFun. IsoFun(M)

selects the isoform with the maximum score as the ‘responsible’ iso-

form of a gene for a function, and disregards other isoforms. It then

aggregates the annotations of these ‘responsible’ isoforms to the

gene-level. IsoFun(M) is significantly outperformed by IsoFun. This

observation suggests that a function can be simultaneously inherited

by different isoforms, and aggregating the annotations of a gene

from all its isoforms is more effective. In fact, the GO follows the

convention to collectively annotate the functions of gene products to

the gene. For this reason, IsoFun has a better performance than

IsoFun(M) across all the metrics. Both mi-SVM and MI-SVM lose to

IsoFun, since they separately aggregate the top 25% isoforms or the

most ‘responsible’ isoform for each GO term.

In addition, we adopted the filtering process used by iMILP to

filter the data, and finally obtained 7069 genes with 15 826 iso-

forms. We reported the results of iMILP and IsoFun on this dataset

in Supplementary Figure S2 of the Supplementary File. IsoFun has

clearly higher values of AUROC and Fmax, and lower values of

Smin than those of iMILP. These extended experiments prove the

effectiveness of IsoFun under different data filtering protocols. We

also recorded the runtime costs of all the methods, and IsoFun has

significantly reduced cost compared to the other methods. These

results and analysis are provided in Supplementary Section S5 and

Supplementary Table S1 of the Supplementary File.T
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3.4 Comparison results at the isoform-level
In this subsection, we further assess the performance of IsoFun at

the isoform-level. Since the ground-truth annotations of isoforms

are unknown, we take 422 single-isoform genes as the test set, and

the annotations in the historical GOA file as the training set. This

surrogate assessment was also used by iMILP (Li et al., 2014b). The

obtained AUROC, Fmax and Smin values of IsoFun and iMILP are

given in Figure 3. We do not report the results of other comparing

methods, since the experiment was conducted in the historical to re-

cent protocol and these methods cannot be applied in this setting.

IsoFun again obtains a better performance than iMILP in the

isoform-level prediction. iMILP only combines multiple RNA-seq

datasets, it does not account for interrelations between GO terms

and the closely related interaction data at gene-level, whereas

IsoFun takes advantage of all these information sources. The im-

provement of IsoFun with respect to iMILP is more obvious in the

BPO, since BPO has a larger number of hierarchically organized GO

terms, and these terms are annotated to genes in a rather unbalanced

way. This improvement suggests the GO hierarchy should be consid-

ered in isoform function prediction, and this hierarchy knowledge

can reduce the impact of class-imbalance. From these experiments,

we can conclude that IsoFun can achieve a performance superior to

other competitive methods at both gene- and isoform-level.

To further investigate the capability of IsoFun in differentiating

the functions of isoforms originated from the same gene, we select

two multi-isoform genes, ‘ADAM15’ (ADAM Metallopeptidase

Domain 15) and ‘BCL2L1’ (B-cell lymphoma-2 like 1), whose iso-

forms have been studied in wet-lab experiments. ADAM15 is a type

I transmembrane glycoprotein known to be involved with cell adhe-

sion cloned, and it has characterized alternatively spliced forms

related with human breast cancers (Zhong et al., 2008). ADAM15

has two isoforms (ADAM15A and ADAM15B), which are associ-

ated with poorer relapse-free survival in node-negative patients.

These two isoforms have different effects on cell morphology. The

expression of ADAM15A enhances the adhesion, migration and in-

vasion, whereas ADAM15B reduces adhesion. IsoFun correctly pre-

dicted the associations between ADAM15A and GO terms (GO:

0045785, positive regulation of cell adhesion; GO: 0010810, regula-

tion of cell-substrate adhesion). The predicted association values be-

tween ADAM15A and GO: 0045785 and GO: 0010810 are much

higher than the average value. On the other hand, the predicted as-

sociation values between ADAM15B and these two terms are far

below the average.

BCL2L1, as a protein coding gene, has a vital effect in apoptotic

(Boise et al., 1993). BCL2L1 has two isoforms, Bcl-x(S) and Bcl-

x(L). Studies have shown that Bcl-x(S) and Bcl-x(L) have pro-

apoptotic (GO: 0043065) and anti-apoptotic (GO: 0043066) func-

tions (Revil et al., 2007), respectively. The result of IsoFun fully

reflects the functional information of Bcl-x(S) and Bcl-x(L). IsoFun

gives the larger association value between Bcl-x(S) and ‘GO:

0043065’ (positive regulation of apoptotic process) than all the

other isoforms. In contrast, the predicted association value for Bcl-

x(L) and GO: 0043065 is lower than the average value. On the other

hand, the association value between Bcl-x(L) and ‘GO: 0043066’

(negative regulation of apoptotic process) is twice than that between

Bcl-x(S) and ‘GO: 0043066’, and the former value is higher than the

average, and the latter is lower than the average.

4 Conclusions

Differentiating the functions of alternatively spliced isoforms can

pave the way for explaining the proteome complexity and various

complex diseases in a higher resolution than at the gene-level.

Compared with the widely studied gene function prediction, isoform

function prediction is rarely studied. The major challenge is that

functional annotations of isoforms are generally unavailable and

functional genomic data are universally recorded at the gene-level.

To attack this challenge, we develop a data integration model called

IsoFun. IsoFun firstly constructs a heterogeneous network to encode

gene-level interactions, GO terms, isoforms and inter and intra-

associations between them. It then introduces a tailored bi-random

walk on the heterogeneous network to predict novel associations be-

tween isoforms and GO terms, and ensures that the known annota-

tions of a gene are inherited by at least one isoform of the gene.

Experimental results show that IsoFun outperforms other related

and representative solutions. The study also confirms that integrat-

ing the gene-level data and using GO hierarchy can significantly im-

prove the prediction performance.

There are several avenues to further improve the performance of

IsoFun, such as fusing multiple gene-level and transcript-level het-

erogeneous data sources, and taking into account the tissue specific

pattern of isoform–isoform interaction network.
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