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Abstract

Motivation: Alternative splicing contributes to the functional diversity of protein species and the
proteoforms translated from alternatively spliced isoforms of a gene actually execute the biological
functions. Computationally predicting the functions of genes has been studied for decades.
However, how to distinguish the functional annotations of isoforms, whose annotations are essen-
tial for understanding developmental abnormalities and cancers, is rarely explored. The main
bottleneck is that functional annotations of isoforms are generally unavailable and functional gen-
omic databases universally store the functional annotations at the gene level.

Results: We propose IsoFun to accomplish Isoform Function prediction based on bi-random walks
on a heterogeneous network. IsoFun firstly constructs an isoform functional association network
based on the expression profiles of isoforms derived from multiple RNA-seq datasets. Next, IsoFun
uses the available Gene Ontology annotations of genes, gene—gene interactions and the relations
between genes and isoforms to construct a heterogeneous network. After this, IsoFun performs a
tailored bi-random walk on the heterogeneous network to predict the association between GO
terms and isoforms, thus accomplishing the prediction of GO annotations of isoforms.
Experimental results show that IsoFun significantly outperforms the state-of-the-art algorithms and
improves the area under the receiver-operating curve (AUROC) and the area under the precision-
recall curve (AUPRC) by 17% and 44% at the gene-level, respectively. We further validated the
performance of IsoFun on the genes ADAM15 and BCL2L1. IsoFun accurately differentiates the
functions of respective isoforms of these two genes.

Availability and implementation: The code of IsoFun is available at http:/mlda.swu.edu.cn/codes.
php? name=IsoFun.

Contact: guomaozu@bucea.edu.cn or kingjun@swu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction intron retention (Pan, 2008). Alternative splicing takes place in 90%

of human multi-exon genes, and it significantly increases the tran-
Alternative splicing allows a multi-exon gene to produce multiple scriptome and proteome complexity in eukaryotic cells (Wang,
isoforms through mechanisms like exon skipping, mutual exclusion 2008). The proteoforms (or protein variants) translated from differ-
of exons, alternative 5’ donor site, alternative 3’ acceptor site and ent isoforms of the same gene have different amino acid sequences
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and structures, and thus may have different (even opposite) func-
tions (Smith et al., 2013). For example, two isoforms, Bcl-x(S) and
Bcl-x(L) of B-cell lymphoma-x (BCL2L1) gene, have pro-apoptotic
and anti-apoptotic biological functions, respectively (Revil et al.,
2007). The proteoforms actually carry out various biological func-
tions and maintain the normality of living cells. Increasing evidence
has shown that alternative splicing plays key roles in developmental
abnormality and is closely related with many human diseases, such
as breast cancer, colorectal cancer, spinal muscular atrophy and so
on (Climente-Gonzalez et al., 2017).

Predicting functional annotations of isoforms (or proteoforms), in-
stead of genes, can contribute to a deeper understanding of both the mo-
lecular basis of diverse genetic diseases and the evolution of phenotypic
complexity (Li ez al., 2014a, 2016b). However, existing computational
solutions for function prediction are mainly at the gene level, or predict
functions of the canonical isoforms, who are the most prevalent, best
documented and often the longest. These solutions cannot differentiate
the intrinsic functions of different isoforms. This is because existing
functional databases [i.e. Gene Ontology (GO) (Gene Ontology
Consortium, 2017) and KEGG (Kanehisa et al., 2017)] universally store
the functional knowledge of gene products at the gene-level, although
some wet-lab experiments are actually conducted at the isoform-level.
In other words, there are no (or scarce) functional annotations of iso-
forms in the functional databases. It is observed that interaction profiles
of isoforms show tissue specific patterns (Ellis et al., 2012), but existing
databases still record the protein—protein interaction at the gene-level
(Chatr-Aryamontri et al., 2017; Szklarczyk et al., 2014), and they do
not record which isoforms are actually studied in the experiments.
Furthermore, isoforms of a gene have subtle variances, and sequence-
based features cannot provide reliable discriminant information. For
these reasons, it is a difficult challenge to accurately predict the func-
tional annotations of isoforms based on sequence and interaction data,
which are prevalently used in gene function prediction (Jiang et al.,
2016). Some researchers employed expression tag (Neverov et al.,
2005), full length complementary DNA (Yura et al., 2006) or exon
array data (Emig et al., 2010) to analyze isoform functions. However,
these types of data generally have low coverage and different biases,
which restrict their capability for accurate isoform function prediction.

RNA-Seq techniques can do massively parallel sequencing of the
genome-wide transcript isoforms (translated into proteoforms) at a far
higher resolution than ever before. The accumulated abundant RNA-
Seq datasets in public databases (Edgar ef al., 2002) provide unprece-
dented amount of transcript-level data. In addition, some efficient
methods have also been proposed to precisely quantify the expression
levels of transcript isoforms with less bias (Patro et al., 2014). They
both pave the way for identifying alternative splicing events and pre-
dicting isoform function at large scale. Recently, some pioneers have
explored RNA-Seq data for high-resolution isoform function predic-
tion, and achieved successful predictions (Eksi et al., 2013; Li et al.,
2014b; Luo et al., 2017; Panwar et al., 2016). These methods generally
take each gene as a bag and isoforms of the gene as instances of the
bag, and then perform function prediction under the multiple instance
learning (MIL) framework (Dietterich et al., 1997; Zhou et al., 2012).
In MIL, a bag is positive for a label if at least one of its instances is posi-
tively annotated with that label; on the other hand, the bag is negative
if all its instances are not annotated with that label. Eksi et al. (2013)
developed a multiple instance support vector machine learning based
solution (miSVM) (Andrews, 2003) to differentiate isoform functions
based on RNA-seq data of mouse. miSVM uses the functional annota-
tions at the gene level and generates classifying models at the isoform
level instead of the gene level. Empirical study shows that miSVM can
identify the ‘responsible’ isoform(s) that most likely carry the function

of its originating gene and also predict novel functions of isoforms. Li
et al. (2014b) proposed a novel multiple instance-based label propaga-
tion method (iMILP) to predict functions of isoforms. iMILP firstly
constructs an isoform functional association network using the co-
expression pattern derived from multiple RNA-seq datasets of humans,
and uses available GO annotations of genes to initialize the functional
annotations of isoforms. Next, it iteratively normalizes and updates
labels in the isoform network, and allows all qualified isoforms to in-
herit positive gene’s functions in a ‘democratic’ learning manner until
convergence. In this way, iMILP achieves predictions for each isoform
to be associated with a given functional label. The aforementioned
MIL-based representative solutions treat each label separately. Given
that the functional annotations of genes are rather imbalanced, and
due to the large number of possible labels (more than 1000), these solu-
tions not only have compromised performance, but also suffer from a
heavy computational burden. This is because they ignore the hierarch-
ical dependency between labels (or GO terms), which is captured by a
direct acyclic graph, while its appropriate usage can significantly boost
the prediction performance (Fu er al, 2016; Gene Ontology
Consortium, 2017; Yu et al., 2018). Some researchers firstly con-
structed the isoform-isoform interaction network using multiple
RNA-seq datasets and the guidance of gene-level interactions, and then
identified functional modules or propagated labels on the network to
accomplish function prediction (Li et al., 2016a; Tseng et al., 2015).
However, the effectiveness of these network-based approaches is still
restricted by incomplete gene-level interactions and by the fact that the
GO hierarchy is still ignored.

In this study, we introduce an approach called IsoFun to predict
isoform functions using tailored label propagation on a heteroge-
neous network. IsoFun firstly constructs an isoform functional asso-
ciation network based on the expression profile values of isoforms
collected from multiple RNA-seq datasets, and assigns all the anno-
tations of a gene to its isoforms. Next, it constructs a heterogeneous
network composed of isoforms, genes and GO terms, to encode the
relationships between genes and isoforms, the hierarchical relation-
ship between GO terms and functional associations between iso-
forms. This heterogeneous network can achieve a synergy between
the gene-level interactions, available GO annotations of genes and
relationships between genes and isoforms, and thus reduce the im-
pact of incomplete individual data sources. IsoFun then introduces a
bi-random walk based label propagation on the constructed hetero-
geneous network to predict isoform functions. In addition, to ensure
the known function of a gene is inherited by at least one of its iso-
forms, IsoFun clamps the known function to the most ‘responsible’
isoform in each iteration. We conduct experiments on 311 Human
RNA-seq datasets collected from ENCODE (ENCODE Project
Consortium, 2012), and find that IsoFun achieves significantly bet-
ter results than other related and competitive approaches (Li et al.,
2014b; Tseng ef al., 2015; Wei et al., 2017) across various evalu-
ation metrics. A case study on two genes (ADAM15 and BCL2L1)
confirms that IsoFun can differentiate the functional annotations of
different isoforms of the same gene. In addition, we also prove that
the gene-level interactions, and the hierarchical relationship between
functional labels can improve the prediction performance and re-
duce the impact of class-imbalance in isoform function prediction.

2 Materials and methods

2.1 Heterogeneous network construction
Without loss of generality, suppose there are # genes, each gene has
n; isoforms, and the total number of isoforms is m =37, n.
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We denote the ith gene as Bj = {x;,,X;,,...,X;, }, X; € R? is the
expression profile feature vector of the jth isoform of the ith gene,
T is the set of distinct GO terms (or functional labels) used to
annotate the genes, and A/ A; (€ T) are the known positive/nega-
tive annotations of the ith gene. Each GO annotation consists of
an association between a gene and a GO term. A positive
annotation means the gene carries the function described by the par-
ticular GO term, and a negative annotation means the gene does not
carry the function. Since the functional annotations of isoforms are
unknown, we initially set the isoform-term association matrix A €
R”! between m isoforms and [ distinct GO terms (I = |T]) as
follows:

1, if x, €B; and tGA;r
A(k,t) =< -1, if x, €B; and r € A (1)
0, otherwise

From Eq. (1) we can see that all the known positive (negative)
annotations of a gene are initially inherited by its isoforms. Based on
these initial annotations, iMILP (Li et al., 2014b) iteratively propa-
gates the inherited positive/negative annotations in an isoform func-
tional association network to differentiate the functional
annotations of different isoforms. At the same time, iMILP uses the
MIL principle to pin the initial negative annotations to isoforms
throughout the iterative process.

Existing computational solutions (Eksi et al., 2013; Li et al.,
2014b; Luo et al., 2017) solely depend on the isoform functional
association network constructed from multiple RNA-seq datasets.
As such, they may have a compromised performance, since the
used network is hand-crafted and it does not refer to the raw-level
but curated gene-level interaction network. Furthermore, they
treat each GO term separately, and ignore the hierarchical relation-
ship between them. Given this, we construct a heterogeneous
network (as shown in Fig. 1) to achieve a synergy between the read-
ily available gene-level interactions, the isoform functional network
and the GO hierarchy for accurate isoform function prediction.
The resulting heterogeneous network not only can reduce the
impact of incomplete data sources, but can also utilize the relation-
ship between genes and isoforms, and the dependency between GO
terms.

L_ Positive Annotation

Gene ) GO term

Isoform --'-.. Unknown Annotation — =X _ Negative Annotation

Fig. 1. lllustration of the heterogeneous network composed of isoforms,
genes and GO terms. The solid line and segmented lines between subnet-
works indicate the known positive and negative associations, and the dotted
lines indicate missing associations

Suppose W g RU=#mx(Hntm) g the weighted adjacency matrix

of the heterogeneous network. W can be presented using a block-
wise notation as follows:

ng ng Wg L
W= | Wy Wy Wy, 2)
ng me Wmm

where W, € R W, € R and W,,,,, € R correspond to the
subnetworks of GO terms, genes and isoforms, respectively. W, €
R Wem € R>" and Wpm € R™ store the known associations
between GO terms and genes, GO terms and isoforms and genes
and isoforms. Wy,, W,,, and W,,,, are the transposes of the three
corresponding association matrices.

To construct the isoform functional association network W,
we downloaded 588 RNA-seq runs (for a total of 311 samples) of
humans from the ENCODE project (access date: 2017-12-15).
These 311 samples are obtained from different tissues and condi-
tions. Due to space limitation, the procedure of processing and con-
trolling the quality of the original data is provided in Supplementary
Section S1 of the Supplementary File. After the processing, we
obtained a total of 8417 genes with 84 519 isoforms. Isoforms with
similar expression profiles have high profile similarity and are more
likely to have similar functions; as such we use the Pearson correl-
ation coefficient of FPKM (Fragments Per Kilobase of exon model
per Million mapped fragments) feature vectors to measure the func-
tional association between isoforms. Since there are many small co-
efficient values, which might correspond to noise, we only retain the
100 largest association values for each isoform in the isoform func-
tional association network.

For the inter-association subnetwork W, between genes and
GO terms, we directly use the collected GO annotations and GO
hierarchy to initialize the associations between / GO terms and »
genes. Specifically, if the GO term ¢, or #'s descendant terms, pro-
vide(s) a positive annotation for gene i, then Wy, (i,#) = 1. On the
other hand, if #, or its ancestor terms, give(s) a negative annotation
to gene i, Wy, (i,t) = —1. Otherwise, Wy, (i,#) = 0. For the inter-
association subnetwork W,,, between isoforms and GO terms, we
initially set W,,,, = A. For the inter-association subnetwork W, be-
tween isoforms and genes, if x; € B; (namely isoform x;, originates
from gene i), then Wy, (i, k) = 1; otherwise W,,, (i, k) = 0.

W, and W, encode the hierarchical dependency between GO
terms and the interaction between genes, respectively. They can be
directly specified based on the GO file and interaction data, which is
detailed in Supplementary Section S1 of the Supplementary File.

To eliminate the different scale effect and to make the transitional
probability from a node to its connected nodes equal to 1, we further
normalize W, (i,7) = W (ir1)/ S0y W (i, k) and Wy (i, /) =
W (i,7)/ > k1 Wpp (i, k). Since W, is an asymmetric matrix, we nor-
malize each row of Wy as W, (s, 2) = W (s, 1)/ Zi,:l Wee(s, t').

Given the bag-instance relation between a gene and its isoforms,
and the lack of ground-truth isoform-isoform interactions, it is help-
ful to integrate gene interaction information to describe the func-
tional associations between isoforms (Li et al., 2016a; Tseng et al.,
2015). Here, to facilitate the follow-up random walks, we map the
interactions between genes onto their isoforms. Specifically, if
isoform u € B; and v € B;, and W, (i,7) > 0, then W, (u,v) =
W, (1,0) + Wy (i, )/ (i % 7).

2.2 A bi-random walk on the heterogeneous network
A straightforward solution to infer the associations between iso-
forms and GO terms is to apply random walks on the heterogeneous
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network. Random walk based approaches have been widely adopted
in various bioinformatics problems due to their simplicity and effect-
iveness (Codling et al., 2008). However, our constructed heteroge-
neous network has different types of edges and nodes, and each type
of edges has a different meaning. Furthermore, each subnetwork has a
different structure. For example, the GO term subnetwork is a directed
acyclic graph, and the isoform functional association subnetwork can
be viewed as an undirected network. Applying a global random walk
on the whole network may enshroud the intrinsic structures of differ-
ent networks and result in a compromised performance (Yu et al.,
2018). To account for the structural differences of the subnetworks
and for the MIL principle, we introduce a tailored bi-random walk on
the heterogeneous network to predict the GO annotations of isoforms.
Our bi-random walk solution is also inspired by the observation that
the functional association between isoforms and GO terms can be pre-
dicted in two ways: (i) A random walker first moves from an isoform
to another isoform based on the functional association between them,
and it stops at a GO term node based on the inherited/inferred
isoform-term associations. (ii) A random walker first walks from an
isoform node to a GO term node based on the updated isoform-term
associations, and then moves downwards towards a descendant term
of the current one based on the hierarchial relationship between them.

Based on the above analysis, we can formulate the two random
walks as follows:

m

Fi(i,1) =) Wi, k) « FV(k,2) 3)
k=1
F5(i,t) = FCE (i, 5) % We(s, ) (4)
techild(s)
F' = (1, —H)© (F] +F5) + HOF (S)

where F* € R” is the predicted likelihood associations between
isoforms and [ terms in the tth iteration, F® = A and ® denotes the
Hadamard product. H € {0, 1}/ is introduced to pin the negative
GO annotations of isoforms, and ensure the positive annotations of
a single-isoform gene are inherited by its isoform. In particular, if
isoform i is alternatively spliced from a gene which is negatively
annotated by term ¢, or if this isoform is from a single-isoform gene,
which is annotated with ¢, then H(i,#) = 1. Otherwise H(7, ) = 0.
This setup is motivated by the bag-instance relation between gene
and its isoforms, and also by the convention of GO annotations.
With the sequential application of Eqs. (3-5), we can iteratively
update the association likelihoods between m isoforms and I GO
terms. In each iteration, to ensure the annotated terms of a multi-
isoform gene are inherited by its isoforms, we introduce a clamp
process that assigns the term to its ‘responsible’ isoform as follows:
F'(k*,t) = 1,if k* = argmax ¥ (k,t) and t € T; (6)

x,€B;

where k* is the isoform that has the maximum prediction score with
respect to ¢. Since all the entries of W,,,,, W, W, and Wy, are at
most one, and Egs. (3, 4) are geometric sequences, F* converges after
a finite number of iterations. At convergence, we obtain the pre-
dicted association likelihoods between 7 isoforms and [ terms.

3 Results and discussion

3.1 Experimental setup
To study the performance of IsoFun for function prediction, we col-
lected two releases of GO annotation (GOA) files of Human

archived in different years from the GO website (http://geneontol
ogy.org/ page/download-annotations/). The historical GOA file was
archived on 2016-04-30, and the recent GOA file was archived on
2018-03-15. We train IsoFun on the historical (released in 2016)
GOA file, and validate its predictions on the recent (released in
2018) GOA file with the new annotations archived between 2016
and 2018. To avoid the impact of GO structure changes, we also
downloaded the contemporary GO files (http://geneontology.org/
page/download-ontology/) and used the shared GO structure for the
experiments. The biological functions of genes are divided into three
branches by GO: Biological Process Ontology (BPO), Molecular
Function Ontology (MFO) and Cellular Function Ontology (CCO).
Each ontology structures GO terms via a direct acyclic graph to rep-
resent the hierarchical relationships between them. The GOA file
stores known associations between genes and GO terms. To avoid
circular prediction, direct annotations with evidence code ‘TEA’
(inferred from electronic annotations) were excluded. We filter out
sparse GO terms that are associated to very few (<10) genes. The
processed GO annotations of genes and isoforms are listed in
Table 1. From this table, we can see that many new annotations of
genes were appended during a two year interval.

The functional annotations of isoforms are generally unknown.
To enable prediction evaluation, we need to aggregate the isoform-
level predictions to the gene-level. For this aggregation, we simply
summarize the predicted scores of all isoforms of a gene with respect
to term ¢ as the aggregated score as follows:

e, F (k1)

ni

Y(i,t) = (7)
where F* is the finally predicted likelihoods obtained by Egs. (3-5),
and Y € R™ is the aggregated likelihood scores between 7 genes
and / terms. Y can then be used as a surrogate to evaluate the per-
formance of IsoFun and of comparing methods at the gene level.
The performance of gene function prediction can be evaluated by
different evaluation metrics. To reach a comprehensive comparison,
we use five representative evaluation metrics to evaluate the per-
formance of the methods, namely AUROC, AUPRC, Fmax, Smin
and RankLoss. We compare the performance of IsoFun against mi-
SVM, MI-SVM (Eksi ez al., 2013), iMILP (Li et al., 2014b), miFV
and miVLAD (Wei et al., 2017). The first three methods were
reviewed in the Introduction. miFV and miVLAD are two efficient
and scalable MIL algorithms, which learn new feature vector repre-
sentations of bags and linear classifiers for bag-level prediction. We
used the expression profile values of isoforms across all the collected
RNA-seq datasets to construct one isoform functional association
network for these comparing methods. For page limitation, details
on the evaluation metrics and on the comparing methods are pro-
vided in Supplementary Section S2 of the Supplementary File.

Table 1. Statistics of GO annotations of Human

figenes(n) 8714
fisoforms(m1) 84519
Dimensions of isoforms(d) 311

BPO MFO CCO
History 396936 73851 168084
Recent 491729 88287 202274
fiterms(/) 3357 658 537

Note: ‘history’ is the number of positive and negative annotations in the
historical GOA file (archived date: 2016-04-30), and ‘recent’ is the number of
positive and negative annotations in the recent GOA file (archived date:

2018-03-15).
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3.2 Network contribution analysis

To investigate the contribution of accounting for dependencies be-
tween functional labels and gene-level interactions, we introduce
two variants of IsoFun: IsoFun(P) and IsoFun(G). IsoFun(P) propa-
gates functional annotations on the isoform association network
and on the gene-gene interaction network, and it does not account
for the dependency between GO terms. As such, Eq. (4) is not used
in this case. IsoFun(G) only propagates functional annotations on
the isoform subnetwork and GO term subnetwork. This means
that the gene-level interactions are disregarded and are not mapped
onto the isoform functional association network. The differences be-
tween these two variants and iMILP are summarized in Table 2.
Figure 2 reports the Fmax and Smin values of these comparing meth-
ods under the historical to recent experimental protocol. This proto-
col is adopted by CAFA (Jiang et al., 2016) and is more challenging
than the widely adopted cross-validation protocol.

IsoFun has consistently larger Fmax and smaller Smin values
than its two variants and iMILP; in turn, the two variants are super-
ior to iMILP with respect to both Fmax and Smin values. Given the
performance margin achieved between IsoFun(G) and iMILP, and
the margin between IsoFun(P) and iMILP, we can conclude that
both the gene-level interactions and the GO hierarchy should be
used for accurate isoform function prediction. The improvement of
IsoFun(P) against iMILP is smaller than that of IsoFun(G) against
iMILP. This is because the isoform-level network can describe the
interactions between genes/proteins with higher resolution, and has
overlaps with gene-gene interactions. If there is an interaction be-
tween two genes, there exists at least one interaction between the re-
spective isoforms of the two genes. But the interactions between the
respective isoforms are rarely known. Although both IsoFun(P) and
iMILP computationally construct the isoform network from mul-
tiple RNA-seq datasets and do not use the dependency between GO
terms, IsoFun(P) still obtains a better performance than iMILP. This
is because IsoFun(P) additionally uses the gene-level interaction in
constructing the isoform functional association network. Another
reason is that the newly gathered GO annotations of genes often
provide more specific functional knowledge of genes. The related
GO terms of these new annotations correspond to descendants of
the terms already annotated to genes, and the downward random
process in Eq. (4) can take advantage of this pattern. For these

Table 2. Differences between IsoFun, iMILP and the variants of
IsoFun

iMILP  IsoFun(P) IsoFun(G) IsoFun

Isoform-Isoform network J J N
Gene-Gene network X N X N
GO hierarchy X X N N
1 16
12t §
£
E 8
@

|__|IsoFun(P) 4
| lIsoFun(G)

cco

BPO

Fig. 2. Results comparison on the new archived GO annotations between
2016 and 2018

reasons, IsoFun(G) achieves better results than IsoFun(P), and in
turn IsoFun achieves a better performance than IsoFun(G). The per-
formance margin between IsoFun and IsoFun(G) is more obvious in
the BPO, which includes more GO terms than MFO and CCO. The
reason is that the GO terms are annotated to genes/isoforms in a ra-
ther imbalanced way, and the imbalance effect is more serious in
BPO. This observation corroborates the fact that IsoFun can lever-
age the dependency between GO terms to reduce the impact of class
imbalance in isoform function prediction.

The experiments are conducted on archived GO annotations in
different years, without random partition of the training set and test-
ing set, so there is no standard deviation to report. To statistically
compare the performance of the methods, we use the Wilcoxon
signed-rank test (Wilcoxon, 1945) to assess the difference in per-
formance between IsoFun and the other methods across the evalu-
ation metrics and ontologies; the test has shown that all the P-values
are smaller than 0.031. In summary, these results confirm that both
gene-level interactions and dependency between functional labels
should be considered in isoform function prediction.

Since we only selected the k=100 most correlated isoforms of
each isoform to construct the network, we conducted additional
experiments to investigate the sensitivity of IsoFun to k. The
obtained results show that an effective k can be easily selected from
a wide range of values. Due to page limitation, the experimental
results and analysis are provided in Supplementary Figure S1 and
Supplementary Section S3 of the Supplementary File.

3.3 Comparison results at the gene-level

Following the experimental protocol used in Eksi et al. (2013) and
Li et al. (2014b), we conduct fivefold cross validation experiments
on the recent GOA data to study the performance of IsoFun. Due to
the prohibitive runtimes of miFV, miVLAD, mi-SVM and MI-SVM
on such a large number of isoforms and of functional labels, we re-
filtered the data. Particularly, we set all FPKM values less than 0.3
as 0, and then filtered out isoform with all FPKM values of 0. To en-
sure data filtered at the gene level, we did a further filtering: if an
isoform of a gene is filtered, this gene and its all isoforms will be fil-
tered out. We exclude the terms annotated to fewer than 30 genes,
and the too general terms annotated to more than 300 genes. After
that, the numbers of genes, isoforms, GO terms used for the experi-
ments are 4738, 30251, 204 (CCO), 210 (MFO) and 1113 (BPO),
respectively. For a comprehensive comparison, we introduce other
two variants of IsoFun, IsoFun(Y) and IsoFun(M). IsoFun(Y) is simi-
lar to IsoFun, but it does not manually clamp the positive annota-
tions of a gene to its most ‘responsible’ isoform in each iteration.
As such, Eq. (6) is not used in this case. IsoFun(M) is also similar to
IsoFun, but it only selects the isoform with the maximum score as
the ‘responsible’ isoform of a gene for a function. Table 3 lists the
results of the comparing methods.

IsoFun significantly outperforms the other methods across dif-
ferent evaluation metrics, except Smin. Also IsoFun(Y) and
IsoFun(M) frequently achieve a better performance than the com-
peting methods. Both IsoFun and iMILP often have a larger Smin
value than other comparing methods. The reason is that both
IsoFun and iMILP are label propagation based solutions. The nega-
tive associations between gene and GO terms, and those between
isoforms and terms, are over-propagated in the random walk pro-
cess, and thus expand the semantic distance between the predic-
tions and ground-truths, whereas miFV, miVLAD, mi-SVM and
MI-SVM adopt binary classifiers and the negative annotations can
enhance the discriminant ability of the classifiers. Furthermore, the
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Fig. 3. IsoFun versus iMILP on single-isoform genes

3.4 Comparison results at the isoform-level

In this subsection, we further assess the performance of IsoFun at
the isoform-level. Since the ground-truth annotations of isoforms
are unknown, we take 422 single-isoform genes as the test set, and
the annotations in the historical GOA file as the training set. This
surrogate assessment was also used by iMILP (Li ef al., 2014b). The
obtained AUROC, Fmax and Smin values of IsoFun and iMILP are
given in Figure 3. We do not report the results of other comparing
methods, since the experiment was conducted in the historical to re-
cent protocol and these methods cannot be applied in this setting.

IsoFun again obtains a better performance than iMILP in the
isoform-level prediction. iMILP only combines multiple RNA-seq
datasets, it does not account for interrelations between GO terms
and the closely related interaction data at gene-level, whereas
IsoFun takes advantage of all these information sources. The im-
provement of IsoFun with respect to iMILP is more obvious in the
BPO, since BPO has a larger number of hierarchically organized GO
terms, and these terms are annotated to genes in a rather unbalanced
way. This improvement suggests the GO hierarchy should be consid-
ered in isoform function prediction, and this hierarchy knowledge
can reduce the impact of class-imbalance. From these experiments,
we can conclude that IsoFun can achieve a performance superior to
other competitive methods at both gene- and isoform-level.

To further investigate the capability of IsoFun in differentiating
the functions of isoforms originated from the same gene, we select
two multi-isoform genes, ‘ADAM15’ (ADAM Metallopeptidase
Domain 15) and ‘BCL2L1" (B-cell lymphoma-2 like 1), whose iso-
forms have been studied in wet-lab experiments. ADAM1S is a type
I transmembrane glycoprotein known to be involved with cell adhe-
sion cloned, and it has characterized alternatively spliced forms
related with human breast cancers (Zhong et al., 2008). ADAM1S5
has two isoforms (ADAM15A and ADAM15B), which are associ-
ated with poorer relapse-free survival in node-negative patients.
These two isoforms have different effects on cell morphology. The
expression of ADAM15A enhances the adhesion, migration and in-
vasion, whereas ADAM15B reduces adhesion. IsoFun correctly pre-
dicted the associations between ADAM15A and GO terms (GO:
00457835, positive regulation of cell adhesion; GO: 0010810, regula-
tion of cell-substrate adhesion). The predicted association values be-
tween ADAM15A and GO: 0045785 and GO: 0010810 are much
higher than the average value. On the other hand, the predicted as-
sociation values between ADAM15B and these two terms are far
below the average.

BCL2L1, as a protein coding gene, has a vital effect in apoptotic
(Boise et al., 1993). BCL2L1 has two isoforms, Bcl-x(S) and Bcl-
x(L). Studies have shown that Bcl-x(S) and Bcl-x(L) have pro-
apoptotic (GO: 0043065) and anti-apoptotic (GO: 0043066) func-
tions (Revil et al., 2007), respectively. The result of IsoFun fully
reflects the functional information of Bcl-x(S) and Bcl-x(L). IsoFun
gives the larger association value between Bcl-x(S) and ‘GO:
0043065 (positive regulation of apoptotic process) than all the
other isoforms. In contrast, the predicted association value for Bcl-
x(L) and GO: 0043065 is lower than the average value. On the other

hand, the association value between Bcl-x(L) and ‘GO: 0043066’
(negative regulation of apoptotic process) is twice than that between
Bcl-x(S) and ‘GO: 0043066°, and the former value is higher than the
average, and the latter is lower than the average.

4 Conclusions

Differentiating the functions of alternatively spliced isoforms can
pave the way for explaining the proteome complexity and various
complex diseases in a higher resolution than at the gene-level.
Compared with the widely studied gene function prediction, isoform
function prediction is rarely studied. The major challenge is that
functional annotations of isoforms are generally unavailable and
functional genomic data are universally recorded at the gene-level.
To attack this challenge, we develop a data integration model called
IsoFun. IsoFun firstly constructs a heterogeneous network to encode
gene-level interactions, GO terms, isoforms and inter and intra-
associations between them. It then introduces a tailored bi-random
walk on the heterogeneous network to predict novel associations be-
tween isoforms and GO terms, and ensures that the known annota-
tions of a gene are inherited by at least one isoform of the gene.
Experimental results show that IsoFun outperforms other related
and representative solutions. The study also confirms that integrat-
ing the gene-level data and using GO hierarchy can significantly im-
prove the prediction performance.

There are several avenues to further improve the performance of
IsoFun, such as fusing multiple gene-level and transcript-level het-
erogeneous data sources, and taking into account the tissue specific
pattern of isoform—-isoform interaction network.
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