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Abstract

Motivation: Cell divisions start from replicating the double-stranded DNA, and the DNA replication

process needs to be precisely regulated both spatially and temporally. The DNA is replicated

starting from the DNA replication origins. A few successful prediction models were generated

based on the assumption that the DNA replication origin regions have sequence level features like

physicochemical properties significantly different from the other DNA regions.

Results: This study proposed a feature selection procedure to further refine the classification model

of the DNA replication origins. The experimental data demonstrated that as large as 26% improve-

ment in the prediction accuracy may be achieved on the yeast Saccharomyces cerevisiae.

Moreover, the prediction accuracies of the DNA replication origins were improved for all the four

yeast genomes investigated in this study.

Availability and implementation: The software sefOri version 1.0 was available at http://www.

healthinformaticslab.org/supp/resources.php. An online server was also provided for the conveni-

ence of the users, and its web link may be found in the above-mentioned web page.

Contact: qing@jlu.edu.cn or FengfengZhou@gmail.com, ffzhou@jlu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A cell needs to replicate its double-stranded DNA during its division,

and then its genetic information is accurately passed to the next gener-

ation (Watson and Crick, 1953). The replication origin is where the

genome replication process starts and requires precise regulations

(Mott and Berger, 2007). Bacterial genome usually has one replication

origin (Chodavarapu and Kaguni, 2016; Skarstad and Katayama,

2013), while eukaryotic genome has multiple replication origins to

parallelly replicate the large genomes (Bogenschutz et al., 2014;

Peng et al., 2015; Warner et al., 2017) and so does archaea

(Ausiannikava and Allers, 2017). Many genetic elements have inherent

sequence-level patterns that can be used to optimize a sequence-based

element prediction system (Liu et al., 2017).

The replication origins may be precisely detected and bound by

the origin recognition complex (ORC) (Lee and Bell, 1997). The

replication origins of the well-studied budding yeast Saccharomyces

cerevisiae have two characteristic sequence patterns. First,

S.cerevisiae has highly specific sequence patterns in the replication

origins (Liachko et al., 2010). ORC recognizes the T-rich 17 bp
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motif autonomously replicating sequence (ARS) and its consensus

sequence (ACS), which may interact with the three neighboring

B1/B2/B3 elements (Biswas et al., 2005; Liachko et al., 2010).

The B1 element has an A/TTA/T motif within the 228 ARSs con-

served across the six Saccharomyces species (Chang et al., 2011;

Leonard and Mechali, 2013). The spacing between the B1 element

and the ACS is essential for the ORC binding (Marahrens and

Stillman, 1994). The B2 element is the binding residue for Cdc6p,

the MCM-2-7 helicase (Wilmes and Bell, 2002; Zou and Stillman,

2000), while the B3 element bound to the ARS-binding factor 1

(Abf1) for the precise site specificity of replication (Marahrens and

Stillman, 1992).

The second characteristics of S.cerevisiae replication origins is

nucleosome exclusion (Nieduszynski et al., 2006). The nucleosome

mapping result demonstrates that �180bp region overlapping the

ARS1 replication origin is free from nucleosome binding.

Nucleosome occupant regions have significant sequence motifs and

tend to avoid the 200 bp regions upstream of the gene start codon

and other regulatory regions (Yuan et al., 2005).

Various computational technologies have been utilized to detect

the genomic replication origins (Peng et al., 2015). Nucleotides

guanine (G) and cytosine (C) were observed to be differentially rep-

resented in the replication origin regions (Lobry, 1996). So the GC

distributions were used to develop several tools like cumulative

skew diagram (Grigoriev, 1998), Z-curve (Ou et al., 2003; Zhang

and Zhang, 2002), base composition asymmetry (Gao and Zhang,

2008; Luo et al., 2014), etc. Nevertheless, the lack of negative sam-

ples may introduce false positives to these tools’ results.

Recent studies trained the replication origin predictors using

both positive and negative samples, so that the number of both false

positives and false negatives may be reduced. These samples were

evaluated for their structural characteristics (Chen et al., 2012) and

sequence statistical compositions (Robinson et al., 2014). Li et al.

generated the pseudo-k-tuple nucleotide compositions (PseKNC)

from the sample sequences and achieved 83.72% in the overall suc-

cess rate of predicting replication origins in the S.cerevisiae genome

(Li et al., 2015). The integration of dinucleotide physiochemical fea-

tures (Zhang et al., 2016) and position-specific features (Xiao et al.,

2016) with the original version of general pseudo amino acid com-

position (Chou, 2011) were demonstrated for their improved predic-

tion accuracies of replication origin sites. A recent study considered

the varied lengths of replication origins and GC asymmetry bias and

proposed a replication origin prediction algorithm for four yeast

genomes with the state-of-the-art prediction accuracies (Liu et al.,

2018a).

This study hypothesized that the replication origin prediction

models mentioned above may be improved by finding the best subset

of the sequence features. So we carried out the supporting experi-

ments for our hypothesis by following the five-step procedure, i.e.

(i) well-defined benchmark dataset, (ii) formulating the sample

sequence into features, (iii) selecting the features and optimizing the

predicting classifier, (iv) cross-validating the model and (v) a user-

friendly predicting tool. The experimental data demonstrated that

the replication of original prediction models was reasonably

improved.

2 Materials and methods

2.1 Benchmark dataset
This study chose to use the benchmark datasets of four yeast species

curated from the database DeOri version 6.0 (Gao et al., 2012) and

the corresponding genomic sequences were retrieved from the data-

base GenBank (Benson et al., 2018). A comparative evaluation of a

replication origin prediction algorithm was carried out on these four

yeast species, i.e. S.cerevisiae, Schizosaccharomyces pombe,

Kluyveromyces lactis and Pichia pastoris. The genomic locations of

their replication origins were collected from the database DeOri ver-

sion 6.0 (Gao et al., 2012). The negative samples were randomly

extracted from the same genomes with the same length distributions

as the positive samples. Only the sequences longer than 49 bp were

kept for further analysis. Homologous redundant sequences with

cut-off threshold 80% were detected and removed using the state-

of-the-art sequence clustering software CD-HIT (Fu et al., 2012;

Li and Godzik, 2006). The construction procedure of the four data-

sets was followed exactly as in Liu et al. (2018a).

The four benchmark datasets were denoted as D(Sc), D(Sp),

D(Kl) and D(Pp) for the four yeast species: S.cerevisiae, S.pombe,

K.lactis and P.pastoris. Saccharomyces cerevisiae had 340 replica-

tion origin samples in the positive dataset Dp(Sc) and 342 negative

controls in the negative dataset Dn(Sc). There were 338 and 335

samples in the positive Dp(Sp) and negative Dn(Sp) datasets for

S.pombe, respectively. Kluyveromyces lactis had 147 pairs of posi-

tive and negative samples in Dp(Kl) and Dn(Kl), respectively. The

last genome Pichia pastoris had 305 non-redundant replication ori-

gins and 302 non-replication origins in the datasets Dp(Pp) and

negative Dn(Pp). The final datasets may be found in Supplementary

Materials S1–S4 of Liu et al. (2018a). The four datasets were sum-

marized in Table 1.

2.2 Experimental design
This study was organized into three main steps, i.e. feature extrac-

tion, feature selection and classification, as shown in Figure 1.

The PseKNC was widely used to describe the sequence level

characteristics of DNA or RNA elements and have been successfully

utilized for predicting various genetic elements, as similar in Liu

et al. (2018b).

Six feature selection algorithms and seven classification algo-

rithms were evaluated for building the prediction models of DNA

replication origins. The prediction performance was evaluated by

five metrics, i.e. sensitivity (Sn), specificity (Sp), overall accuracy

(Acc), balanced accuracy (bAcc) and Matthews correlation coeffi-

cient (MCC) (Feng et al., 2018; Xu et al., 2018). Details may be

found in Supplementary Materials due to the page limit.

3 Results and discussion

This study used the dataset D(Sp) to tune the parameters of the pre-

diction model. A recent study investigated the prediction problem of

DNA replication origins using the four datasets D(Sc), D(Sp), D(Kl)

and D(Pp) (Liu et al., 2018a, b). They achieved the best LOO

Table 1. Benchmark datasets

Species Dataset P N

Saccharomyces cerevisiae D(Sc) 340 342

Schizosaccharomyces pombe D(Sp) 338 335

Kluyveromyces latis D(Kl) 147 147

Pichia pastoris D(Pp) 305 302

Note: The column ‘Species’ gave the names of the four genomes. The col-

umn ‘Dataset’ was the denotation of each dataset. The number of positive

and negative samples in each dataset were given in the columns ‘P’ and ‘N’,

respectively.

50 C.Lou et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/1/49/5520948 by guest on 09 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz506#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz506#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz506#supplementary-data


accuracy 0.965 on the dataset D(Sp), while the other three datasets

D(Sc), D(Kl) and D(Pp) only got the LOO Acc¼0.730, 0.851 and

0.710, respectively. So this study assumed that a set of parameter

values would perform well on all these four datasets if it could im-

prove the previous model on D(Sp) with the best accuracy.

3.1 Find the best feature selection algorithm
Six feature selection algorithms were evaluated for their feature

screening capabilities on predicting DNA replication origins, as

shown in Figure 2. These algorithms were the filter feature selection

algorithm v-squared (v2) test (Jin et al., 2006), the wrapper algo-

rithm McTwo (Ge et al., 2016), random forest-based recursive fea-

ture elimination (RF-RFE) (Granitto et al., 2006), support vector

machine-based recursive feature elimination (SVM-RFE) (Duan

et al., 2005), Lasso (Deshpande et al., 2019; Kumar et al., 2017)

and Ttest (Gharbali et al., 2018; Ye et al., 2017). The selected fea-

ture subset was evaluated for their back-propagation neural network

(BPNN) classification performances averaged over 20 random runs

of the 5-fold cross-validation strategy.

Figure 2 illustrated that the feature selection algorithm SVM-

RFE outperformed the other five algorithms in all the overall per-

formance metrics, i.e. Acc, bAcc, AUC and MCC. SVM-RFE

achieved about 0.02 improvements in Acc compared with v2,

McTwo and RF-RFE. Although McTwo achieved an improvement

of 0.0092 in Sn compared with SVM-RFE, its Sp was 0.0413 smaller

than SVM-RFE. SVM-RFE outperformed the second best feature

selection algorithm Lasso with an improvement of 0.0012 in Acc.

So SVM-RFE achieved an improvement of 0.0193 in Acc compared

with McTwo. So the following sections used SVM-RFE to select a

feature subset for predicting the DNA replication origins.

3.2 Find the best classification algorithm
Seven classification algorithms were evaluated for their capabilities

of predicting DNA replication origins using the sequence features

selected by SVM-RFE, as shown in Figure 3. The classifier SVM

(Weston et al., 2001) has been widely applied in predicting biologic-

al elements (Beer, 2017; Zhang and Ma, 2019). The RF classifier

determined the class assignment by summarizing the predictions of

multiple random trees (Jang et al., 2018; Li et al., 2018).

Multinomial naı̈ve Bayes (MNB) calculated the a priori probabilities

of a sample belonging to a class (Pan et al., 2018). The gradient

boosting decision tree (GBDT) classifier optimized an additive clas-

sification model by the step-wise forward strategy (Liang et al.,

2019; Wang et al., 2019). The BPNN was proposed by Rumelhart

et al. in 1986 as a multilayer feedforward neural network

(Rumelhart et al., 1986). Xgboost was a gradient-based classifier

that has been used to predict many sequence-based bioinformatics

Fig. 1. Flowchart of this study. Modules with the best performances were

highlighted in bold

Fig. 2. Classification performances of the classifier BPNN using features

selected by six feature selection algorithms. The six feature selection algo-

rithms were v2, McTwo, RF-RFE, SVM-RFE, Lasso and Ttest. The horizontal

axis gave the six performance metrics, i.e. Sn, Sp, Acc, bAcc, AUC and MCC.

The vertical axis was the value of these performance metrics

Fig. 3. Classification performances of seven classifiers using features selected

by SVM-RFE. The seven classification algorithms were SVM, RF, MNB, GBDT,

BPNN, ELM and Xgboost. The horizontal axis gave the six performance met-

rics, i.e. Sn, Sp, Acc, bAcc, AUC and MCC. The vertical axis was the value of

these performance metrics
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problems (Deng et al., 2019; Qiang et al., 2018). Extreme learning

machine (ELM) was a simplicity-based classifier and provides a very

rapid learning speed for many datasets (Li et al., 2019; Zhang et al.,

2019).

The feature subset selected by SVM-RFE was evaluated for its

classification performances using the seven classification algorithms

mentioned above, and all the performance metrics were averaged

over 20 random runs of the 5-fold cross-validation strategy. Figure 3

illustrated that BPNN outperformed all the other six classification

algorithms on the SVM-RFE selected features in all the performance

metrics except for Sn. At least 1.56% improvement in Acc was

achieved by BPNN compared with the other six classification

algorithms.

The classification algorithm SVM was the embedded classifier in

the feature selection algorithm SVM-RFE, and SVM outperformed

BPNN by 0.0439 in Sn, as shown in Figure 3. But SVM did not

achieve a good specificity (Sp¼0.6203), and its overall accuracy

(Acc¼0.6619) was 0.0397 smaller than that of BPNN

(Acc¼0.7016). So the classification algorithm BPNN performed the

best and was used in the following sections.

3.3 Optimize the parameters of SVM-RFE
The 5-fold cross validation strategy was used to calculate the predic-

tion performances of the classifier BPNN on the training dataset

(denoted as training performances), and then the test dataset was

used to evaluate the model trained over the training dataset (denoted

as testing performances). The parameters were tuned to optimize the

testing performances by the step-wise zooming strategy.

The parameter C of SVM-RFE was tuned in four steps with dif-

ferent scaling resolutions, as shown in Figure 4. First, the BPNN

classification performance metrics were calculated for each of the 10

choices C2[1, 10] with step size 1, as shown in Figure 4a. The best

testing accuracy was achieved for C¼2, while the best training ac-

curacy was achieved for C¼3. So the screening region was switched

to [0.1, 3] and the step size was set as 0.1, as shown in Figure 4b.

The best classification performances of both training and testing

datasets were achieved for C¼0.3. The next refining region was set

to [0.21, 0.40] with step size 0.1, as shown in Figure 4c. The top

three best testing accuracies were achieved for C¼0.29, 0.30 and

0.31. Therefore the final refining step screened the region [0.281,

0.320] with step size 0.001. The following sections used C¼0.294

with the best prediction accuracies for both training and testing

datasets, as shown in Figure 4d.

3.4 Double feature screening by the linear SVM weights
A double feature screening strategy was applied to the classifier

SVM to find a feature subset with the best classification perform-

ance. Each round of feature screening normalized the SVM weights

as percentiles, and only the features with weights no smaller than

the threshold value were kept for further analysis. So the two thresh-

old values T1 and T2 were evaluated for their classification

performances.

Figure 5a illustrated that the first round of feature screening gen-

erated fewer features when T2�0.5. After T2>0.5, the change of

feature number had a different trend. No features were selected

when T2>1.5 and T1<0.25. T2¼1.5 and T1¼0.2 also generated

no features. Figure 5b suggested that more features did not mean

better prediction accuracies. The best prediction accuracy of 0.7252

was achieved when T2¼0.8 and T1¼0.3. The data also suggested

that T1¼0.3 generated good prediction accuracy for different T2

values. So the following sections used T1¼0.3 and T2¼0.8.

3.5 Find the best pair of neural network layer number

and neuron number
Figure 6 illustrated that a smaller number of layers led to a better

averaged testing Acc, and the best averaged testing Acc¼0.7230

was achieved for one-layer BPNN. However, the fluctuated testing

Acc was not linearly correlated with the parameter a. The averaged

testing Acc suggested that the parameter neuron feature ratio a¼1.2

achieved the best performance testing Acc¼0.7265. However, the

best performing duet (d, a) was actually (1, 1.6), which achieved the

testing Acc¼0.7285. The following section used (d, a) ¼ (1, 1.6) for

the other experiments.

3.6 Dropout rate of BPNN
The parameter dropout rate played an essential role in optimizing a

neural network (Wang et al., 2018), and the performance of a

Fig. 4. Optimizing the parameter C of SVM-RFE. (a) C2[1, 10] with step size 1,

(b) C2[0.1, 3] with step size 0.1, (c) C2[0.21, 0.40] with step size 0.01 and

(d) C2[0.281, 0.320] with step size 0.001. The accuracy curves of the training

and testing datasets were plotted in solid and dashed lines, respectively

Fig. 5. Performance comparison for different values of T1 and T2. (a) Feature

numbers and (b) overall accuracy of the 5-fold cross-validation on the testing

dataset

Fig. 6. Performance comparison of different number of neurons and layers.

The BPNN model was evaluated for its testing Acc using different choices

of the two parameters. The last column gave the averaged testing Acc

over the same row (of the parameter neuron feature ratio a). The last row

gave the averaged testing Acc over the same column (of the parameter layer

number d)
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prediction model usually did not linearly correlate with the dropout

rate (Bonn et al., 2018). Our data also illustrated this pattern that

the prediction model might behave just like a random guess with the

testing Acc¼0.5574 when the dropout rate was 0.99, as shown in

Figure 7. After the dropout rate was increased to 0.10, the testing

Acc reached a plateau until 0.50. The maximum value of 0.7285

was achieved when the dropout rate was 0.40. This value was used

for the rest of this study.

3.7 Final models and the comparison with the existing

study
Twenty runs of BPNN with different random seeds and the best par-

ameter choices mentioned above were carried out on the four data-

sets, as shown in Figure 8. BPNN runs very slowly. The first recall

function was removed and the training iterations were reduced in

half. Figure 8a suggested that the final models on the four datasets

performed accurately and stably. The prediction accuracies of our

final models were also positively correlated with those of the exist-

ing study (Liu et al., 2018a) on these four datasets.

Our final models outperformed the previous study (Liu et al.,

2018) in all the six performance metrics on the four datasets, D(Sc),

D(Sp), D(Kl) and D(Pp), as shown in Figure 8b. This study only

achieved a minor improvement in Acc (Acc¼0.973) on the dataset

D(Sp), because the previous study already achieved a very good

Acc¼0.965. At least 11% improvement in Acc was achieved for the

other three datasets. The largest improvement of 0.269 in Acc was

achieved on S.cerevisiaea, where the prediction accuracy was

improved from 0.730 to 0.999. The performance variations were no

more than 0.010 over the 20 random runs for all the four datasets.

The previous study did not calculate multiple random runs, so the

error bars were not compared with the previous study.

3.8 Evaluation of other PseKNC features and the

biological implications
A further investigation was carried out to evaluate whether the other

PseKNC feature groups may improve our models, as shown in

Supplementary Figure S1. There are 12 feature groups for each of

the types 1 and 2 of PseKNC. This study utilized the feature groups

MW and NU of type 1. The experimental data suggested that the

two feature groups MW and NU achieved the best prediction

accuracies.

The selected features demonstrated statistical significance associ-

ated with the DNA replication origins and AT richness, as supported

by the literature.

Details may be found in Supplementary Materials due to the

page limit.

4 Conclusion

The main contribution of this study was to comprehensively evalu-

ate multiple algorithms to select a subset of DNA sequence features

with the best classification accuracies of the yeast DNA replication

origins. The best duet of feature selection and classification algo-

rithms was SVM-RFE and BPNN. The prediction models of the

DNA replication origins of all the four benchmark yeast genomes

were improved compared with the literature. The DNA sequence

features chosen in this study demonstrated the AT-rich pattern,

which supported the previous observations of the DNA replication

origins.
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