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Abstract

Motivation: The studies have indicated that not only microRNAs (miRNAs) or long non-coding RNAs (lncRNAs) play
important roles in biological activities, but also their interactions affect the biological process. A growing number of
studies focus on the miRNA–lncRNA interactions, while few of them are proposed for plant. The prediction of inter-
actions is significant for understanding the mechanism of interaction between miRNA and lncRNA in plant.

Results: This article proposes a new method for fulfilling plant miRNA–lncRNA interaction prediction (PmliPred).
The deep learning model and shallow machine learning model are trained using raw sequence and manually
extracted features, respectively. Then they are hybridized based on fuzzy decision for prediction. PmliPred shows
better performance and generalization ability compared with the existing methods. Several new miRNA–lncRNA
interactions in Solanum lycopersicum are successfully identified using quantitative real time–polymerase chain re-
action from the candidates predicted by PmliPred, which further verifies its effectiveness.

Availability and implementation: The source code of PmliPred is freely available at http://bis.zju.edu.cn/PmliPred/.

Contact: mengjun@dlut.edu.cn or luanyush@dlut.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Non-coding RNAs (ncRNAs) are generally defined as non-protein-
coding transcripts that attract a lot of attention (Matsumoto et al.,
2017). An increasing number of studies have shown that ncRNAs
act in various biological processes, especially microRNAs (miRNAs)
and long ncRNAs (lncRNAs) (Wang et al., 2017). miRNAs (se-
quence length is about 22 nts) regulate gene expression at the post-
transcriptional level (Song et al., 2019; Xu et al., 2016; Xu et al.,
2019). lncRNAs (sequence length is usually greater 200 nts) involve
in epigenetic regulation, transcriptional regulation and so on (Cui
et al., 2017, 2019; Liu et al., 2019). In recent years, the interactions
between miRNAs and lncRNAs have also been indicated to affect
the biological activities. For example, they regulate target genes to
play a role in liver fibrogenesis (Bian et al., 2019). The miRNA–
lncRNA pairs may be regulatory components during plant resistance
to pathogen infection, and some lncRNAs that act as miRNA
mimics participated TYLCV and Phytophthora infestans
(P.infestans) resistance regulatory process in Solanum lycopersicum
(S.lycopersicum) (Jiang et al., 2019; Wang et al., 2015). Pervasive
transcription is appeared in different genomes (Bai et al., 2015; Yan
et al., 2017; Yu et al., 2018), however, most of related studies focus
on the miRNA–lncRNA interactions in animal (Guo et al., 2014;

Jalali et al., 2013) and few for plant. The annotation of ncRNAs is
far from complete, especially in plant (Bai et al., 2015), and a lot of
mechanisms of plant miRNA–lncRNA interaction are unknown.
The experimentally confirmed miRNA–lncRNA interactions of
plant are quite limited. For example, NPInter v4.0 database (Teng
et al., 2019) documents a large number of functional interactions be-
tween ncRNAs and biomolecules from more than 30 species, but
just 2 species of them are plants. It provides 71 RNA–RNA interac-
tions of these 2 plant species, where only one is an miRNA–lncRNA
interaction. To understand the interaction mechanisms between
miRNAs and lncRNAs in plant, it is necessary and significant to
identify their interactions.

There are three main forms of miRNA–lncRNA interaction in
plant. The first is that miRNA targets lncRNA: miR9678 targets
lncRNA (WSGAR) and triggers the generation of phased small inter-
fering RNAs that play a role in the delay of seed germination in
Triticum aestivum (Guo et al., 2018). The second is that lncRNA
suppresses miRNA: lncRNA23468 as a miRNA decoy suppresses
the expression of miR482b in S.lycopersicum (Jiang et al., 2019).
The last is that lncRNA acts as a precursor of miRNA: lncRNAs
TCONS_00012662 and GRMZM2G420571_T01, as the precur-
sors of miR167j and miR172c, respectively, may be responsive to
drought stress in Zea mays (Zhang et al., 2014). Quantitative real
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time–polymerase chain reaction (qRT–PCR) is one of biological
methods, which can obtain the expression levels of miRNA and
lncRNA to preliminary identify the interaction. For the forms that
miRNA targets lncRNA and lncRNA suppresses miRNA, the ex-
pression levels of miRNA and lncRNA are negatively correlated,
which is focused in this study. Though the biological methods iden-
tify the relationships of miRNAs and lncRNAs, they are time-
consuming and expensive. The bioinformatics technologies provide
the predicted results as the references for biological identification,
which save a lot of time and costs. With the rapid development of
computer technology, there are constantly powerful methods and
tools have been published. About miRNA research: a stacked
denoising auto-encoders-based method using different levels of fea-
tures (DeepMirTar) was proposed for predicting human miRNA tar-
gets at the site level (Wen et al., 2018); a random forest (RF) and a
convolutional neural network (CNN) model were trained, respect-
ively, and employed to predict plant miRNAs (Zhao et al., 2018).
About lncRNA research: a bidirectional long short-term memory
model and a CNN layer with three additional hidden layers were
constituted for predicting lncRNAs of human and mouse (Liu et al.,
2019); a tool, named RNAplonc, used 16 selected features to train
REPTree for predicting plant lncRNAs (Negri et al. 2019). About
the interactions between RNA and protein research: RPITER was a
predictor based on hierarchical deep learning framework, which
adopted CNN and stacked auto-encoder for predicting ncRNA–
protein interactions from widely used databases (Peng et al., 2019);
another predictor named PLRPIM for plant ncRNA–protein interac-
tions was proposed, which used a hybrid method to obtain high
accuracies (ACCs) for two species (Wekesa et al., 2019). About the
interactions between RNAs research: a web server (LncRRIsearch)
was developed for human and mouse lncRNA–lncRNA and
lncRNA–message RNA interaction prediction (Fukunaga et al.,
2019); 18 RNA–RNA interaction prediction tools for mammalian
species were reviewed and tested (Antonov et al., 2019). These stud-
ies have made significant contributions; however, they are mainly
predicting miRNAs, lncRNAs and ncRNA–protein interactions.
Although there have the predictors for RNA–RNA interactions,
they are not developed for plant. Our previous work used a shallow
machine learning model to predict plant miRNA–lncRNA interac-
tions (Bouba et al., 2019). In addition to this, there are currently few
related predictors that have been published. ncRNAs are mainly
transcribed by RNA polymerases II and III in animal, however, a
part of transcriptions are completed by RNA polymerases IV and V
in plant (Zhang et al., 2013; Zhou and Law, 2015). lncRNAs have
the characteristic of low sequence conservation, especially among
distant species (Noviello et al., 2018). It means that the predictors
which are trained using the animal data do not guarantee the reli-
ability when they are applied to plant. Therefore, it is a pressing
need to construct reliable and powerful predictors for plant
miRNA–lncRNA interactions.

The shallow machine learning methods are usually necessary to
manually design the features as the inputs, which limits their ability
to process natural data in the raw form (LeCun et al., 2015). The
deep learning methods use a general-purpose learning procedure to
learn the abstract features from raw data (LeCun et al., 2015), how-
ever, they may ignore the useful information in the manually
extracted features (Wen et al., 2018). Ensemble model learns the in-
formation from multiple perspectives that obtains better perform-
ance than a single model (Moyano et al., 2018). Thus, a model can
be constructed for predicting plant miRNA–lncRNA interactions
that hybridizes both deep learning and shallow machine learning,
utilizes both raw sequences and manually extracted features, and
comprehensively assesses the decisions from different models. It is
interesting and worth trying.

This article proposes a new method based on hybrid model and
fuzzy decision for fulfilling plant miRNA–lncRNA interaction pre-
diction (PmliPred). CNN and gated recurrent unit (GRU) are both
deep learning technologies. CNN automatically extracts the abstract
features from different levels of the raw sequences by convolution
operation and compresses them in the flatten layer into a one-
dimension vector as the input to GRU, and GRU is suitable for

handling such a sequence (vector) with the correlated information
(Che et al., 2018; LeCun et al., 2015). The fuzzy set theory simulates
the uncertainty and imprecision when a model is making a decision
(Rosso-Cerón et al., 2019). It provides a method for dealing with
such problems that the imprecision come from the absence of sharp-
ly defined criteria for class membership rather than the random vari-
ables (Reis, 2019). These techniques and theory are borrowed in the
proposed method. A deep learning model [CNN-bidirectional GRU
(BiGRU)] is constructed by hybridizing CNN and BiGRU. CNN-
BiGRU and a shallow machine model (RF) are trained using the
encoded raw sequences and manually extracted features, respective-
ly. Inspired by fuzzy set theory, the trained CNN-BiGRU and RF are
hybridized based on fuzzy decision to obtain PmliPred. The param-
eter and weight strategy of PmliPred are adjusted to maximize the
performance. PmliPred is compared with several existing methods to
verify the performance and generalization ability. Furthermore, it is
applied to predict miRNA–lncRNA interactions in S.lycopersicum.
A set of candidates from the predicted results are selected for bio-
logical identification, where the expression levels of miRNA and
lncRNA of 73% candidates are negatively correlated.

2 Materials and methods

2.1 Construction of datasets
The research for animal can use the experimentally confirmed
miRNA–lncRNA interactions to construct the datasets (Huang
et al., 2019). For plant, there is currently no public miRNA–
lncRNA interaction database available and the experimentally con-
firmed interactions that can be collected are far less than those of
animals are. We download miRNA sequences from miRBase
(Release 22.1) (Kozomara et al., 2019) and lncRNA sequences from
GreeNC (v1.12) (Gallart et al., 2016) and CANTATAdb2.0
(Szcze�sniak et al., 2016), and construct the datasets as follows.

RNAhybrid 2.1.2 is used to obtain the original candidates of
miRNA–lncRNA interaction that the binding energy is <�25 kcal/
mol and the 2–8th in seed region from the 50 end are ensured to
match completely (Krüger and Rehmsmeier, 2006). To enhance the
credibility, these candidates are filtered based on RNA structural
characters. Three filtering conditions (Franco-Zorrilla et al., 2007;
Wu et al., 2013) are the 10–12th from the 50 end of the miRNA se-
quence must have at least one raised point; the raised points on the
lncRNA sequence except for the both ends are only allowed to con-
tain 2–4 nts; except for both ends and raised points, the number of
mismatches on miRNA is not more than 4 and the number of con-
secutive mismatches is not more than 2. After filtering, the reserved
candidates are used as the positive dataset.

The positive dataset involves almost all miRNAs and many
lncRNAs (here named PlncRNAs). There are also some lncRNAs
are not involved in the positive dataset (here named NlncRNAs).
Thus NlncRNAs are aligned one-to-one with PlncRNAs through
Needleman–Wunsch algorithm (Nanni and Lumini, 2008), and
those with an identity of more than 80% are filtered out (Negri
et al., 2019). The reserved NlncRNAs are combined one-to-one
with miRNAs as the negative dataset.

We construct the datasets of Arabidopsis thaliana (A.thaliana),
Glycine max and Medicago truncatula. 2500 positive samples of
each species, totally 7500 samples, are randomly selected from the
positive datasets. To solve the unbalance problem, 7500 negative
samples which include 2500 samples of each of the three above-
mentioned species are randomly selected from the negative datasets.
These selected samples are mixed to be a training-validation dataset.
We also construct the datasets of Arabidopsis lyrata (A.lyrata) and
S.lycopersicum. For each of these two species, 500 samples (250
positive and 250 negative samples) are randomly selected to be a
test dataset. Both A.lyrata and A.thaliana belong to the cruciferous
family. Solanum lycopersicum and all the species involved in train-
ing do not belong to the same family. They are selected as represen-
tative species of close genetic relationship and far genetic
relationship with the species in training, respectively, to verify the
generalization ability of the proposed method for cross-species
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prediction. In addition, 90 miRNA sequences of S.lycopersicum are
selected from the downloaded data. One hundred and fifty lncRNA
sequences of S.lycopersicum are selected which have been obtained
through transcriptome sequencing in our previous studies (Cui et al.,
2020). They are combined to form 13 500 miRNA–lncRNA pairs as
the unlabeled dataset. The numeric description of all samples is
shown in Supplementary File S1.

2.2 Encoding and feature extraction
The raw sequence of sample is encoded by one-hot encoding
(Rodrı́guez et al., 2018) as the input for CNN-BiGRU. The sample
is composed by four different bases, i.e. adenine (A), thymine (T)
[uracil (U) in miRNA is encoded according to T], cytosine (C) and
guanine (G), which can be transformed into a 0–1 matrix of four
rows and N columns, where N is set to the length of the longest sam-
ple. For those sequences smaller than N, the zero-padding operation
is performed on their empty columns. Here the encoding rule is that,
A is encoded as (1, 0, 0, 0)T, T is encoded as (0, 1, 0, 0)T, C is
encoded as (0, 0, 1, 0)T, G is encoded as (0, 0, 0, 1)T and zero-
padding is encoded as (0, 0, 0, 0)T.

The k-mer frequency, GC content, number of base pairs and
minimum free energy (MFE) (Negri et al., 2019) of both miRNA
and lncRNA of sample (totally 110 features listed in Supplementary
File S2) are extracted to form a feature vector as the input for RF.
For each k-mer, the total number of matches is recorded as sk. A par-
ameter ak is assigned to each k-mer to make the frequency of each
form has the same effect on the prediction. For the jth form, the
number of matches is recorded as cj and the frequency of matches is
recorded as fj. The parameters sk, ak and fj are calculated as:

sk ¼ L� kþ 1; k ¼ 1; 2;3 (1)

ak ¼
1

43�k
; k ¼ 1; 2; 3 (2)

fj ¼ ak
cj

sk
; k ¼ 1; 2; 3; j ¼ 1; 2; . . . ; 84 (3)

where L represents the sequence length. The MFE is obtained using
RNAfold in ViennaRNA Package v2.4.11 (Lorenz et al. 2011) and
normalized as:

nMFE ¼MFE

L
: (4)

2.3 Architecture of CNN-BiGRU
CNN and BiGRU are hybridized to construct a deep learning model
CNN-BiGRU. In CNN, the convolutional layer detects local con-
junctions of features from the previous layer to obtain the output
feature maps using a set of filters. The pooling layer combines the

outputs of one layer of neuron clusters into a single neuron in the
next layer. The fully connected layer connects every neuron in one
layer to every neuron in another layer. In addition, the batch nor-
malization and dropout layers are added to accelerate training and
reduce overfitting. BiGRU includes two gating signals, i.e. an update
gate z and a reset gate r, to control the hidden state h at each time t
(Che et al., 2018).

The raw sequences of miRNA and lncRNA of each sample are
concatenated and encoded to input into CNN-BiGRU. The feature
maps are extracted from the encoded sequence by two convolutional
layers. The dimensions are reduced by two pooling layers with max-
pooling scheme. The feature maps are compressed into a one-
dimension vector by a flatten layer. This vector is transferred to
BiGRU and the decision is output by the fully connected layer
(Fig. 1).

2.4 Hybridization based on fuzzy decision
The prediction of plant miRNA–lncRNA interactions is originally a
two-class classification problem, i.e. using a trained CNN-BiGRU to
predict whether there is an interaction between miRNA and
lncRNA of a sample or not. Here the decision produced by CNN-
BiGRU is fuzzified. It means that, if its decision is not enough to de-
termine whether there is an interaction in the corresponding sample,
this decision and the crisp decision produced by a trained RF are
comprehensively assessed to finally determine whether there is an
interaction in this sample.

When a decision produced by CNN-BiGRU satisfies the
constraint:

absðPc�NcÞ < T (5)

it is considered to be not enough to determine whether there is an
interaction in the corresponding sample, where Pc is the confidence
probability whether there is an interaction in the sample and Nc is
the opposite, abs() is the absolute value function, and T is the thresh-
old which can be set to a constant or variable value. The variable T
value is defined as:

T ¼ abs PcR �NcRð Þ; abs PcC �NcCð Þ < abs PcR �NcRð Þ
0; others

�
(6)

where PcC, NcC are produced by CNN-BiGRU and PcR, NcR are
produced by RF. It provides different values for different samples in-
stead of a constant value to decide that if Equation (5) is satisfied,
which automatically adjusts the threshold to avoid the manual ad-
justment step and has higher flexibility and diversity. In addition,
the confidence probability produced by RF affects the threshold se-
lection, which further plays the role of a shallow machine learning
model in the hybrid method.

CNN-BiGRU and RF are hybridized using the weighted sum
method on decision level. The decisions produced by different mod-
els are comprehensively assessed as:

Pcf ¼ wC � PcC þwR � PcR

Ncf ¼ wC �NcC þwR �NcR

�
(7)

where wC is the weight of CNN-BiGRU and wR is the weight of RF,
Pcf and Ncf are final confidence probability. Based on the weighted
sum method, the average weight and complete weight strategies are
proposed and expressed as:

wC ¼ wR ¼
1

2
; average weight strategy

wC ¼ 0;wR ¼ 1; complete weight strategy

(
(8)

2.5 Implementation of PmliPred
CNN-BiGRU is implemented by Keras 2.2.4 and all parameters use
the default values from Keras documentation (https://keras.io/). All
scripts are written by Python 3.6.5. PmliPred is implemented on PC

Fig. 1. Architecture of CNN-BiGRU. Conv-32 and Conv-64 are the convolution

layers with 32 and 64 filters, respectively, Batch normalization is a batch normaliza-

tion layer, Relu is a Relu activation function, MaxPool is a pooling layer using max-

pooling scheme, Flatten is a flatten layer, Dropout(dp) is a dropout layer and its

dropout rate is dp, Dense-2 is a fully connected layer with 2 neurons
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with 2.81 GHz CPU, 6GB GPU and 8GB RAM memory under a
Microsoft Windows 10 operating system.

2.6 Evaluation criteria
The performance of PmliPred is verified according to true positive
rate (TPR), positive predictive value (PPV), ACC, F1 score (F1-
score) and area under curve (AUC) from receiver operating charac-
teristic (ROC) curve (Wekesa et al., 2019).

2.7 Biological identification
lncRNAs of S.lycopersicum were identified from the transcriptome
data of S.lycopersicum L3708 (a resistant accession to P.infestans)
uninfected and infected with P.infestans for 3 days in our previous
studies (Cui et al., 2018, 2020). PmliPred is applied to predict the
interactions between miRNAs and lncRNAs in S.lycopersicum.
qRT–PCR is performed to examine their expression levels and iden-
tify the interactions.

Solanum lycopersicum L3708 and P.infestans were cultured
according to a previous study (Jiang et al., 2018). The five-leaf-stage
S.lycopersicum plants were infected with P.infestans spores (106

zoospores/ml) as described previously (Cui et al., 2018). At 0th and
3rd days post-infection, the whole 5th leaf from each
S.lycopersicum plant was removed for RNA isolation.

miRNAs, lncRNAs and gene expression were quantified by
qRT–PCR using TransScript Green miRNA Two-Step qRT–PCR
SuperMix (Transgen Biotech) and SYBR Premix Ex TaqTM II kit
(TaKaRa). The S.lycopersicum actin was used as a reference gene,
with all primer sequences were listed in Supplementary File S3. All
reactions were carried out using three biological replicates. The
2�DDCT method was used to determine and normalize the levels of
transcripts in each case.

3 Results

3.1 Effect of threshold and weight strategy variations
The effects of different thresholds (T) and weighted strategies of
PmliPred on ACCs are evaluated using 10-fold cross validation
(Fig. 2).

When the average weight strategy is adopted, for the constant
threshold, as the value is increased, the obtained result is better, and
for the variable threshold, the obtained result is the best. When the
complete weight strategy is adopted, the obtained result is also bet-
ter as the constant threshold is increased, and for the variable thresh-
old, the obtained result is slightly worse than that of using a
constant threshold (T¼0.5) and better than those of using the other
constant thresholds. However, the result of adopting the complete
weight with a constant threshold (T¼0.5) has an abnormal value.
No matter which strategy is used, the result of using the variable
threshold is better. As the threshold is increased, the constraint
Equation (5) is easier to be satisfied. It means that more samples are
predicted through comprehensive assessment and higher ACC can
be obtained, which matches the above results. The variable thresh-
old can be adaptively adjusted according to different samples and
has higher flexibility and diversity. Therefore, it obtains competitive
ACC of not lower than a constant threshold, which also matches the

above results. When the variable threshold is used, the results of
adopting the average weight and complete weight strategies are
similar. Since the obtained result of using the average weight strat-

egy has an abnormal value, the complete weight strategy with vari-
able threshold is determined in the following experiments.

3.2 Selection of shallow machine learning model and

effect of hybrid method
CNN-BiGRU can be hybridized with various shallow machine
learning based on fuzzy decision. Four common shallow machine

learning models [support vector machine (SVM), decision tree (DT),
k-nearest neighbor (k-NN) and RF] are compared using 10-fold
cross validation to select the best one for constructing PmliPred. In

addition, PmliPred is compared with the single shallow machine
learning (SVM, DT, k-NN and RF) and deep learning (CNN and

CNN-BiGRU) methods using 10-fold cross validation to evaluate
the effect of hybrid method. The average results are obtained
(Fig. 3).

RF obtains the best PPV, ACC and F1-score and the second best
TPR among all shallow machine learning methods. It shows good

stability from its standard deviation bars. PmliPred obtains the best
TPR, ACC and F1-score compared with other methods. Just PPV

obtained by CNN is slightly better than it obtained by PmliPred.
PmliPred also obtains good standard deviation values that show its
stability.

Least significant difference test is used to statistically test the
results of four measurements obtained by PmliPred compared with

six methods. The test results are shown in Table 1.
P-value �0.05 means that there is a significant difference be-

tween the results obtained by PmliPred and compared method at the
significant level of mean difference of 0.05.

PmliPred shows significant TPR, ACC and F1-score over all
compared methods and its PPV is also significantly better than that
of each shallow machine learning method.

The above results explain the reason why RF is selected for hy-
bridization, show the effect of the proposed hybrid method over

each single method, and indicate that PmliPred can predict miRNA–
lncRNA interactions of four species involved in training of the

model.

3.3 Comparison with existing methods on test datasets
PmliPred is compared with the above six existing methods on two
test datasets to verify the performance and generalization ability. To

make the results reliable, 10 times of independent experiment are
made on each test dataset and the average results are obtained
(Fig. 4).

The AUC values obtained by PmliPred on A.lyrata and
S.lycopersicum test datasets are 0.8386 and 0.8266, respectively. It

shows good performance and generalization ability of PmliPred for
cross-species (including the species of close and far genetic relation-
ship with the species in training of the model) prediction.

Fig. 2. ACCs obtained by PmliPred on different thresholds and weight strategies

using 10-fold cross validation

Fig. 3. Average results obtained by 7 methods using 10-fold cross validation
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3.4 Test on identified miRNA–lncRNA interactions
The studies have shown sly-miR482b and sly-miR399 interact with
lncRNA23468 and slylnc1077, respectively, in S.lycopersicum
(Jiang et al., 2019; Wang et al., 2015). To further verify the per-
formance and generalization ability, PmliPred is used to predict
these interactions. Thirty times of independent prediction are made
to obtain the results (Fig. 5).

PmliPred obtains the Pc values of more than 0.5 in all 30 times
of independent prediction for these interactions, where the Pc values
achieve 0.9 in 21 and 29 times and the �Pc values are 0.9052 and
0.9734, respectively. The Pc values obtained by CNN-BiGRU and
RF on 30 independent predictions are also recorded in
Supplementary File S4. For sly-miR482b–lncRNA23468 interaction,
since the complete weight strategy is adopted, 5 of 30 Pc values
from PmliPred are provided by RF. Although CNN-BiGRU makes
incorrect predictions (Pc obtained by CNN-BiGRU is <0.5) on four
of these five independent predictions, the constraint Equation (5) is
satisfied and the Pc values of CNN-BiGRU are completely replaced
by those of RF, which makes PmliPred to correctly predict the inter-
action. For sly-miR399–slylnc1077 interaction, 6 of 30 Pc values
from PmliPred are provided by RF. CNN-BiGRU makes 30 correct
predictions and RF further ensures the ACC. Although in some cases
the predicted results are determined by CNN-BiGRU, RF has also
proven to be necessary in the hybrid method.

PmliPred can successfully predict these identified miRNA–
lncRNA interactions in all independent predictions and the �Pc val-
ues are both more than 0.9. It means that PmliPred is feasible to pro-
vide predicted results for biological identification.

3.5 Biological identification of predicted results

obtained by PmliPred
To further verify the effectiveness of PmliPred, it is applied to pre-
dict the interactions in miRNA–lncRNA pairs from the unlabeled
dataset. qRT–PCR is performed to examine the expression levels of
miRNAs and lncRNAs and identify the interactions. To save time
and costs and enhance the credibility, the results with the average Pc
values of <0.95 from multiple independent predictions are filtered
out to obtain the predicted results. It is found that nine lncRNAs are
interacted with at least two miRNAs in these results. Therefore, 26
samples which contain these 9 lncRNAs are selected as the candi-
dates for biological identification (Fig. 6).

The expression levels of miRNA and lncRNA of 19 candidates
are negatively correlated, accounting for 73% of all candidates. For
example, the expression levels of TCONS_00033446 and sly-
miR172a are falling and rising, respectively. Another case is that,
the expression level of a lncRNA is affected by more than one
miRNA simultaneously, it could not determine whether there is an
interaction between miRNA and lncRNA even if their expression
levels are positively correlated (Jiang et al., 2018). For example, the
expression level of TCONS_00005670 is affected by sly-miR167b-
5p to make it falling, which is positively correlated with the

expression level of sly-miR167a, but the correlation between
TCONS_00005670 and sly-miR167a in the case of removing sly-
miR167b-5p is uncertain. Thus it needs to further identify the other
seven candidates whose expression levels of miRNA and lncRNA
are positively correlated. sly-miR172a–TCONS_00033446 inter-
action is selected from the above results and its Pc values during the
prediction are recorded in Supplementary File S4. Three of 30 Pc
values from PmliPred are provided by RF, which ensures that this
interaction is not filtered out from multiple independent predictions.
These results further verify the effect of the proposed hybrid
method.

A total of 19 new miRNA–lncRNA interactions in S.lycoper
sicum are successfully identified from the predicted results obtained

Table 1. Least significant difference comparisons of PmliPred and

compared methods

Compared method P-value

TPR PPV ACC F1-score

SVM �0.001 �0.001 �0.001 �0.001

DT �0.001 �0.001 �0.001 �0.001

k-NN �0.001 �0.001 �0.001 �0.001

RF �0.001 �0.001 �0.001 �0.001

CNN �0.001 0.775 �0.001 �0.001

CNN-BiGRU �0.001 0.491 �0.001 �0.001

Note: P-value �0.05 means that there is a significant difference between

the results obtained by PmliPred and compared method at the significant level

of mean difference of 0.05.

Fig. 4. ROC curves obtained by 7 methods on test datasets of two plant species.

(A) Arabidopsis lyrata. (B) Solanum lycopersicum

Fig. 5. Confidence probability Pc and average confidence probability �Pc obtained by

PmliPred. (A) Prediction of sly-miR482b–lncRNA23468 interaction. (B) Prediction

of sly-miR399–slylnc1077 interaction. 1, 2, . . ., 30 represent the 1st, 2nd, . . ., 30th

independent prediction, respectively
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by PmliPred. It indicates that PmliPred is feasible to provide credible

results as the references for biological identification.

4 Conclusions

This article proposed a new method based on hybrid model and
fuzzy decision, PmliPred, that was applied to plant miRNA–lncRNA

interactions prediction. It hybridizes CNN-BiGRU and RF, utilizes
raw sequences and manually extracted features. PmliPred obtains
better performance and generalization ability compared with exist-

ing methods. By the biological experiments, several new miRNA–
lncRNA interactions in S.lycopersicum are successfully identified

from the candidates predicted by PmliPred, which further verifies its
effectiveness.

Given that there are currently few specialized plant miRNA–
lncRNA interaction predictors have been published, PmliPred is
quite an efficient method. In addition, there is currently no public

plant miRNA–lncRNA interaction database available, which is
sharp contrast with miRNA and lncRNA. The predicted results of
PmliPred may lay the foundation for the construction of the data-

base in future. PmliPred may also provide valuable references for
other related studies.
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