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Abstract

Motivation: Metagenomics studies microbial genomes in an ecosystem such as the gastrointes-

tinal tract of a human. Identification of novel microbial species and quantification of their distribu-

tional variations among different samples that are sequenced using next-generation-sequencing

technology hold the key to the success of most metagenomic studies. To achieve these goals,

we propose a simple yet powerful metagenomic binning method, MetaBMF. The method does not

require prior knowledge of reference genomes and produces highly accurate results, even at a

strain level. Thus, it can be broadly used to identify disease-related microbial organisms that are

not well-studied.

Results: Mathematically, we count the number of mapped reads on each assembled genomic frag-

ment cross different samples as our input matrix and propose a scalable stratified angle regression

algorithm to factorize this count matrix into a product of a binary matrix and a nonnegative matrix.

The binary matrix can be used to separate microbial species and the nonnegative matrix quantifies

the species distributions in different samples. In simulation and empirical studies, we demonstrate

that MetaBMF has a high binning accuracy. It can not only bin DNA fragments accurately at a spe-

cies level but also at a strain level. As shown in our example, we can accurately identify the Shiga-

toxigenic Escherichia coli O104: H4 strain which led to the 2011 German E.coli outbreak. Our efforts

in these areas should lead to (i) fundamental advances in metagenomic binning, (ii) development

and refinement of technology for the rapid identification and quantification of microbial distribu-

tions and (iii) finding of potential probiotics or reliable pathogenic bacterial strains.

Availability and implementation: The software is available at https://github.com/didi10384/

MetaBMF.

Contact: xin_xing@fas.harvard.edu

1 Introduction

Accumulating evidence suggests that inhabiting microbial commun-

ities in human intestine, skin, oral cavity and genitourinary tract

play a crucial role in human health (Gerritsen et al., 2011).

Disruption of these delicate ecosystems can cause some perplexing

diseases including asthma (Huang and Boushey, 2015), allergies

(Huang et al., 2017), obesity (Turnbaugh et al., 2006), diabetes

(Brown et al., 2011), autoimmune diseases (Severance et al., 2016)

and perhaps even autism (Clemente et al., 2012). Thus,

understanding the microbial community is very important for identi-

fying disease-related pathogens and finding their potential treatment

strategies.

Moreover, an understanding of the microbial ecosystem is not

only important in medical research but is also important in

marine research (Hentschel et al., 2012), biothreat detection

(Gardner et al., 2015), biofuel study (Xing et al., 2012) and global

warming (Zhou et al., 2012). Besides the scientific study, a clear
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understanding of the microbial system has also been shown to be

useful in an industry setting as described in the following two exam-

ples. (i) It can be used as a simple research tool for the study of bac-

terial metabolism and as an easy method for the optimization of

bacterial production of fine chemicals or other fermentation proc-

esses. (ii) It can be used by manufacturers to control the bacterial

contamination in food products in order to meet stringent regula-

tions of the food industry.

Despite its importance, our understanding of the microbial

ecosystem is severely limited by the difficulty in cell culturing and

separation, the need for highly trained laboratory personnel and

the requirement of expensive and high-maintenance equipment. The

biodiversity of the microbial ecosystem has been barely studied, not

to mention interactions between microbial species. However, this di-

lemma can be overcome by recently developed DNA sequencing

technology. By sequencing bulk DNA that is directly extracted from

environmental samples, one can bypass all the aforementioned diffi-

culties and easily obtain the DNA fragments or short reads of every

genome in the microbial system. This type of research is referred to

as a metagenomic study. The segmentation of DNA fragments or

short reads either according to their similarities to some known ref-

erence genomes or according to their composition similarities [e.g.

similarities k-mer distributions (Teeling et al., 2004)] is referred to

as metagenomic binning. In general, metagenomic binning is similar

to sorting puzzle pieces and assembling multiple puzzles

simultaneously.

Although this line of research holds tremendous scientific prom-

ise, the delivery of this promise, however, has not yet been fully

materialized, mainly because of the lack of effective and efficient

bioinformatics tools for binning billions of mixed short reads into

multiple genomes. One major challenge arises from the incredible

complexity and heterogeneity of genomes in the samples. Reference-

based binning methods such as MAGEN (Huson et al., 2007),

MetaPhyler (Liu et al., 2010), Kraken (Wood and Salzberg, 2014)

and CLARK (Ounit et al., 2015) require us to know the reference

genomes (‘template of puzzles’) of the interested microbial species,

which are not available most of the times. The composition similar-

ity based methods are reference-free. However, the composition

similarity based methods cannot separate genetically similar

genomes and thus can only obtain a separation at a high taxonomy

rank such as the genus level. In order to improve k-mer-based

approaches, coverage-based methods such as CONCOCT (Alneberg

et al., 2014), MaxBin (Wu et al., 2016), MetaBAT (Kang et al.,

2015), Groopm (Imelfort et al., 2014) and VizBin (Laczny et al.,

2015) are developed to integrate the coverage information (i.e. the

average number of short reads covering each base pair of a contig

after alignment) with sequence composition information such as k-

mer distribution. However, they are usually very slow and a large-

scale study of these methods are infeasible. To overcome the afore-

mentioned challenges, an innovative approach MetaGen is proposed

in Xing et al. (2017), which models the relative abundance from

multiple samples as a mixture of multinomial distribution and clus-

ter DNA fragments using EM algorithm. Although MetaGen

achieves high binning accuracy, even for genetically similar micro-

bial strains, the EM algorithm used in Xing et al. (2017) suffers

from high computational and memory costs. It can fail from a mem-

ory overflow with thousands of samples. To adapt MetaGen for

massive metagenomic applications, we developed a powerful and

fast reference-free binning tool MetaBMF. The proposed method

enjoys both high binning accuracy and fast computation, which are

essential for large-scale metagenomic applications. It is especially

important for rapid and reliable detection and characterization of

microbial pathogens, particularly previously unknown ones, to

human or animals. Our efforts on metagenomic binning will lead to

(i) fundamental advances in metagenomic studies and (ii) a novel

method for timely detection of pathogenic bacteria.

In addition to biological achievement, the estimation

method that we developed is a major technological breakthrough.

We can reduce the current computational speed from a polynomial

order to a linear order, which is almost the fastest speed that one

can achieve. The software is available at https://github.com/

didi10384/MetaBMF.

2 Materials and Methods

MetaBMF targets on large-scale biomedical studies where species in

each sample have different distributions. This assumption can be

satisfied in most scientific studies. For example, we can safely as-

sume that the microbial distributions in the human gut are different

for different subjects. Under this assumption, we can safely assume

that the cross-sample relative abundance of one species is different

from that of another given species. Since the relative abundance of a

contig equals the relative abundance of the species that contain it,

we can make use of the relative abundance of each species across

samples to sort contigs based on the fact that contigs from different

species have different relative abundances across samples.

2.1 Model setup
Let us consider the metagenomic sequencing data consisting of short

reads from the genomes of the organisms collected from each sam-

ple. To control the binning error caused by the sequencing bias and

error and to improve the binning accuracy for species that are rare

in some samples, we first conduct a pooled assembly by connecting

overlapped short reads from all samples into longer contigs. Assume

that n contigs were obtained from p metagenomic samples, with a

total of K species involved, we can generate a n by p read counts

mapping matrix X, with its (i, j)th entry recording the number of

short reads from the jth sample mapped onto the ith contig.

Let Bik be the binary membership labeling variable such that Bik

¼ 1 if contig i 2 species k, and Pkj is the abundance of species k in

sample j. Then, the sequencing depth of the ith contig in sample j isPK
k¼1 BikPkj, and the relative abundance of mapped reads counts

xi ¼ ðXi1; . . . ;XipÞ is proportional to pk ¼ ðPk1; . . . ;PkpÞ if contig

i 2 species k. The proportion is the average number of short reads

that contig i can generate and is related to contig length.

Consequently, as shown in Fig. 1, if we ignore any measurement

errors, the read count mapping matrix X can be decomposed into

three factors: a normalization matrix K, a signature matrix B and a

relative abundance matrix P. That is

X ¼ KBP; (1)

where K is a n�n nonnegative diagonal matrix with the ith diag-

onal entry being proportional to the length of the ith contig, B is a

n�K binary matrix with the ikth entry indicating whether the ith

contig comes from the kth species and P is a K�p nonnegative ma-

trix with the kjth entry being the cross-sample relative abundance of

species k in sample j. In real practice where sequencing error,

sequencing bias a and assembly error exist, we will estimate K, B

and P by minimizing

LðK;B;PÞ ¼ jjX� KBPjjF; (2)

where jj � jjF represents the Frobenius norm.
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2.2 Stratified angle regression algorithm for binary

matrix factorization
Unlike all existing binning methods, which aim to find the optimal

partition of contigs among all
2n

K

� �
candidate partitions, we aim

to find K seed contigs that belong to K different species and then as-

sign the rest of the contigs according to their cross-sample distribu-

tional similarities with the K seed contigs.

We first found K contigs which distributed very differently in sam-

ples and define a set S which include all their indices. As the relative

abundance of a contig equals the relative abundance of its correspond-

ing species, we can use the cross-sample relative abundance of the K

seed contigs as an estimate of the species’ cross-sample relative abun-

dance P. When the relative abundance P is known, the rest of the n �
K rows of B can be obtained by conducting a linear regression

x0‘
jjx0‘jj1

¼ P0B0‘ þ �‘; (3)

where jj � jj1 denotes the L1 norm of a vector, x‘ is the ‘th row of the

read count mapping matrix X, B‘ is the ‘th row of the signature ma-

trix B and �‘ is the stochastic error. Without any constraint on B, an

optimal estimate of B‘ can be achieved by minimizing the least

square functional LðB0‘Þ ¼ jj
x0
‘

jjx0
‘
jj1
� P0B0‘jj2. However, this approach

does not work for our model because B0‘ is a binary vector.

Moreover, contig ‘ can only belong to one species. Thus, only one

column of P0 has a nonzero coefficient. This is the column that is

most correlated with the response variable x0‘. Let k denote the index

of this column or the corresponding row of P. Then, the kth element

of B‘ equals to one and the rest of K�1 elements equal to zero.

Because the algorithm estimate the ‘th row of B by calculating the

angle between x‘ and rows of P, we refer to the proposed algorithm

as the stratified angle regression (SAR) algorithm.

The strategy for MetaBMF, an algorithm based on the SAR algo-

rithm, can be sketched in three steps. First, we find K seed contigs

for K species. Second, we estimate the cross-sample relative abun-

dance of each species by its corresponding seed contigs. This can be

easily achieved as the relative abundance of contigs and species are

the same. Third and the most important step is to assign each of the

rest of the n � K contigs to their associated bins using the SAR algo-

rithm. Compared with existing matrix factorization methods,

MetaBMF can greatly reduce the computational complexity and is

more applicable in a big data setup. It can easily bin more than

500 000 contigs in a few seconds.

2.3 Implementation
This section consists of two subsections. In the first section, we pro-

posed a strategy to select the K seed contigs and in the second section,

we proposed an estimation method for the number of species K.

2.3.1 Selecting the set of seed contigs

To select the seed contigs, we start with the contig with the largest

jjxijj2 and sequentially add an additional contig to the collection.

The procedure terminates when K seed contigs are obtained.

Let A denote the collection of row indexes of X and Ak the col-

lection of row indexes that corresponding to the current selected k

seed contigs. To add additional seed contigs to Ak, we need to define

the following distance function:

dii0 ¼ 1� < xi; xi0 >

jjxijj2jjxi0 jj2
(4)

to quantify the distributional difference of two contigs where < �; � >
is the inner product of two vectors and jj � jj2 is the Euclidean norm.

Recall that we assume the cross-sample distribution for a given spe-

cies is unique. It is easy to see that dii0 is near 0 if contig i and i0 belong

to the same species, and dii0 is away from 0 if contig i and i0 are from

different species. The larger the dii0 is, the more unlikely contigs i and

i0 are in the same species.

Then, we come up with the following criteria. For any

i0 2 A=Ak, we define the smallest distance function

SDði0Þ ¼ min
i2Ak

dii0 (5)

and the new seed contig i0 should be the maximizer of SDði0Þ, i.e.

i0 ¼ arg maxi02A=Ak
SDði0Þ. We add new seeds sequentially until

jAkj ¼ K, i.e. the total number of seeds approaches K.

2.3.2 Estimate the number of species K

To determine K, we adopt the silhouette statistic that is proposed by

Rousseeuw (1987). For any given K between 1 and D, where D is a

crude upper bound of K chosen by users, we estimate P, B and K
using SAR with K number of species. Suppose that Sk is the collec-

tion of contigs for species k that is obtained by SAR and the cardin-

ality of Sk is nk. Based on the current partitionðS1; . . . ;SKÞ, we can

evaluate the within-group divergence for contig i by

aiðKÞ ¼
1

nk

X
i02Sk

dii0 ; (6)

and the between-group divergence by

biðKÞ ¼ min
k0 6¼k

1

nk0

X
i02Sk0

dii0 ; (7)

if contig i is in group k. It was shown in Rousseeuw (1987) that the

silhouette statistics based on biðKÞ and aiðKÞ can be used as an con-

sistent estimate of K. Define

Fig. 1. MetaBMF pipeline: first, DNA from two pseudo-metagenomic samples,

of which the relative abundance is 2:1 for species one and 1:1 for species two

are sequenced by the sequencing machine. Second, short reads are

assembled into contigs by pooling all reads from the two samples and gener-

ating the read count mapping matrix X. Third, obtain the normalization matrix

K, the signature matrix B and abundance matrix P using our novel binary ma-

trix factorization algorithm
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CðKÞ ¼ 1

n

Xn

i¼1

biðKÞ � aiðKÞ
maxðaiðKÞ; biðKÞÞ

: (8)

We choose Kopt ¼ argmax1�K�DCðKÞ. Heuristically, when

between-group divergence is bigger than the within-group divergence,

the addend in Eq. (8) is increasing as aiðKÞ=biðKÞ is decreasing for bet-

ter classification. Consequently, C(K) is increasing. However, if K is

too big, we may mistakenly split one species into two species. The

between-group divergence is more similar to the within-group diver-

gence for the mistakenly split groups. Consequently, biðKÞ � aiðKÞ will

be close to zero for many i and C(K) starts to decrease, which suggests

that we need to reduce K. Our extensive simulation study shows that

C(K) is a consistent estimator of K and can be generally used in prac-

tice. In Fig. 2, we plot the silhouette statistics for data with 50, 100 and

150 species. Clearly, C(K) is maximized at 50, 100 and 148, which

provides a satisfactory estimate of the number of species in the study.

In large-scale metagenomic studies, the number of species usually

ranges from hundreds to thousands. We recommend setting a wide

searching range of K and a large step size and then refine the search

with a small step size. For example, we could search K in

ð100; 200; 300; . . . ; 3000Þ. Once we have a rough estimate of Kopt

such as Kopt 2 ð1000; 1200Þ. Then we will refine the search in (1000,

1200) with a small step size. This searching strategy will significantly

reduce the computation time (also see our software manual for details).

2.4 MetaBMF algorithm
MetaBMF is a complete computational pipeline for large-scale multi-

sample metagenomic analysis. It integrates genome assembly

methods, a two-step binary matrix factorization algorithm (SAR),

and the number of species estimation method for simultaneous esti-

mation of species compositions and distributions. Our procedure

starts at a carefully selected K row of X, of which the normalization

can be used as an estimate of the cross-sample relative abundance P.

We then fill B‘k, one of the rest n � K rows, by one if the maximum

correlation is obtained between the kth row of P and the ‘th row of X

or by zero otherwise. The norm of x‘ fills the ‘‘th diagonal element of

K. Finally, we calculate C(K) and update K by Kþ1 until the max-

imum C(K) is obtained. Below we summarize the MetaBMF

algorithm.

2.5 Computational complexity
As with all binning methods, MetaBMF consists of two building

blocks, assembling short reads into contigs and binning contigs, both

of which have their own computational complexity. However, the

major contribution of MetaBMF is in the contig binning step. Thus,

we will focus our discussion on contig binning (Steps 3–7 of

Algorithm 1) in this section. In fact, we can show that the computa-

tional complexity of Steps 3–7 is linear in n (number of contigs),

which facilitate the application of MetaBMF in large-scale metage-

nomic studies that cannot be easily handled by other methods. As

illustrated in Algorithm 1, maximizing the smallest distance function

in Step 3 takes OðnpK2Þ flops and to solve n linear programmings in

Steps 4–7 requires maxðOðnp2KÞ;OðnpK2ÞÞ flops. Notice that step 5

is fully parallelizable. We can use distributed algorithms to further ac-

celerate the computation. As the number of samples p and the number

of species K are nearly negligible compared to the number of contigs

n, the total computational cost of the binning step is linear in n.

3 Results

3.1 Simulation studies
To investigate how binning accuracy was affected by different

parameters, such as the sequencing depth, the number of samples

and the number of species, we conducted extensive simulations to

compare MetaBMF with three state-of-the-art reference-free binning

methods: CONCOCT, MaxBin and MetaBAT, and one reference-

based method, CLARK. The candidate species (or strains) that we

used in this simulation can be downloaded from Supplementary

Tables S1–S3 in Xing et al. (2017). Because all the methods except

MetaBMF can be significantly impaired for contigs shorter than

1000 bps, we used only the subset of contigs with a length longer

than 1000 bps for CONCOCT, MetaBMF, MaxBin and CLARK to

facilitate a fair comparison. For MetaBAT, we used contigs longer

than 1500 bps, which is the default minimum length for contigs that

can be used in MetaBAT.

3.1.1 Change of binning accuracy for varying number of species

Short reads from K species mixed in a randomly generated proportion-

al distribution were independently simulated for each of the 80 sam-

ples at a pooled sequencing depth 120� (or 1.5� per sample), where

K varies from 50 to 150 with each time increased by 50. The per-

species coverage decreases when the number of species increases. As

shown in Fig. 3, the binning accuracy for all the methods except

MetaBMF and Clark decreases drastically. The performance of

MetaBMF and Clark is robust when the number of species is large.

Notice that all the genomes from which the simulated short reads are

generated have reference genomes in the database, which give a signifi-

cant advantage to the reference-based binning method CLARK. Thus,

CLARK should provide almost the golden standard binning result.

Fig. 2. Silhouette statistic under different estimation of number of species.

The selected number of species are 50, 100 and 148, respectively, when the

true number of species are 50, 100 and 150

Algorithm 1. MetaBMF

Step 1: Assemble short reads from pooled samples into con-

tigs using genome assembly software such as Ray-assembler

or MegaHIT.

Step 2: Construct the read count mapping matrix X, which is

the input of the SAR algorithm.

while K < D do

Step 3: Sequentially select the seed contigs one at a time by

maximizing the smallest distance function SDð�Þ.
Step 4: Normalize the seeds by their L1 norm and then fill

into the row of P. Denote the estimated P by PðKÞ.

Step 5: Apply SAR sequentially to x‘ for ‘ 2 A=AK

and replace the ‘th row of B by B‘. Denote the estimated B

by BðKÞ.

Step 6: Fill in the diagonal element of K by L1 norm of the

corresponding row of X. Denote the estimated K by KðKÞ.
Step 7: Calculate C(K) and update K by Kþ1 if CðKÞ >

CðK� 1Þ otherwise output KðK�1Þ; BðK�1Þ and PðK�1Þ.

end while
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However, as one can see from Fig. 3, the binning accuracy for

MetaBMF is comparable to CLARK for all simulated data and is bet-

ter for 150 species, though MetaBMF is a reference-free binning

method.

3.1.2 Change of binning accuracy for varying number of samples

In this example, we simulated short reads using the same strategy as the

previous example. However, we have changed the sample size from 20

to 80 while fixing the number of species to be 100. As shown in Fig. 4,

the binning accuracy decreases for an increased sample size. This is well

expected as the per-sample sequence depth decreases for an increased

number of samples. Similar to the previous example, the performance

of MetaBMF and Clark is all close to perfect, which ensures that one

can safely use MetaBMF even when reference genomes are available.

3.1.3 Change of binning accuracy for varying sequencing depths

As in the previous two examples, we simulated short reads for

80�; 120� and 160� pooled sequencing depths with 80 samples

and 100 species. Unlike the previous two examples, the binning ac-

curacy increases for all methods under this setup. As shown in

Fig. 5, MetaBMF and Clark are almost perfect even when the aver-

age per-sample coverage is around 1�. This ensures that MetaBMF

has consistent performance even at a fairly low coverage level.

In Fig. 6, we illustrate the binning results for a setup with 100 species,

80 sample and 120� coverage levels. Different species are represented by

different colors and each binned contig is represented by a bar in the

graph. Bars with uniform color indicate no binning error. It is easy to see

that MetaBMF has a pretty high binning accuracy. Clark, although hav-

ing similar binning accuracy as MetaBMF for bins with a large number

of contigs, tends to produce species with only one or two contigs due to

the error generated by mapping contigs to their reference genomes.

Compared to MetaBMF and Clark, other methods are more error-prone.

3.1.4 Computational time

In addition, we compare the computational time of MetaBMF with

MaxBin, CONCOCT and MetaBAT. The computation has been

done on a computer node with Intel(R) Xeon(R) CPU E5-2690 v3 @

2.60 GHz and 256 Gb RAM. We set parameters to maximize the

utilization of the computational resource for all the methods. As

shown in Fig. 7, the computational time of MetaBMF is the lowest

in all settings. In average, MetaBMF is 35� faster than the second

fast method, MetaBAT. Also there are less than 2� increment of

computational when the sequence depth, number of sample and

number of species increase from low to high.

3.1.5 Assembly of metagenomic samples

The binning algorithm is based on the assembled genomic fragments.

The question then arises: does the choice of assembler affect the

binning accuracy? We then test the four reference-free binning methods

using two different assemblers: Ray (Boisvert et al., 2012) and

MegaHIT (Li et al., 2015) on the simulated dataset with 80 samples,

100 species and 120� sequencing depth. As shown in Fig. 8, CLARK

and MetaBAT perform better when using Ray-assembler; CONCOCT

and MaxBin have better performance when using MegaHIT assembler;

Fig. 4. Adjusted Rand Index, Precision and Recall of CLARK, MetaBMF,

MaxBin, CONCOCT and MetaBat evaluated under different number of sam-

ples for 120� sequencing depth and 100 species

Fig. 5. Adjusted Rand Index, Precision and Recall of CLARK, MetaBMF,

MaxBin, CONCOCT and MetaBat evaluated under different sequencing

depths for 100 species and 80 samples

Fig. 6. Binning results for MetaBMF, CLARK, MaxBin, CONCOCT and

MetaBAT for data with 120� sequencing depth, 80 samples and 100 species.

Each bar represents one bin obtained using the corresponding binning

method. The color of a bin should be the same if there is no binning error.

(Color version of this figure is available at Bioinformatics online.)

Fig. 3. Adjusted Rand Index, Precision and Recall of CLARK, MetaBMF,

MaxBin, CONCOCT and MetaBat evaluated under different number of species

for 120� sequencing depth and 80 samples
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MetaBMF has the similar performance based on these two assemblers.

The result shows that MetaBMF is least affected by the use of assem-

bler. Also note that MetaBMF is also compatible with other assem-

blers, which is documented in our software manual.

3.2 Metagenomic analysis of 2011 German Escherichia

coli outbreak
The outbreak of Shiga-toxigenic Escherichia coli (STEC) O104: H4

in Germany caused an economic loss of $200 million per week for

Spanish exporters and infection of 3950 people with 53 deaths. This

devastating pandemics can be avoided with prompt and accurate mi-

crobial identification methods. In fact, the social and economic losses

from the outbreak can be greatly reduced if the pathogenic bacteria,

enteroaggregative E.coli (EAEC) strain that presented itself in organic

fenugreek sprouts was not misdiagnosed as enterohemorrhagic E.coli

strain originating from Spanish cucumbers. However, due to the ex-

perimental and technological difficulties, many existing metagenomic

methods can only identify microbial organism at best at species level.

The major challenges are that the two strains are highly genetically

similar. In this example, we show that MetaBMF can promptly and

accurately identify the pathogens at a strain level because we do not

use the sequence similarity for pathogen identification.

In Loman et al. (2013), DNA samples were extracted from the

feces of 43 STEC-positive and 10 STEC-negative patients who suf-

fered from diarrhea during the STEC O104: H4 outbreak, and over 3

billion 150-bp reads were generated by Illumina high-seq 2500 se-

quencer. Using Ray-assembler, we obtained �75K contigs that are

longer than 1000 bps and shared by at least 15 patients. As shown in

Fig. 9A, the 75 K contigs are binned to 450 candidate microbial units

by MetaBMF. Figure 9B demonstrates that the number of significant

microbial species of STEC-positive group is larger than that of STEC-

negative group. Among the 450 candidate microbial units, only the

unit (Fig. 10) corresponding to EAEC strain have significantly differ-

ent abundance between STEC-positive patients and STEC-negative

patients by Wilcoxon-rank sum test at a 5% false discovery rate,

which confirms that MetaBMF can indeed find the pathogenic strain.

A predictive model with 450 microbial units was built by logistic

regression with LASSO penalty (Tibshirani, 1996) to ease the diag-

nostic of STEC infection. The 5-fold cross-validation (CV) of the

mis-diagnostic error is 0.094 with the area under receiver operating

curve (AUC) being 0.901 for all the 53 patients.

3.3 Metagenomic analysis of coronary heart disease
Coronary heart disease (CHD) is the most common type of heart

disease in the world that is caused by a buildup of plaque, which

comes from cholesterol and other substances deposited in the artery.

This deposit causes a narrowing of the artery, resulting in limited

blood flow, which causes chest pains and shortness of breath, even-

tually leading to heart attack and death. Accumulating evidence has

revealed that intestinal microbiota plays an important role in regu-

lating metabolism-dependent pathways such as the trimethylamine

N-oxide pathway, short-chain fatty acids pathway and primary and

secondary bile acids pathways. Consequently, understanding the

bacterial composition and distribution in CHD patients play a piv-

otal role in understanding CHD.

In this study, we conduct a thorough metagenomic analysis on

CHD using MetaBMF and data collected by Feng et al. (2016).

DNA samples were extracted from the feces of 59 CHD patients
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Fig. 8. Adjusted Rand Index of CLARK, MetaBMF, MaxBin, CONCOCT and

MetaBAT are evaluated using two different assemblers, MegaHIT and Ray on

simulated dataset with 80 samples, 100 species and 120� sequencing depth

Fig. 9. Plotted in (A) is the C(K) versus K. Because C(K) is maximized at 450,

we let K¼450. In (B), we plot how the number of significant species distrib-

uted among 43 STEC-positive samples (left red boxplot) and 10 STEC-nega-

tive samples (right blue boxplot). (Color version of this figure is available at

Bioinformatics online.)

Fig. 10. Relative abundance of E.coli O104: H4 which has significant differences

between STEC-positive samples (left red box) and STEC-negative samples (right

blue box). (Color version of this figure is available at Bioinformatics online.)
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panel) and varying number of species (right panel)
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and 43 control patients, and sequenced using illumina high-seq

2000 which generated 2 G short reads. Using this data, we

assembled the short reads by Ray-assembler which generated 5 M

contigs. Deleting contigs with low sequence depth, contigs that are

shorter than 1000 bps and contigs that are shared by <30% of indi-

viduals, we obtained 250 K contigs. For each contig, we searched

the NCBI nucleotide database and used TAXAassign (https://github.

com/umerijaz/TAXAassign) to assign it to a taxonomic group. Only

8.3% of the contigs could be assigned at the species level and 14.3%

could be assigned at the phylum level. Roughly 85.7% of contigs

could not be mapped to any reference genomes even at the phylum

level. Thus, reference-free binning methods are highly desirable for

this data.

We applied MetaBMF to bin the 250K contigs and obtained 2200

species (see Fig. 11A), among which 170 are literally known species.

Figure 11B demonstrate that the number of significant microbial spe-

cies varies more in CHD group than in control group. A species was

treated as a significant species if its scaled relative abundance is larger

than 0.1%. Using a Wilcoxon-rank sum test (Haynes, 2013), we iden-

tified 21 species that distributed significantly in the CHD group and

control group with a 5% false discovery rate. Among the 21 identified

species, 10 of them are literally known.

We listed species that are more likely to appear for CHD patients

in Fig. 12A and for healthy subjects in Fig. 12B. The results that we

obtained are consistent with the published works for known species.

The significantly high abundance of E.coli strain K-12 and strain

UPEC, as well as Shigella dysenteriae in CHD patients were also

observed by Jie et al. (2017). Figure 12A suggests that the listed four

microbial species are positively associated with CHD. Alternatively,

we also found 17 species that might be used as probiotics for CHD,

where four of them are well-known to be negatively correlated with

CHD risk factor including Faecalibacterium prausnitzii, Roseburia

hominis, Methanobrevibacter smithii and Bacteroides thetaiotaomi-

cron. A decrease of F. prausnitzii can significantly increase serum

TMAO, a pro-atherogenic compound, and a decrease of R. hominis

can increase the risk of ulcerative colitis, a well-known risk factor of

CHD (Ruisi et al., 2015). Deficiency of M. smithii and B. thetaiotao-

micron can increase the risk of obesity (Million et al., 2012) and re-

duce phospholipase activity (Sitaraman, 2013). Besides the

aforementioned four species, the other three known species in

Fig. 12B are also confirmed by Jie et al. (2017) to be consistently

low in CHD patients.

To test whether the microbial distribution can help us identify

CHD, we build a logistic regression model with LASSO penalty

(Tibshirani, 1996) using 2200 species. The 10-fold CV of the mis-

classification error for the 102 subjects is 0.098 with the AUC being

0.93. These results are consistent with our hypothesis that the mi-

crobial distribution in human gut can help CHD diagnosis.

4 Conclusion

In this paper, we address some emerging issues in metagenomic re-

search based on high-throughput sequencing technologies. The pro-

posed method will lead to a deeper understanding of how microbial

ecosystem affect our health and help design new probiotics for dis-

ease prevention and intervention. Although the proposed researches

are driven by addressing the current computational challenges that

arise in metagenomic analysis, a burgeoning area in biology studies,

it is generally applicable to almost all big data matrix decomposition

problems including cancer deconvolution, dictionary learning, etc.
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