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Abstract

Motivation: Recent studies have shown that DNA N6-methyladenine (6mA) plays an important role

in epigenetic modification of eukaryotic organisms. It has been found that 6mA is closely related to

embryonic development, stress response and so on. Developing a new algorithm to quickly and ac-

curately identify 6mA sites in genomes is important for explore their biological functions.

Results: In this paper, we proposed a new classification method called MM-6mAPred based on a

Markov model which makes use of the transition probability between adjacent nucleotides to iden-

tify 6mA site. The sensitivity and specificity of our method are 89.32% and 90.11%, respectively.

The overall accuracy of our method is 89.72%, which is 6.59% higher than that of the previous

method i6mA-Pred. It indicated that, compared with the 41 nucleotide chemical properties used by

i6mA-Pred, the transition probability between adjacent nucleotides can capture more discriminant

sequence information.

Availability and implementation: The web server of MM-6mAPred is freely accessible at http://

www.insect-genome.com/MM-6mAPred/

Contact: lifei18@zju.edu.cn or xfan@cuhk.edu.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Epigenetic modification can regulate gene expression without alter-

ing DNA sequences. At present, confirmed epigenetic phenomena

include DNA methylation, RNA methylation, genomic imprinting,

gene silencing, RNA editing, maternal effect, transposon activation

and so on. Among them, DNA methylation is the most important

modification for epigenetic regulation of gene expression. DNA N6-

methyladenine (6mA) refers to the methylation of the N6 position of

adenine, which has been found to play an important role in the epi-

genetic modification of DNA in eukaryotes in recent years. This

modification has been shown to be associated with germ cell differ-

entiation, stress response, embryonic development, nervous system

and other processes (Liu et al., 2016; Yao et al., 2017; Zhang et al.,

2015).

DNA 6mA was initially identified in Escherichia coli and then

found in several other bacteria (Janulaitis et al., 1983). Researchers

once believed that 6mA existed only in prokaryotes and single-cell

organisms. In 1966, Unger and Venner (1996) detected the presence

of 6mA in bovine and human sperm cells, but the results could not

be well replicated. With the development of biotechnology, 6mA

was found in Chlamydomonas, Nematodes and Drosophila in 2015,

and its functions were identified (Fu et al., 2015; Greer et al., 2015;

Zhang et al., 2015).

In 2016, the study of 6mA modification of mouse embryos was

published in Nature (Wu et al., 2016). In 2018, a team from the Sun

Yat-sen University used sequencing technologies to map the 6mA of

Chinese DNA for the first time (Xiao et al., 2018). In the same year,

Zhou et al. (2018) analyzed the distribution of 6mA sites in the rice
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genome by multiple sequencing methods, such as 6mA-IP-Seq, liquid

chromatograph-mass spectrometer (LC-MS/MS) and single-mol-

ecule and real-time sequencing (SMRT). Although the expression

abundance of DNA 6mA is very low, recent studies on 6mA have

shown that the modification is closely related to gene transcription

regulation.

SMRT is the mainstream experimental technique for identifying

m6A sites. However, the technology cannot detect m6A sites from

the whole genome, and the cost of the technique is high. Thus, it is

particularly important to develop efficient algorithms for identifying

DNA 6mA sites computationally. To date, there are many methods

to predict methylation modification of 5-methylcytosine. However,

there is only one identification method for 6mA methylation modifi-

cation. Chen et al. (2019) developed a method named i6mA-Pred

for identifying DNA 6mA sites. Their method used a support vector

machine (SVM) classifier based on chemical features of nucleotides

and position-specific nucleotide frequencies. However, the associ-

ation information among nucleotides near 6mA sites is ignored.

We find that the transition probabilities between neighboring bases

in 6mA sequences and non-6mA sequences are significantly differ-

ent. Based on this finding, we introduce a novel method named

MM-6mAPred based on a Markov model (MM) to identify DNA

6mA sites. In fact, neighboring dependency among biological

sequences has long been modeled through Markov chain models

(Almagor, 1983; Borodovsky et al., 1995; Durbin et al., 1998;

Ohler et al., 1999; Reese et al., 1997; Wren et al., 2005; Yakhnenko

et al., 2005 and so on). Researchers have also shown that some basic

biological and chemical features of nucleic acids stand behind the

frequencies of dinucleotides (Almagor, 1983). However, up to our

knowledge, MM-6mAPred is the first tool for identifying 6mA sites

using this neighboring dependency information. The results show

that the performance of MM-6mAPred is significantly better than

that of i6mA-Pred.

2 Materials and methods

2.1 Dataset
For the convenience of the comparison between the existing method

i6mA-Pred and our method, we used the same experimental bench-

mark data that i6mA-Pred used (Chen et al., 2019; Zhou et al.,

2018). In summary, 880 positive sequences containing 6mA sites

and 880 negative sequences containing no 6mA sites from the rice

genome were downloaded from http://lin-group.cn/server/

i6mAPred/data. Each sequence contains 41 nucleotides (nt) with the

adenine of interest in the center.

2.2 Construction of MM
A MM is a stochastic process where the next variable only depends

on the most recent variable(s) instead of all the previous variables.

The most commonly used MM in DNA sequence analyses is the

first-order Markov chain, where the next nucleotide will solely de-

pend on the current nucleotide. In this study, we model the sequence

of 6mA site as a first-order Markov chain. More specifically, let

Nt 2 ðA;G;C;TÞ be the random variable at the t-th location of the

sequence of length L: The MM assumes that P NtjNt�1;Nt�2; . . . ;ð
N1Þ ¼ P NtjNt�1ð Þ for t ¼ 2; 3; . . . ;L. Figure 1 shows the flow chart

for identifying sequences containing 6mA sites by MM-6mAPred.

From the 6mA sequences in the training dataset, we estimate PP
N1

,

which is the probability vector that the nucleotide N1 shows up at

the initial position, and T1
P;T

2
P; . . . ;TL�1

P , which are the transition

probability matrices of N1 ! N2;N2 ! N3; . . . ;NL�1 ! NL;

respectively. Similarly, for non-6mA sequences, PN
N1

is the initial dis-

tribution of nucleotides, T1
N ;T

2
N ; � � �;TL�1

N are the corresponding

transition probabilities. Therefore, two MMs OP ¼ ðPP
N1 ;
;T1

P;T
2
P; � � �;

TL�1
P Þ and ON ¼ ðPN

N1
;T1

N ;T
2
N ; � � �;TL�1

N Þ are trained based on the

6mA sequences and non-6mA sequences in the training dataset.

Figure 1B shows the prediction of a test sequence ‘Seq¼GTAT. . .AA’

of 41 nucleotides. We calculate the probabilities PðSeqjOPÞ and

PðSeqjONÞ of generating the sequence ‘Seq’ under the model OP and

ON, respectively; and then use the ratio of PðSeqjOPÞ to PðSeqjONÞ,
i.e. the likelihood ratio, to determine whether ‘Seq’ is a 6mA or non-

6mA sequence. Here, PðSeqjONÞ ¼ PN
G � pN1

GT � pN2

TA � pN3

AT � � � ��
pN40

AA and PðSeqjOPÞ ¼ PP
G � pP1

GT � pP2

TA � pP3

AT � � � � � pP40

AA : If

Ratio ¼ PðSeqjOPÞ=PðSeqjONÞ > 1, ‘Seq’ is classified as a 6mA se-

quence, otherwise a non-6mA sequence. Note that the likelihood ratio

can be any non-negative value. One may also use the log-likelihood

ratio for symmetricity, whose natural threshold is zero instead of one.

2.3 Prediction accuracy assessment
The following measures are commonly used for classification per-

formance evaluation: the total prediction accuracy (ACC),

Specificity (Sp), Sensitivity (Sn) and the Mathew’s correlation coeffi-

cient (MCC) (Matthews, 1975):

Sn ¼
TP

TP þ FN
;

Sp ¼
TN

TN þ FP
;

ACC ¼ TP þ TN

TP þ TN þ FP þ FN
� 100%;

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞ � ðTN þ FNÞ � ðTP þ FNÞ � ðTN þ FPÞ

p ;

where TP is the number of real 6mA sequences identified correctly,

FN is the number of 6mA sequences classified incorrectly, TN is the

number of non-6mA sequences correctly identified and FP is the

number of non-6mA sequences classified incorrectly.

A

B

Fig. 1. The flow chart for identifying 6mA sequences by MM-6mAPred. (A)

The construction of two MMs (OP and ON) based on DNA 6mA sequence and

non-6mA sequence. (B) The prediction for a test sequence. The sequence

‘GTATATAACTTTTTTCTTCAAGGCAGCAGGTGTCTGC CTA A’ is used as an

example to explain the prediction process
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3 Result and discussion

3.1 Analysis of transition probability between adjacent

nucleotides
In order to demonstrate the rationality of 6mA sequence recognition

based on the MM, we show the difference of transition probabilities

between adjacent nucleotides in 6mA and non-6mA sequences.

Figure 2 shows that the transition probabilities of A to A and C to G

were significantly different from the 12th to 33th site and the 16th

to 37th site. The results indicated that the first-order Markov chain

is informative for identifying sequences containing 6mA sites.

However, the regions showing significant difference in transition

probabilities of different nucleotide pairs are not the same. Thus,

how to determine an appropriate region for classification is critical.

Section 3.2 introduces the process of solving this problem in detail.

To simplify the calculation of Ratio and demonstrate the detail

discriminant information, we show the values of all pPi
NiNiþ1

=pNi
NiNiþ1

;

i ¼ 1;2; � � �;40 in Fig. 3. The vector PP
N1
=P N1N for the four nucleoti-

des (A, G, C, T) is (1.09, 1.00, 0.91, 0.97) for the first position of

the 41 nucleotides in the input dataset. In Fig. 3, if a value of

pPi
NiNiþ1

=pNi
NiNiþ1

is close to 1, there is no difference between the corre-

sponding transition probabilities from 6mA and non-6mA sequen-

ces. Figure 3 indicates that there is a significant difference in the

transition probabilities among the regions from [22–23] to [27–28].

3.2 Selection of the best subsequence region
Considering that not all the 41 nucleotides in the 6mA sequences

and non-6mA sequences may provide classification information, we

use a 10-fold cross-validation procedure to determine the best re-

gion. For the 41 sites, considering that the middle site has to be

included, there are in total 400 possible continuous regions that can

be used: [1, 22], [1, 23], ���, [1, 41]; [2, 22], [2, 23], ���, [2, 41]; ���;

[20, 22], [20, 23], ���, [20, 41]. The classification accuracy of every

region can be calculated by a 10-fold cross-validation, which is

shown in Fig. 4. The accuracy reaches the maximum (89.72%) at

the region [3, 39]. Thus, in this study, [3, 39] is used as the best sub-

sequence region.

3.3 Comparison with other methods
So far, i6mA-Pred is the only existing identification algorithm for

6mA sequences. This method used an SVM classifier based on 164

features, which include nucleotide chemical properties and nucleo-

tide frequencies. For the ease of comparing i6mA-Pred with MM-

6mAPred, we used the same 880 6mA sequences and 880 non-6mA

sequences from the rice genome provided by the i6mA-Pred paper.

For i6mA-Pred, the LibSVM package 3.18 (http://www.csie.ntu.edu.

tw/�cjlin/libsvm/) is used to construct the SVM classifier. To be con-

sistent with the i6mA-Pred paper, the kernel, cost (C) and gamma

(!) of SVM are set to radial basis kernel function, 32 and

0.00048828125, respectively. We use the 10-fold cross-validation to

measure the performance of i6mA-Pred and MM-6mAPred (see

Table 1). The Sn, Sp and ACC of MM-6mAPred are 89.32%,

90.11% and 89.72%, respectively. Our ACC is 6.59% higher than

that of i6mA-Pred (83.13%). The results show that the transition

probabilities between adjacent nucleotides can reflect better discrim-

inant information.

To compare the two methods more systematically, the receiver

operating characteristic (ROC) curves and precision recall curves

(PRC) were plotted in Fig. 5. The area under curve of MM-

6mAPred and i6mA-Pred are 0.9354 and 0.8948, respectively. The

results show that our method outperforms i6mA-Pred.

The above performance evaluation and comparison are based on

the benchmark dataset. One may also be interested in the perform-

ance on genome scale since there are a huge number of adenine sites

in the genome, which are mostly non-6mA sites. Since 6mA seldom

appears in coding sequences (CDSs), the adenine sites from CDSs

were used to construct non-6mA sequences (Chen et al., 2019;

A B

Fig. 2. Transition probabilities between adjacent nucleotides at all sites. The

sub-figures (A) and (B) show the transition probabilities of the nucleotides A

to A and C to G, respectively. The red and blue lines represent the 6mA and

non-6mA sequences, respectively. In Fig. 2B, the C->G transition probability

at Position 21 is undefined because the nucleotide at Position 21 is always A.

(Color version of this figure is available at Bioinformatics online.)

Fig. 3. The visualization of pPi
Ni Niþ1

=pNi
Ni Niþ1

. The variable names along the verti-

cal axis represent the nucleotide pair Ni �Niþ1 (Ni ;Niþ1 2 ðA;G;C ;T Þ). The

variable names along the horizontal axis represent the location pair i �iþ1

(i¼1, 2,. . ., 40). White squares in the figure represent undefined due to the

fact that the 21st position of the input sequences is all A

Fig. 4. The classification accuracies of 400 regions based on the 10-fold cross-

validation. There are 20 lines of different colors in the figure, and the i-th line

represents the regions [i, 22]–[i, 41]. The horizontal axis represents the num-

ber from 22 to 41. The region [3, 39], which has the highest ACC (0.8972), is

located at the line for [3, 22]–[3, 41]

Table 1. Cross-validation accuracy of i6mA-Pred and MM-6mAPred

based on the same dataset

Method Sn (%) Sp (%) ACC (%) MCC

i6mA-Pred 82.95 83.30 83.13 0.662

MM-6mAPred 89.32 90.11 89.72 0.786
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Zhou et al., 2018). Thus, we downloaded the rice CDSs (ZS97RS2.

LNNJ00000000.CDS. v2.fa.gz) from http://rice.hzau.edu.cn/rice/

(Song et al., 2018), and compile a large negative dataset by random-

ly selecting 1000 rice CDSs, which obtains 314 711 adenine sites.

With MM-6mAPred trained using the benchmark dataset, 50 141

(15.93%) sites were predicted to be 6mA sites. Among them, the

41 nt window of six predicted 6mA sites match exactly with some

sequences in the 880 benchmark 6mA sequences. The information

of the 1000 CDSs and the prediction results are provided in

Supplementary Section S1. As a comparison, i6mA-Pred classified

64 853 (20.61%) of the sites as 6mA (see details in Supplementary

Section S2). These results indicate that the performance of our

method on the big negative dataset is better than that of i6mA-Pred,

and the performance is consistent with those in Table 1.

When dealing with a large dataset, one may want to select a

more stringent cutoff to reduce the false positives. MM-6mAPred

actually has an advantage over i6mA-Pred on this aspect. As shown

in Fig. 5, our method can still have a Sn around 0.55 when the false

positive rate 1�Sp is controlled at 0.01, but the Sn of i6mA-Pred will

decrease below 0.2 in this situation.

The log(Ratio) histograms in Fig. 6 also illustrate the discrimin-

ant information captured by MM-6mAPred. We can see that the dis-

tributions of the negative benchmark sequences and the CDS

sequences are similar, and the distribution difference between posi-

tive sequences and negative sequences is obvious. Therefore, the

users can select a small false positive rate error by moving the

threshold to the right. If the false positive rate error on the 880 nega-

tive samples is set at 0.01, 2.27% of the CDS sites would be pre-

dicted as 6mA by MM-6mAPred (see details in Supplementary

Section S1). As a comparison, i6mA-Pred would predict 20.61% of

the CDS sites to be 6mA (see details in Supplementary Section S2).

Therefore, MM-6mAPred will report much less false positive 6mA

sites than i6mA-Pred for large datasets.

3.4 Application of program and web server
We developed a Matlab function (MM-6mAPred (Seq)) to identify

the DNA 6mA sites from either 41 nt short sequences or a long gen-

omic sequence.

(1) If the input sequence of the function M6-mAPred (Seq) is a

short sequence of 41 nt (although we actually only use the region [3,

39]), the return results include the Location and Ratio of DNA 6mA

site. For example:

Seq1¼‘AATTGGATAGGGAGAAGCCGATGTAGCTGATTCT

AGCAAGA’.

[Ratio, Location, Class]¼MM6mAPred(Seq1);

Output: Ratio¼33.2297; Location¼21, Class¼6mA

(2) For a sequence longer than 41 nt, the function scans all subse-

quences of 41 nt which have the nucleotide ‘A’ in the middle

(although we actually only use the region [3, 39]). Table 2 shows the

output of Seq2 from the function call MM-6mAPred (Seq2). The

results indicate that the 21th and 35th positions in Seq2 are identi-

fied as 6mA sites.

Seq2¼‘AATTGGATAGGGAGAAGCCGATGTAGCTGATTCT

AGCAAGAGTATATAACTTTTTTCTTCAAGGCAGCAGGTGTC

TGCCTAAAACGGGTGGACGTCCACCCGAATGATTAGAATCC

CTCTCCA’.

[Ratio, Location, Class]¼MM-6mAPred(Seq2);

In order to facilitate researchers to better use the MM-6mAPred

to identify 6mA sites, we have established a user-friendly web server

for MM-6mAPred. It is freely available at http://www.insect-gen

ome.com/MM-6mAPred/. There are two forms for the input of our

web tool. One is the sequences with length of 41, the other one is

the sequences longer than 41. If the length of the sequence is longer

or may even be a complete genome sequence, the second input form

can be selected to predict the 6mA sites. Besides, users can paste

FASTA format sequences into the text area or upload an FASTA

A B

Fig. 5. (A) The ROC curves of MM-6mAPred and i6mA-Pred. (B) The PRC

curves of MM-6mAPred and i6mA-Pred

Fig. 6. The histograms of log(Ratio) from the 880 positive sequences (A), the

880 negative sequences (B) and the 314 711 adenine sites from the 1000 ran-

dom CDSs (C), respectively

Table 2. The output of Seq2 under the function MM-6mAPred (Seq)

Ratio 2.071 0.015 1.032 0.0391 0.128

Location 21 28 35 37 46

Class 6mA Non-6mA 6mA Non-6mA Non-6mA
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format file with your sequences. Finally, the uploaded sequences are

predicted by pressing the ‘submit’ button. Waiting a moment and

the identification results will be presented in web page.

4 Conclusion

The accurate identification of DNA 6mA sites is a necessary step

before probing their biological functions. In this study, we

proposed an MM called MM-6mAPred to identify 6mA sites com-

putationally. The classification performance is evaluated by the 10-

fold cross-validation. The results show that MM-6mAPred is obvi-

ously superior to the existing algorithm i6mA-Pred although less in-

formation is used. The success of MM-6mAPred indicates that the

transition probability between adjacent nucleotides can capture

more discriminant sequence information. The SVM method used by

i6mA-Pred did not make use of this neighboring dependency

information.

MM-6mAPred might also be improved in many aspects. For

example, the procedure for selecting the best subsequence

region may consider a wider window, such as 201nt instead of 41nt,

if the benchmark 6mA sites can be uniquely matched to the

genome for sequence extension purpose. The chosen region may

also not necessarily a contiguous region. Instead, two or more dis-

connected areas may be chosen. The region selection criterion

may also be revised to balance between the classification accuracy

and the model complexity. Furthermore, one may extend our first-

order MM to higher order in order to catch more dependency

information.
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