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Abstract

Motivation: Protein structure alignment is one of the fundamental problems in computational structure biology.
A variety of algorithms have been developed to address this important issue in the past decade. However, due to
their heuristic nature, current structure alignment methods may suffer from suboptimal alignment and/or over-
fragmentation and thus lead to a biologically wrong alignment in some cases. To overcome these limitations, we
have developed an accurate topology-independent and global structure alignment method through an FFT-based
exhaustive search algorithm, which is referred to as FTAlign.

Results: Our FTAlign algorithm was extensively tested on six commonly used datasets and compared with seven
state-of-the-art structure alignment approaches, TMalign, DeepAlign, Kpax, 3DCOMB, MICAN, SPalignNS and
CLICK. It was shown that FTAlign outperformed the other methods in reproducing manually curated alignments and
obtained a high success rate of 96.7 and 90.0% on two gold-standard benchmarks, MALIDUP and MALISAM,
respectively. Moreover, FTAlign also achieved the overall best performance in terms of biologically meaningful
structure overlap (SO) and TMscore on both the sequential alignment test sets including MALIDUP, MALISAM and
64 difficult cases from HOMSTRAD, and the non-sequential sets including MALIDUP-NS, MALISAM-NS, 199
topology-different cases, where FTAlign especially showed more advantage for non-sequential alignment. Despite
its global search feature, FTAlign is also computationally efficient and can normally complete a pairwise alignment

within one second.

Availability and implementation: http://huanglab.phys.hust.edu.cn/ftalign/.

Contact: huangsy@hust.edu.cn

1 Introduction

Protein structure comparison is one of the fundamental bioinformat-
ics tasks in computational structure biology (Hasegawa and Holm,
2009; Ma and Wang, 2014). As similarity of structures often implies
similarity of their functions, protein structure alignment has been a
valuable computational method for inferring evolutionary relation-
ships of various protein structures (Koehl, 2001; Lichtarge and
Sowa, 2002), protein classification (Koehl, 2006; Murzin et al.,
1995; Orengo et al., 1997; Yan and Huang, 2019a, b), protein func-
tion prediction (Brylinski and Skolnick, 2008; Roy et al., 2012;
Zhang et al., 2017), protein structure prediction (Mirabello and
Wallner, 2018; Scheeff and Bourne, 2006) and drug discovery
(Huang, 2014; Hwang et al., 2017; Litfin et al., 2017; Wu et al.,
2018; Yang et al., 2013), when the sequence identity of proteins is
below a cutoff of 20-30% (Chothia and Lesk, 1986; Gan et al.,
2002; Wood and Pearson, 1999). One primary task of structure
alignment algorithms is to identify the residue equivalences between
two proteins to be compared by superimposing them together.

For years, a variety of protein structure alignment methods with
different computational efficiencies have been developed by using
different protein representations, structure comparison strategies
and scoring schemes (Hasegawa and Holm, 2009). Nevertheless,
there is still room in the improvement of protein structure align-
ment, especially when compared with human-curated results (Ma
and Wang, 2014; Mayr et al., 2007).

Protein structure alignment is to find a biologically meaningful
superimposition and/or those geometrically important matches be-
tween two protein structures, though these two criteria may be con-
sistent with each other in many cases (Hasegawa and Holm, 2009).
Mathematically, structure alignment is a combinatorial optimization
problem (Ma and Wang, 2014). Therefore, assuming the scoring
scheme for residue equivalences is ideal, one should explore all pos-
sible matches between two protein structures in order to obtain the
most reasonable alignment of two proteins. As such, the computa-
tional cost would be the order of O(N™) for aligning two proteins of
N and M residues in real space. This would be computationally too
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expensive for large-volume alignments with current computing
power. Fortunately, protein structure alignment is not a purely
mathematical issue, but also a biologically relevant problem.
Therefore, biological constraints or strategies can be applied to re-
duce the search space in structure alignment and thus increase the
computational speed (Ma and Wang, 2014).

One commonly used constraint is the requirement to follow a
simple sequential rule, referred to as sequential alignment, in which
the sequence order of the amino acids from two proteins should be
preserved in the alignment (Holm and Sander, 1993; Madhusudhan
et al., 2009; Minami et al., 2018; Orengo and Taylor, 1996; Pandit
and Skolnick, 2008; Ritchie et al., 2012; Shindyalov and Bourne,
1998; Ye and Godzik, 2004; Zhang and Skolnick, 2005; Zhu and
Weng, 2004; Yang et al., 2012). Although such sequential constraint
is very successful in most of cases (Ma and Wang, 2014), it might
miss the detection of some biologically evolutionary relationships
(Micheletti and Orland, 2009; Xie and Bourne, 2008), as proteins
can fold into topologically different structures while maintaining
evolutionary relationship through the combination and permutation
of subdomains (Bashton and Chothia, 2007; Lindqvist and
Schneider, 1997). Accordingly, many algorithms have been devel-
oped for non-sequential structure alignment, where the ordering
constraint is released (Alexandrov, 1996; Bachar et al., 1993; Brown
et al., 2016; Dong et al., 2018; Dror et al., 2003; Holm and Sander,
1993; Kolbeck et al., 2006; Konagurthu et al., 2006; Minami et al.,
2013; Nguyen and Madhusudhan, 2011; Salem et al., 2009, 2010).
However, because current non-sequential algorithms often try to
maximize the number of matched C, atoms/local structure units and
minimize their root mean square deviation (RMSD), they may ex-
perience the problems of over-fragmentation or noisy alignments
and thus lead to a biologically trivial alignment (Hasegawa and
Holm, 2009).

Another common constraint is to adopt a heuristic technique
during alignment search (Ma and Wang, 2014), in which the protein
is broken into local structural units like fragments, high-order struc-
tural alphabets, or secondary structure elements of suitable length
(Camproux et al., 2004; Holm and Sander, 1993; Kolbeck et al.,
2006; Kolodny et al., 2002; Lupyan et al., 2005; Micheletti et al.,
2000; Minami et al., 2013; Shindyalov and Bourne, 1998; Tyagi
et al., 2008; Wang and Zheng, 2008). Thus, the structure alignment
can be performed by following a two-step strategy. Namely, local
similarity scores are first obtained by comparing all possible pairs of
local structural units from two proteins. Then, those local structure
pairs with high similarity can be subsequently re-assembled (Budowski-
Tal et al., 2010; Pandit and Skolnick, 2008), or regarded as seed frag-
ments to obtain an initial superimposition which can be then optimized
using a dynamics programming (DP) method (Jung and Lee, 2000;
Lackner et al., 2000; Zhang and Skolnick, 2005). Although such
heuristic strategy can dramatically boost the computational speed and
has achieved great successes in many cases (Ma and Wang, 2014), the
final overall alignment of two structures may not be a globally optimal
or biologically meaningful one because of its reduced search space
(Hasegawa and Holm, 2009; Ma and Wang, 2014).

To overcome these limitations in current structure alignment
approaches, we have developed a truly topology-independent and
global structure alignment approach based on a fast Fourier trans-
form (FFT)-based search algorithm, which is referred to as FTAlign,
in which a protein is represented by its C, atoms. Due to its exhaust-
ive search in the complete six-dimensional (three translational +
three rotational) space, FT Align can always sample the globally op-
timal alignment between two protein structures no matter whether
the alignment is sequential or non-sequential. When compared with
seven state-of-the-art structure alignment methods, FTAlign
achieved a significant improvement in both manually curated bench-
marks and reference-free test sets.

2 Materials and methods

2.1 Global structure superimposition
FTAlign exhaustively explores all six degrees of freedom of one pro-
tein structure relative to the other, so as to find the globally optimal

superimposition/match of the two structures. During the search,
proteins are represented by their C, atoms, each of which has one of
three secondary structure attributes: coil, o-helix and p-strand
(Kabsch and Sander, 1983). The global search process is accelerated
through an FFT-based algorithm (Katchalski-Katzir ez al., 1992)
that has been successfully used in global protein—protein docking
(Chen and Weng, 2003; Huang, 2014; Yan e¢ al., 2017, 2018; Yan
and Huang, 2019a, b).

2.1.1 FFT-based search in 3D translational space

To perform an FFT-based search, both the first and second protein
structures are first mapped onto a three-dimensional (3D) grid of
N x N x N grid points (Katchalski-Katzir et al., 1992), where the
grid spacing is empirically set to 2.0 A (Chen and Weng, 2003; Yan
et al., 2017). Then, each grid point within 1.8 A of C, atoms for the
first (say A) and second (say B) protein structures is assigned a sec-
ondary structure-dependent value as:

1.0 forcoil
AL =350 orseeand m
0.0 otherwise
and
—1.0 forcoil
B(l,m, ) — —1.5 forhelix 2)

—2.0 forstrand
0.0  otherwise

where [, m and n are the indices of the grid point, and 1.8 A is
approximately the van der Waals (VDW) radius of C, atoms.

With the above protein mapping on grids, the grid-based match
score C for a superimposition between two structures can be gener-
ally expressed by the following formula (Katchalski-Katzir ez al.,
1992)

N

N N
Clo,p,q) = > Y > Al,m,n) x Bl+o,m+pn+q)  (3)

I=1 m=1n=1

where o, p and g are the numbers of grid points by which the first
protein (A) is shifted with respect to the second protein (B) in three
translational dimensions, respectively. Here, a more negative correl-
ation score means a better superimposition between two proteins for
a relative translation of (o, p, g). All the N° translations, i.e.
{o€[1,N],p € [1,N],q € [1,N]}, in 3D translational space for Eq.
(3) can be completed in one round of computation through an FFT-
based computation (Katchalski-Katzir et al., 1992).

2.1.2 Exhaustive search in 3D rotational space

In addition to the global search in three-dimensional translational
space, one also needs to search the whole rotational space so as to
achieve the globally optimal superimposition between two structures
in six degrees of freedom. This process can be conducted by explor-
ing all the angle sets of (6,¢,V) that are evenly distributed in 3D
Euler space. In this study, an angle interval of 18° was used to evenly
discretize the Euler space, resulting in a total of 2540 evenly dis-
tributed rotations in the rotational space (Yan and Huang, 2018).
Thus, for each rotation of the second protein in the Euler space, an
exhaustive search in translational space is conducted through an
FFT-based algorithm. Repeating this process for all the rotations
results in a truly global search of superimposition in six degrees of
freedom.

2.1.3 Final superimpositions

Similar to that adopted in protein—protein docking (Chen and
Weng, 2003; Yan and Huang, 2018), only one match with the best
score, which corresponds to the best structural superimposition in
an FFT-based translational search, was retained for each rotation of
the secondary structure, yielding a total of 2540 structure superim-
positions for a global alignment in six-dimensional space.
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Table 1. The weighting coefficient wj; of the energy score between
C, atoms of secondary-structure elements (SSE) for match opti-
mization in Eq. (4)

SSE Coil o-helix B-strand
Coil -1.0 -0.5 -1.0
a-Helix -0.5 -2.0 1.0
p-Strand -1.0 1.0 -3.0

Table 2. The weighting coefficients ¢;; for the one-to-one alignment
score between two C, atoms of secondary-structure elements
(SSE) in Eq. (5)

SSE Colil o-Helix p-Strand
Coll 1.0 0.0 0.5
a-Helix 0.0 2.0 -0.5
p-Strand 0.5 -0.5 2.0

2.2 Atom-based refinement of superimpositions

To further improve the matching accuracy between two proteins at
atomic level, we have performed an optimization for each of the
2540 grid-based superimpositions by using a SIMPLEX method,
where a Gaussian-like pairwise potential is used to evaluate the
matching quality between two C, atoms ij as

Ti 2
Ejj = wjj - exp {— <r—;> } 4)

where w;; is a secondary structure-dependent weighting coefficient
(Table 1) and 7 is set to 3.0 A so as to ensure that the potentials will
not overlap significantly for two adjacent C, atoms. Finally, the top
20 superimpositions were retained for sequent residue equivalence
search according to the C,-based scoring function of Eq. (4).

2.3 One-to-one residue alignment

For each of obtained superimpositions, we obtained its one-to-one
residue correspondence of two proteins by identifying those continu-
ous segment pairs with high alignment scores through a stepwise
way (Minami et al., 2013). The scoring matrix for residue alignment
is defined as follows

Lz ifdj < dewe
M(dy) = § 1+ (%) (5)

0 otherwise

where dj; is the distance between two aligned C, atoms of ij, J;; is a
secondary structure-dependent coefficient (Table 2), dy is a normal-
ized distance and d. is a distance cutoff. Here, d; is set to be
1.24V/L —15-1.8, where L is the residue number of the smaller
protein of the pair, such that the similarity score can be comparable
for protein structures of different sizes (Xu and Zhang, 2010).
During the search of residue alignment, the distance cutoff dey
was stepwisely increased from 3.2 A, 4.8 A to 8.0 A. Specifically,
deye was first set to 3.2 A. Then, we identified all those continuous
segment matches from [o, f] to [x + (I — 1), f + (I — 1)], where « and
B are the starting residue positions in two proteins, and [ is the
length of an aligned segment. To avoid spurious matches, the length
of continuous segments must be at least two residues (Minami ez al.,
2013). Among all the segments, the one with the highest match score
will be recorded. Then, a similar search is conducted within the rest
residues after excluding the previously identified segment(s). The
first stage of search for residue alignment continues until no continu-
ous segment has a minimum length of two. After that, we entered
the next stage of search by increasing the distance cutoff to 4.8 A,
and then to 8.0 A. The search procedure for continuous segments is

similar at each stage except that the identified residue alignment
from a previous stage should be retained at current stage. Finally,
we get a set of one-to-one residue correspondence and the total
match score by combining all those continuous segments for each
superimposition.

The 20 sets of residue alignments for the top 20 superimpositions
are ranked according to their total alignment scores. The top one
with the highest alignment score is selected as the predicted structure
alignment of two proteins by default, though our FTAlign can gener-
ate up to ten top alignments for users because the alternative align-
ments are useful for investigating the conformational changes of
multi-domain proteins (Nguyen and Madhusudhan, 2011).

2.4 Test datasets

2.4.1 Two manually curated benchmarks

Manually curated benchmarks are the most important datasets for
the performance evaluation of a structure alignment method, as the
structure pairs in those benchmarks have been carefully aligned by
considering not only geometric similarity but also evolutionary and
functional relationship. Here, we selected two such benchmarks,
MALIDUP (Cheng et al., 2007a) and MALISAM (Cheng et al.,
2007b), which have been widely used in the community of structure
alignment. MALIDUP contains 241 pairwise structure alignments
for remotely related homologous domains originated from internal
duplication within a protein chain. MALISAM consists of 130 cases,
in which the two proteins in a pair are structural analogs with differ-
ent SCOP folds (Murzin et al., 1995). Therefore, MALISAM is
expected to be more challenging than MALIDUP, as the protein
pairs in MALISAM are not homologs (Cheng et al., 2008).

2.4.2 Four reference-free datasets

In addition to two gold-standard benchmarks, we have also tested
our FTAlign approach on four other reference-free test sets that are
not manually curated, which have been widely used to evaluate the
performance of many existing structure alignment methods. These
datasets include MALIDUP-NS (Minami et al., 2013), MALISAM-
NS (Minami et al., 2013), 64 difficult pairwise alignments from the
HOMSTRAD dataset with low structure similarity (Stebbings and
Mizuguchi, 2004), and 199 pairwise alignments that have similar
structures but different topology (Nguyen and Madhusudhan,
2011). MALIDUP-NS and MALISAM-NS are two artificial non-
sequential test sets that have been constructed based on the sets of
MALIDUP and MALISAM by a multiple segment permutation tech-
nique (Minami et al., 2013). The 64 difficult protein pairs have a SO
between 30 and 70% SO and a root mean square deviation (RMSD)
above 2.5A. The 199 topology-different pairwise alignments are
formed by 91 protein structures, containing 5 cases with circular
permutation, 60 cases with non-topological similarity, 24 cases with
swapped domains and 110 alignments from different protein fami-
lies (Nguyen and Madhusudhan, 2011).

2.4.3 Alignment sequentiality of test sets

In terms of alignment order, the six test sets may also be divided
into two groups: sequential test sets that include MALIDUP,
MALISAM and 64 difficult cases, and non-sequential test sets that
contain MALIDUP-NS, MALISAM-NS and 199 topology-different
cases.

2.5 Programs to be compared

To validate our FTAlign, we have compared our method with seven
state-of-the-art structure alignment algorithms, TMalign (Zhang
and Skolnick, 2005), DeepAlign (Wang et al., 2013), Kpax (Ritchie
et al., 2012; Ritchie, 2016), 3DCOMB (Wang et al., 2011), CLICK
(Nguyen and Madhusudhan, 2011), SPalignNS (Brown et al., 2016)
and MICAN (Minami et al., 2013), in which TMalign, DeepAlign,
Kpax and 3DCOMB are developed for sequential alignment and the
other three approaches are designed for non-sequential alignment.
For these seven programs, we all downloaded their latest versions
and ran them locally with their default parameters.
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2.6 Evaluation criteria

According to whether the test sets are manually curated or not, we
have used different criteria to evaluate the performance of a struc-
ture alignment approach. For a fair comparison, only the top align-
ment was used for all the approaches. To remove the effect of noisy
or spurious alignments, only those aligned segments with at least
two residues were used in the evaluation (Hasegawa and Holm,
2009; Minami et al., 2013).

For two manually curated benchmarks, MALIDUP and
MALISAM, we have used the success rate in reproducing manually
curated alignments to measure the performance of a structure align-
ment method. Specifically, for each case in the benchmark, we first
superimposed the predicted alignment onto the manually curated
alignment according to the first protein by using TMalign (Zhang
and Skolnick, 2005). The superimposition can also be done based
on the RMSD of the first protein. The two ways will give the same
results because the first proteins from predicted and manually cura-
ted alignments are the same and thus can perfectly overlap during
the superimposition. Then, we calculated the RMSD between the
second proteins of the manual and predicted alignments based on
their C, atoms. If the RMSD is less than 5.0 A, the predicted align-
ment is thought to be close enough to the manual one (Janin ez al.,
2003) and thus defined as a successful alignment. The success rate is
defined as the percentage of the cases with successfully predicted
alignments compared to the total number of pairwise alignments in
the benchmark. It should be noted that here we used the RMSD of
the second protein instead of the number of correctly aligned resi-
dues to measure the quality of a structure alignment because differ-
ent similarity scoring schemes may lead to different sets of optimal
residue equivalences and thus different number of aligned residues
for the same alignment (Hasegawa and Holm, 2009). However, the
RMSD will be less affected by similarity scoring schemes and there-
fore is a more objective criterion for the quality of a superimpos-
ition, compared with the number of correctly aligned residues.
Compared to the residue equivalence, the RMSD from the reference
alignment is also more robust for some tasks of structure alignment
like functional or binding site detection (Estrin and Wolfson, 2017;
Huang and Zou, 2006; Roy et al., 2012; Yang et al., 2013; Zhou
etal.,2018).

In addition to the success criterion for manually curated bench-
marks, we have also adopted those reference-free criteria to evaluate
the performance of our FTAlign on all the six test sets, which in-
clude four parameters: number of aligned residues (N,;;), RMSD of
aligned residues (RMSD,;), TMscore of aligned residues and struc-
ture overlap (SO). Here, SO is defined as the percentage of those
aligned residues within 3.5 A of each other compared to the number
of residues in the smaller protein. As N,j; is counter-correlated with
RMSDy,y;, it is difficult to optimize these two parameters simultan-
eously (Zemla, 2003). Therefore, the SO is normally used to rank
different structure alignment methods during the performance
comparison (Brown et al., 2016).

3 Results and discussion

3.1 Performance on manually curated benchmarks

We first tested our FTAlign on the two manually curated bench-
marks, MALIDUP and MALISAM. It was found that FTAlign per-
formed better than the other seven structure alignment methods
in both success rate and robustness in reproducing manually curated
alignments.

Figure 1 shows the success rates of our structure alignment
method FTAlign in reproducing manually curated alignments on the
two gold-standard benchmarks of MALIDUP and MALISAM. For
comparison, the figure also lists the corresponding results of the
other seven approaches including TMAlign, DeepAlign, Kpax,
3DCOMB, MICAN, SPalignNS and CLICK. It can be seen from
Figure 1 that FTAlign performed the best among the eight structure
alignment methods on the benchmark of MALIDUP, and obtained a
high success rate of 96.7%, which is slightly better than 96.3% for
3DCOMB, 95.4% for DeepAlign, 94.2% for TMAlign, 94.2% for
Kpax and 93.4% for MICAN and significantly higher than 84.7%
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Fig. 1. Success rates of FTAlign and seven other state-of-the-art structure alignment
methods in reproducing manually curated structure alignments on two gold-stand-
ard benchmarks, MALIDUP and MALISAM

for SPalignNS and 83.4% for CLICK. Similar trends can also be
observed on the benchmark of MALISAM. That is, FTAlign
achieved the best performance on the benchmark of MALISAM and
gave a success rate of 90.0%, compared to 87.7% for 3DCOMB,
81.5% for TMAlign, 80.0% for DeepAlign, 76.9% for MICAN,
75.4% for Kpax, 50.8% for SPalignNS$ and 50% for CLICK.

Comparing the results of MALIDUP and MALISAM also reveals
that the success rates on MALIDUP are always higher than those on
MALISAM for all the tested methods (Fig. 1). This is consistent
with the experimental findings that MALISAM is more challenging
than MALIDUP because MALIDUP consists of distant homologs
while MALISAM is made up of structural analogs (Cheng et al.,
2008). Another notable feature in Figure 1 is that FTAlign only lost
7.0% in success rate (i.e. 89.2% versus 96.3%) for MALISAM
versus MALISDUP, compared to 8.6% for 3DCOMB (87.7% versus
96.3%), 12.7% for TMAlign (81.5% versus 94.2%), 15.4% for
DeepAlign (80.0% versus 95.4%), 16.4% for MICAN (76.9%
versus 93.4%), 18.8% for Kpax (75.4% versus 94.2%), 33.9% for
SPalignNS (50.8% versus 84.6%) and 33.4% for CLICK (50.0%
versus 83.4%). These results suggest the robustness of FTAlign in
structure alignment for both distant homologs and structure
analogs.

3.2 Performance on general datasets

We further evaluated the performance of FTAlign on the two manu-
ally curated benchmarks, MALIDUP and MALISAM, and four
other reference-free datasets, MALIDUP-NS, MALISAM-NS, 64
difficult cases and 199 topology-different alignments by using the
reference-independent criteria, N,;, RMSD,j;, TMscore and SO.
The results with these criteria again confirmed the superior perform-
ance of FTAlign to the other seven structure alignment algorithms,
which are detailed as follows.

3.2.1 Sequential datasets

Table 3a—c lists the average number of aligned residues (N,j),
RMSD of aligned residues (RMSDy,j;), TMscore of aligned residues
and structure overlap (SO) for FTAlign on three sequential test sets,
MALIDUP, MALISAM and 64 difficult cases, of which the SO val-
ues are also shown in Figure 2. For comparison, the table and figure
also gives the corresponding results of the other seven structure
alignment methods, TMalign, DeepAlign, Kpax, 3DCOMB,
MICAN, SPalignNS and CLICK. It can be seen from Table 3 and
Figure 2 that FTAlign achieved the highest SO on all three sequential
test sets, followed by TMalign, 3DCOMB, Kpax and DeepAlign,
while MICAN, SPalignNS and CLICK yielded a relatively worse
performance. In addition, FTAlign obtained a higher TMscore than
five of the other seven methods except TMalign and 3DCOMB.
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Table 3. Performance comparison between FTAlign and seven
other state-of-the-art methods on six test sets of pairwise structure
alignments, in which MALIDUP, MALISAM and 64 difficult cases
are sequential sets, and MALIDUP-NS, MALISAM-NS and 199 top-
ology-different cases are non-sequential sets

(a) MALIDUP
Method N RMSD,; (A) TMscore SO (%)
FTAlign 87.1 2.68 0.610 73.0
Kpax 80.1 217 0.609 70.6
TMalign 86.7 2.69 0.631 70.4
3DCOMB 84.9 2.60 0.623 69.8
DeepAlign 83.8 2.68 0.611 67.8
MICAN 84.9 2.58 0.593 67.2
SPalignN$ 62.7 1.61 0.520 62.3
CLICK 61.0 1.81 0.496 59.1
(b) MALISAM

Method N RMSD,;; (A) TMscore SO (%)
FTAlign 63.6 3.12 0.511 67.0
TMalign 62.5 3.15 0.522 63.0
3DCOMB 60.8 2.97 0.520 62.3
Kpax 55.9 2.57 0.493 61.8
DeepAlign 58.9 3.04 0.500 59.1
MICAN 61.8 2.99 0.414 50.5
SPalignNS 35.1 1.82 0.356 46.4
CLICK 34.8 1.95 0.346 44.0
(c) 64 difficult cases

Method Ny RMSD,; (A) TMscore SO (%)
FTAlign 82.6 2.98 0.531 69.1
TMalign 82.3 2.97 0.558 66.5
Kpax 76.1 243 0.526 65.8
3DCOMB 80.9 2.90 0.540 64.9
DeepAlign 80.8 3.03 0.533 62.7
MICAN 79.9 2.90 0.492 59.8
SPalignN$ 57.0 1.78 0.437 56.9
CLICK 51.0 1.94 0.380 48.5
(d) MALIDUP-NS

Method Nai RMSD,;; (A) TMscore SO (%)
FTAlign 86.0 2.73 0.597 71.4
MICAN 83.7 2.55 0.587 66.6
CLICK 60.4 1.81 0.493 58.6
SPalignNS 57.8 1.69 0.477 57.7
3DCOMB 58.5 2.74 0.430 47.8
TMalign 61.5 3.01 0.433 47.5
Kpax 52.3 2.13 0.407 47.0
DeepAlign 54.1 2.57 0.409 45.3
(e) MALISAM-NS

Method Ny RMSD,; (A) TMscore SO (%)
FTAlign 61.8 3.13 0.498 65.0
MICAN 61.1 2.96 0.412 50.3
TMalign 48.3 3.44 0.393 45.7
3DCOMB 46.1 327 0.384 45.1
Kpax 40.4 2.59 0.362 44.1
CLICK 33.8 1.94 0.337 42.9
DeepAlign 40.7 2.93 0.361 41.7
SPalignNS 31.4 1.82 0.314 40.9

(continued)

(f) 199 topology-different cases

Method N RMSD,;; (A) TMscore SO (%)
FTAlign 80.4 3.40 0.518 59.7
TMalign 69.4 3.44 0.466 50.2
3DCOMB 67.3 3.29 0.462 50.1
DeepAlign 61.6 3.03 0.433 47.0
Kpax 57.1 2.62 0.423 47.0
MICAN 76.8 3.20 0.418 44.5
CLICK 46.6 1.99 0.367 43.7
SPalignNS 42.8 2.00 0.337 41.1

Note: The methods are ranked according to their SO.
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Fig. 2. Structure overlap (SO) of FTAlign and seven other structure alignment meth-
ods on six commonly used datasets of pairwise alignments, where MALIDUP,
MALISAM and 64 difficult cases are sequential sets, and MALIDUP-NS,
MALISAM-NS and 199 topology-different cases are non-sequential sets

This can be understood because the two approaches TMalign and
3DCOMB have been designed to maximize the geometric similarity
score (i.e. TMscore) between two protein structures during the
alignment (Wang et al., 2011; Zhang and Skolnick, 2005). Given
the lower success rates of TMalign and 3DCOMB than FTAlign in
reproducing the manually curated alignments of MALIDDUP and
MALISAM (Fig. 1), TMalign and 3DCOMB may align many more
evolutionarily unrelated but geometrically similar residues than
FTAlign, as also pointed out in the DeepAlign study (Wang et al.,
2013). From Table 3, one can also observe that FT'Align, TMalign,
3DCOMB, Kpax, DeepAlign and MICAN obtained a significantly
higher number of aligned residues than SPalignNS and CLICK,
though they gave a worse average RMSD,;;. This can be understood
because the RMSDyj; is anti-correlated with the number of aligned res-
idues. The overall worse performances of three non-sequential align-
ment approaches, MICAN, SPalignNS and CLICK, than the other
methods on these three sequential datasets suggest that it is challeng-
ing to develop a general approach for both sequential and non-
sequential alignment, as it is unknown whether a structure alignment
is sequential or not before it is manually examined. Therefore, it is
encouraging that our topology-independent approach FTAlign per-
formed the best on all the three sequential datasets.

3.2.2 Non-sequential datasets
Table 3d-f lists the average number of aligned residues (Ng;),
RMSD of aligned residues (RMSD,};), TMscore of aligned residues
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Fig. 3. Structural comparison between the manually curated alignment (red and blue) and computationally predicted alignment (green and blue) for FTAlign (A) and seven
other state-of-the-art methods (B—H) on the case of d2bs2_C1/d2bs2_C2 from MALIDUP, where the manual and predicted alignments are superimposed based on the first pro-

tein (blue) of the pair. (Color version of this figure is available at Bioinformatics online.)

and structure overlap (SO) for FTAlign on three non-sequential test
sets, MALIDUP-NS, MALISAM-NS and 199 topology-different
cases, of which the SO valuses are also shown in Figure 2. As a refer-
ence, the table and figure also gives the corresponding results of the
other seven structure alignment methods, TMalign, 3DCOMB,
Kpax, DeepAlign, MICAN, SPalignNS and CLICK. It can be seen
from Table 3 and Figure 2 that FTAlign again obtained a better per-
formance than the other seven structure alignment methods in terms
of both SO and TMscore on the three non-sequential test sets.
Several other features can also be found by comparing the results of
all six test sets. First, TMalign, 3DCOMB, Kpax and DeepAlign
have a significantly lower SO on the non-sequential sets than on the
sequential sets. This can be understood because these four methods
are designed for sequential structure alignment (Wang et al., 2013;
Zhang and Skolnick, 2005). Second, MICAN maintained a compar-
able performance, as its algorithm is able to handle both sequential
and non-sequential alignments. The SO values of SPalignNS and
CLICK are relatively low on both sequential and non-sequential test
sets, which may be due to their point representation of protein struc-
tures, which would lead to over-fragmentation under the pressure of
minimizing the RMSD,;; and/or maximizing the SO. On the con-
trary, through a global superimposition of two protein structures,
FTAlign would circumvent the above limitation and thus achieved a
consistently better performance than the other methods on both se-
quential and non-sequential test sets.

3.3 Case study

To further illustrate the advantage of a global search in structure
alignment, we have investigated an example pairwise alignment,
d2bs2_C1 and d2bs2_C2 from MALIDUP, on which only three
methods, FTAlign, 3DCOMB and Kpax, successfully reproduced
the manually curated structure alignment and gave an RMSD of
<5.0 A, while the other five methods failed to predict the manually
curated alignment and led to a large RMSD of more than 20 A
(Fig. 3).

The two proteins of this case are two domains of a fumarate re-
ductase from wolinella succinogenes (PDB ID: 2BS2) (Burley et al.,
2019). Further examination of all the alignment plots revealed that
the failure of the other five approaches may be due to the heuristic
nature of these structure alignment algorithms (Fig. 4). That is, heur-
istic methods always try to identify the current continuous seg-
ment(s) with the highest match score through a local greedy-like
search (Ma and Wang, 2014). Therefore, these methods may get
trapped in a local minimum during the search of continuous align-
ments. Although such a heuristic strategy can dramatically reduce

the search space and speed up the alignment process, the final struc-
ture alignment will be impacted by the first identified segments.
Therefore, in such situation, if the first continuous segment is a bio-
logically wrong alignment, the final alignment will also be a bio-
logically wrong one. This is just the case on the alignments between
d2bs2_C1 and d2bs2_C2 for the five failed approaches. As shown in
Figure 4, the manually curated alignment consists of two continuous
segments with a medium match score, which are reproduced by
FTAlign, 3DCOMB and Kpax (Fig. 4A-C). On the contrary, the
five failed approaches except MICAN all contain one locally opti-
mal continuous segment that has a higher match score than either of
the two continuous segments in the manually curated alignment
(Fig. 4D-H). This kind of locally optimal alignments can also be
observed in the structural comparison between the manually curated
and computationally predicted alignments for the failed methods
(Fig. 3). As for MICAN, its failure is due to its non-sequential align-
ment for this sequential case, although it does not show the overfit-
ting problem of local segments between two structures (Fig. 3F).
This example suggests the necessity of developing a global structure
alignment algorithm like FTAlign.

3.4 Computational efficiency

Despite the global search process, our structure alignment method
can be greatly accelerated through an FFT-based algorithm. As such,
FTAlign is computationally efficient and can normally finish a pair-
wise alignment within seconds. Table 4 gives the total running times
and average time per case of FTAlign on a single Intel(R) Xeon(R)
CPU ES5-2690 v4 @ 2.60 GHz core over the six test sets. For com-
parison, the table also lists the corresponding times of the other
seven methods. It can be seen from the table that 3DCOMB is the
fastest method and only consumes an average of 0.009s for aligning
a pair of structures, followed by 0.034s for TMAlign and 0.065 s
for MICAN. DeepAlign, Kpax and SPalignNS are moderately fast
and can normally finish a structure alignment within a half second.
FTAlign and CLICK are relatively slow and have an average running
time of 2.895 and 3.906s per case, respectively. The much higher
(~100 times) running time of FTAlign than other sequential align-
ment methods like TMAlign and 3DCOMB can be understood be-
cause FTAlign explores dramatically more orientational space
[~O(N®)] due to its exhaustive global search for an accurate
topology-independent alignment. Therefore, taking its huge search
space into account, FTAlign is relatively fast in some sense, though
its running time is much longer than those of other sequential align-
ment approaches. Moreover, the FFT-based algorithm can be fur-
ther speeded up through a graphic process unit (GPU). With the
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Fig. 4. Comparison of the residue alignments between the computationally predicted (red) and manually curated (black) alignments for FTAlign (A) and seven other state-of-
the-art methods (B-H) on the case of d2bs2_C1/d2bs2_C2, where the sizes of symbols are linearly scaled according to the distance between two aligned C, atoms. Namely, a
smaller symbol means a geometrically better match between two residues. (Color version of this figure is available at Bioinformatics online.)

Table 4. Total running times and average time per case of FTAlign and seven other methods on a single Intel(R) Xeon(R) CPU E5-2690 v4 @

2.60 GHz core over the six test sets of pairwise structure alignments

Method Running time (s)
CLICK FTAlign SPalignNS Kpax DeepAlign MICAN TMalign 3DCOMB

MALIDUP 1177.27 694.58 102.39 71.80 52.82 17.61 8.78 2.20
MALISAM 207.08 340.16 19.24 35.28 19.15 5.83 3.45 1.15

64 cases 265.67 176.82 28.65 18.71 16.73 4.56 2.71 0.56
MALIDUP-NS 1140.49 693.46 95.98 72.32 49.83 17.21 8.36 2.20
MALISAM-NS 200.09 353.75 19.12 36.22 18.64 5.75 3.26 1.16
199 cases 942.87 647.85 79.81 60.26 50.25 14.21 8.16 1.82
Average/case 3.906 2.895 0.344 0.297 0.208 0.065 0.034 0.009

GPU version, a pairwise alignment can be normally completed with-
in one second, which is fast enough for high-throughput structure
alignment.

To choose an appropriate method for real applications, both
computational efficiency and alignment accuracy need to be consid-
ered. For sequential alignment, programs like TMAlign and
3DCOMB would be the ideal choice, owing to their high speed.
However, for topology-independent alignment, FTAlign would be
an optimal one because of its significant accuracy advantage and
also acceptable running time.

3.5 Impact of alignment parameters

During our FFT-based global search for optimal alignment between
two protein structures, there are two basic parameters, grid spacing
for 3D translational search and angle step for 3D rotational search.
To investigate the impact of these two parameters on our alignment,
we have conducted an extensive evaluation of FTAlign on six test
sets under the combination of four grid spacings (1.0, 1.2, 1.5 and
2.0 A) and four angle steps (10°, 15°, 18° and 20°). Table § lists the
SO of FTAlign with different sets of parameters on the six test sets.
It can be seen from the table that the changes of SO are very small
and within 1.0% for different sets of grid spacing and angle step,
suggesting the robustness of FTAlign in FFT-based global search for
geometric match. This may be understood because proteins are rep-
resented by their C, atoms in FTAlign. As the average distance be-
tween two C, atoms is around 3.8 A, FTAlign is expected to

perform well as long as the grid spacing is significantly smaller than
3.8 A, although we have taken the grid spacing of 2.0 A and angle
step of 18° as the default parameters of FTAlign for the sake of both
accuracy and speed in the present study.

4 Conclusions

We have developed an accurate topology-independent and global
structure alignment method based on an FFT-based search algo-
rithm, which is referred to as FTAlign. FTAlign was extensively
evaluated on six commonly used test sets including two manually
curated gold-standard benchmarks, MALIDUP and MALISAM and
four reference-free test sets, MALIDUP-NS, MALISAM-NS, 64 dif-
ficult cases from HOMSTRAD and 199 topology-different pairwise
alignments, in which MALIDUP, MALISAM and 64 difficult cases
are sequential sets and MALIDUP-NS, MALISAM-NS and 199
topology-different cases are non-sequential sets. It was shown that
FTAlign not only obtained a better success rate in reproducing man-
ually curated structure alignments on MALIDUP and MALISAM,
but also achieved a higher biologically meaningful structure overlap
(SO) and an overall higher TMscore on the six test sets than seven
other state-of-the-art structure alignment methods, TMAlign,
3DCOMB, Kpax, DeepAlign, MICAN, SPalignNS and CLICK. A
case study further confirmed the advantage of a global search like
FTAlign in structure alignment. Despite its global search feature,
FTAlign is also computational efficient and its GPU version can
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Table 5. Structure overlaps (SO) of FTAlign with different grid spacings and angle steps on six test sets

Grid spacing Angle step Structure overlap (%)
MALIDUP MALISAM 64 cases MALIDUP-NS MALISAM-NS 199 cases
1.0A 10° 73.1 67.3 68.9 71.4 65.1 59.7
15° 72.9 67.4 68.9 71.4 64.7 59.4
18° 72.8 67.2 68.7 71.5 64.7 59.8
20° 73.0 67.0 68.7 71.6 64.4 59.9
124 10° 73.2 67.3 69.1 71.4 64.7 59.6
15° 73.0 67.0 69.0 71.2 64.8 59.7
18° 72.9 66.9 68.9 71.4 64.5 59.5
20° 72.8 67.1 68.4 71.4 64.8 59.5
1.54A 10° 72.9 67.2 68.9 71.2 65.1 59.6
15° 72.8 67.3 69.3 71.4 64.9 59.5
18° 73.0 67.1 68.8 71.3 64.7 59.8
20° 72.9 66.8 68.9 71.6 64.7 59.6
2.0A 10° 73.1 67.2 69.0 71.3 64.8 59.5
15° 73.1 66.9 68.9 71.5 64.7 59.8
18° 73.0 67.0 69.1 71.4 65.0 59.7
20° 72.8 66.8 68.7 71.3 64.6 59.8

normally finish a structure alignment within one second. FTAlign
provides a general method for both sequential and non-sequential
alignments between two protein structures.
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