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Abstract

Motivation: Meta-analysis methods have been widely used to combine results from multiple clinic-

al or genomic studies to increase statistical powers and ensure robust and accurate conclusions.

The adaptively weighted Fisher’s method (AW-Fisher), initially developed for omics applications

but applicable for general meta-analysis, is an effective approach to combine P-values from K inde-

pendent studies and to provide better biological interpretability by characterizing which studies

contribute to the meta-analysis. Currently, AW-Fisher suffers from the lack of fast P-value computa-

tion and variability estimate of AW weights. When the number of studies K is large, the 3K� 1 pos-

sible differential expression pattern categories generated by AW-Fisher can become intractable.

In this paper, we develop an importance sampling scheme with spline interpolation to increase the

accuracy and speed of the P-value calculation. We also apply bootstrapping to construct a variabil-

ity index for the AW-Fisher weight estimator and a co-membership matrix to categorize (cluster)

differentially expressed genes based on their meta-patterns for intuitive biological investigations.

Results: The superior performance of the proposed methods is shown in simulations as well as

two real omics meta-analysis applications to demonstrate its insightful biological findings.

Availability and implementation: An R package AWFisher (calling Cþþ) is available at

Bioconductor and GitHub (https://github.com/Caleb-Huo/AWFisher), and all datasets and program-

ing codes for this paper are available in the Supplementary Material.

Contact: ctseng@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput biological experiments play a key role in decipher-

ing biological mechanisms behind complex diseases. Advanced ex-

perimental techniques allow us to obtain high-resolution genomic

information with affordable price. Over the years large amount of

omics data are accumulated in public databases and repositories:

The Cancer Genome Atlas (TCGA) http://cancergenome.nih.gov,

Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/

geo/ and Sequence Read Archive (SRA) http://www.ncbi.nlm.nih.

gov/sra/, just to name a few. For a given transcriptomic study from

microarray or RNA-seq, many statistical methods have been devel-

oped for detecting differentially expressed (DE) genes as candidate
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biomarkers (Pan, 2002; Soneson and Delorenzi, 2013). The analysis

of a single study, however, contains small to moderate sample size

(usually N¼20�50), producing unstable and inaccurate results

(Domany, 2014; Simon, 2005). Meta-analysis to combine multiple

transcriptomic studies has become a common practice to improve

statistical power and reproducibility. Readers who are interested

may refer to Ramasamy et al. (2008) for a practical guideline of

microarray meta-analysis, and Tseng et al. (2012); Begum et al.

(2012) for comprehensive reviews of microarray and genome-wide

association study meta-analysis.

Among the numerous meta-analysis methods proposed in the lit-

erature, combining P-values from multiple studies is a simple and

flexible solution to combine studies of different experimental design

and avoid complexity from batch effect (i.e. systematic non-

biological differences between studies because of differences such as

sample platforms and experimental protocols; Luo et al., 2010).

When combining two studies, it has been demonstrated that such

batch effects often cannot be properly removed when by normaliza-

tion (Guerra and Goldstein, 2009). Meta-analysis methods (e.g. P-

value combination methods) will lead to increased statistical power

by combining the summary statistics (i.e. P-values). These summary

statistics, representing the strength of association, are usually con-

sidered standardized and independent of the batch effect (Gibbons

et al., 2018). Under the framework of such P-value combination

methods, multiple hypothesis testing settings have been considered

to address different biological questions. Following the convention

of Song and Tseng (2014) (also see Birnbaum, 1954; Li and Tseng,

2011), three major hypothesis settings have been considered in

the literature: HSA targets on the hypothesis testing setting to detect

biomarkers that are DE in all cohorts:

H0 : h
!
2\fhk ¼ 0g

HA : h
!
2\fhk 6¼ 0g;

where HSA is the acronym for ‘Hypothesis Setting All’ mentioned

above, and hk is the effect size of study k, 1 � k � K). HSB targets

on biomarkers DE in one or more studies:

H0 : h
!
2\fhk ¼ 0g

HA : h
!
2[fhk 6¼ 0g;

where ‘B’ in HSB is the counterpart of ‘A’ in HSA. The HSB method

is traditionally also referred to as ‘union–intersection test (UIT)’ or

‘conjunction null hypothesis’ in the statistical literature. HSr targets

on biomarkers DE in at least r studies:

H0 : h
!
2\fhk ¼ 0g

HA :
P

Ifhk 6¼ 0g � r;

where r in HSr represents the rth order statistics (Song and Tseng,

2014), If�g is an indicator function taking value one if the statement

is true and zero otherwise, and r is usually pre-specified

with K=2 � r � K).

Biologically HSA is preferred when the purpose is to find con-

cordant genes across all studies. HSr can be considered as a robust

form of HSA to seek for concordant genes in majority of studies.

HSB is considered when heterogeneity is expected and we are inter-

ested in biomarkers statistically significant in at least one study.

In the literature, HSB is an UIT (Roy, 1953) and is also called a

conjunction or intersection hypothesis (Benjamini and Heller,

2008). Many statistical tests have been developed for this hypothesis

setting, including Fisher’s method (Fisher, 1992), Stouffer’s (Stouffer

et al., 1949) method, the minimum P-value method (also referred as

Tippett’s method) (Tippett, 1931) and many others. Fisher’s method

defines the test statistic as the sum of log-transformed P-val-

ues: TF ¼ �2
PK

k¼1 log pk, where pk is the P-value from the kth

study; Stouffer’s method uses TS ¼ � 1ffiffiffi
K
p
PK

k¼1 U�1 pkð Þ, where

U�1ð�Þ is the inverse cumulative distribution function (CDF) of

standard normal distribution. A larger Fisher (or Stouffer) score

indicates stronger differential expression evidence. Under the null

assumption and assuming independence across studies, the null dis-

tribution of Fisher’s statistics follows v2
2K and Stouffer’s follows

N(0, 1). Although Fisher’s method has many theoretical advantages

(e.g. asymptotic Bahadur optimality under certain restricted

Gaussian assumptions; see Littell and Folks, 1971), it has a critical

pitfall when heterogeneity is expected across studies. For example,

suppose p
!

1 ¼ ð0:001; 1; 1Þ represents P-values of three studies of

Gene 1 and p
!

2 ¼ ð0:1; 0:1; 0:1Þ represents P-values of Gene 2.

Both genes produce the same Fisher’s test statistics and meta-

analysis P-values (TF ¼ 13:8 and pF ¼ 0:032) but the biological in-

terpretation of the two genes are obviously different. p
!

1 indicates

strong statistical significance only in the first study, while p
!

2 shows

marginal statistical significance in all three studies. To characterize

study heterogeneity in meta-analysis, Li and Tseng (2011) proposed

an adaptively weighted Fisher’s method (AW-Fisher) where the

Fisher’s score is modified as weighted sum and the 0–1 weights can

be viewed as latent variables of whether a study contributes DE in-

formation to the meta-analysis (details see next paragraph). Aside

from additional biological interpretability of AW weights, AW-

Fisher also enjoys nice theoretical properties. It has been shown to

be admissible (Li and Tseng, 2011) and asymptotic Bahadur optimal

under certain Gaussian assumptions (Fang et al., 2019). In addition,

Fisher’s method is more powerful when all studies are significant

and the minimum P-value method is more powerful when only one

study has small P-value. AW-Fisher theoretically takes advantage of

both methods on their favored extreme situations (Li and Tseng,

2011). Chang et al. (2013) performed a comprehensive comparative

study to evaluate 12 popular microarray meta-analysis methods and

categorized them into the three complementary hypothesis settings,

HSA; HSB and HSr. AW-Fisher was the best performer in the HSB

setting when considering a variety of data and heterogeneity

assumptions.

Below we describe the method and rationale for AW-Fisher

(Li and Tseng, 2011).

For the convenience of discussion, we focus on two class com-

parison for detecting DE genes in this paper. However, users can

easily extend to multi-class, continuous or survival outcomes using

conventional packages for differential expression analysis to gener-

ate P-values as input of our method. Throughout the manuscript,

we use limma (Smyth, 2005) for continuous data (e.g. microarray or

RNA-seq RPKM data) and edgeR (Robinson et al., 2010) for count

data (e.g. RNA-seq count data) to calculate P-values for each indi-

vidual study. Define TðP
!

; w
!Þ ¼ �2

PK
k¼1 wklogPk, where w

! ¼
ðw1; . . . ;wKÞ 2 f0; 1gK is the AW weight associated with K studies

and P
!
¼ ðP1; . . . ;PKÞ 2 ð0; 1ÞK is the random variable of input P-

value vector for K studies. Under the null distribution and condition-

ally on w
!

, the significance level obtained by TðP
!

; w
!Þ

is LðTðP
!

; w
!ÞÞ ¼ 1� Fv2

dðw!Þ
ðTðP

!
; w
!ÞÞ, where dðw!Þ ¼ 2

PK
k¼1 wk and

Fv2
d
ð�Þ is the CDF of v2-distribution with degrees of freedom d. Given

P-value vector P
!

, the test statistic of AW-Fisher is defined as
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sðP
!
Þ ¼ min

w
!

LðTðP
!

; w
!ÞÞ: (1)

The optimal weight for ŵ is determined

by ŵ ¼ wðP
!
Þ ¼ argmin

w
!LðTðP

!
; w
!ÞÞ. Here we denote by s the

mapping from P-value vector to the AW-Fisher test statistic and S is

the random variable for the AW-Fisher test statistic which can

be obtained by S ¼ sðP
!
Þ. We further define signed AW-Fisher

weights by:

v̂ ¼ ðv̂1; . . . ; v̂KÞ ¼ ðŵ1 � signðĥ1Þ; . . . ; ŵK � signðĥKÞÞ;

where ðĥ1; . . . ; ĥKÞ is the estimate of effect size of each study and

signðxÞ ¼ x=jxj if x 6¼ 0 and signðxÞ ¼ 0 otherwise. Note that v̂k can

be 0, 1 or �1 for 1 � k � K. AW-Fisher is appealing in applica-

tions since the AW weight estimate ŵ characterizes which study

contributes to the meta-analysis result. In the previous simple

example, we have ŵ ¼ ð1; 0; 0Þ for Gene 1 and ŵ ¼ ð1; 1; 1Þ for

Gene 2, which indicates Gene 1 (P
!
¼ ð0:001; 1; 1Þ) is a first-study-

specific biomarker while Gene 2 (P
!
¼ ð0:1; 0:1; 0:1Þ) is an all-

study-consistent biomarker. Figure 1A shows heatmap of candidate

biomarkers declared as DE by the AW-Fisher’s method in a mouse

metabolism microarray example combining three studies (tissues):

brown fat, heart, liver (see detailed description in Section 3.2.1).

In each study, VLCAD�/� mutant mice (orange bar on top)

were compared to VLCADþ/þ wild-type mice (black bar) and DE

analysis was performed using limma (Smyth, 2005). Meta-analysis

P-values were calculated for each gene using the AW-Fisher method.

Benjamini–Hochberg’s procedure (Benjamini and Hochberg, 1995)

was used to account for multiple comparisons and false discovery

rate (FDR) was controlled at 5% level. Among detected biomarkers,

some genes are up-regulated DE genes across all tissues (e.g. genes in

Module I, v̂ ¼ ð1; 1; 1Þ)); many others are tissue specific (e.g.

heart-specific biomarkers in Module III, v̂ ¼ ð0; 1; 0Þ). If applying

Fisher’s method, these different gene modules will not be distin-

guished, which may hinder biologists for further biological investiga-

tion and hypothesis generation. Despite the advantages of AW-Fisher

in theory and applications, applying AW-Fisher currently encounters

three major issues:

1. In the original paper, Li and Tseng (2011) did not derive a

closed-form solution for calculating the null distribution of the

AW statistics. Instead, a permutation method (permuting case/

control labels in each study independently) was suggested. This

results in high computing demand, when especially high P-value

numerical precision is needed to account for multiple compari-

sons in omics applications. The search space of all possible

weights also becomes high (2K � 1) when K goes large. This lim-

its AW-Fisher in general genomic applications.

2. The original AW weight estimate can generate unexpected

discontinuity and is thus not stable. For example, the following

two genes were taken from the mouse metabolism example

in Figure 1 gene Module II. P-values of the three tissues for

probeset 1419484 a at were ð0:000391; 0:0962; 0:00211Þ,
and P-values for another probeset 1425567 a at

were ð0:000356; 0:1026; 0:00206Þ. Despite their very similar

P-value inputs, 1419484 a at produced an AW weight ŵ ¼
ð1; 1; 1Þ with P-value 5:64� 10�5 using AW-Fisher and

1425567 a at produced an AW weight ŵ ¼ ð1; 0; 1Þ with

P-value 5:22� 10�5, showing unstable weight estimate of the

second study. In other words, the AW weight estimate is a hard

classification with no variability estimate and biomarker cat-

egorization is thus unstable.

3. Given K studies, the resulting genes could be categorized into

ð3K � 1Þ groups based on their unique AW weight estimate and

effect size direction (if separating up-regulation and down-

regulation into 1 and �1 weight using v̂; see Fig. 1). This

becomes intractable for further biological investigation when

K is large. For example, combining K¼5 studies produces 35 �
1 ¼ 242 categories of biomarkers.

Our methods aim to solve these issues of the AW-Fisher’s

method. The performance will be evaluated in both simulations and

real data applications.

2 Materials and methods

2.1 Fast computation of AW-Fisher
In this section, we provide solutions to the two computational prob-

lems mentioned in Issue 1. We propose a fast algorithm of searching

the adaptive weights and an interpolation approach to obtain accur-

ate P-values. In Supplementary Section SI, we also derive closed-

form solution for the cases K¼2 to benchmark the performance of

the proposed method, and K¼3 for the purpose of demonstrating

difficulties of deriving closed-form solution in general K.

A B C

Fig. 1. Six meta-pattern modules of biomarkers from mouse metabolism ex-

ample. Each gene module (Modules I, II, . . ., VI) shows a set of detected bio-

markers with similar meta-pattern of differential signals. (A) Heatmaps of

detected genes (on the rows) and samples (on the columns) for each tissue

(brown fat, heart, liver), where each tissue represents a study. In the heatmap,

red color represents higher expression level, and the green color represents

lower expression level. Black color bar on top represents wild-type (control)

and orange color bar on top represents VLCAD�/� mice (case). Number of

genes is shown on the left under each module number. (B) Variability index

(genes on the rows and studies on the columns). Variability index is

described in Section 2.2. Gray heatmap range from 0 (black) to 1 (white),

which is the maximum of the variability index. Genes of each module are

sorted based on the mean variability index. (C) Signed AW-Fisher weights

v̂ gk for gene g and study k. Light blue represents v̂ gk ¼ 1, yellow corresponds

to v̂ gk ¼ �1 and black for v̂ gk ¼ 0. Representative signed AW-Fisher weights

for each module are shown on the right. Note brown represents brown fat tis-

sue. (Color version of this figure is available at Bioinformatics online.)
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Recall that the AW-Fisher method TðP
!

; w
!Þ ¼ �2

PK
k¼1 wklogPk

belongs to HSB, which targets on biomarkers DE in one or more

studies (H0 : h
!
2 \fhk ¼ 0g versus HA : h

!
2 [fhk 6¼ 0g). The

search space X ¼ fw! : w
! 6¼ 0;w

! ¼ ðw1; . . . ;wKÞ 2 f0; 1gKg con-

tains 2K � 1 non-zero vectors of weights and searching the whole

space X to find the AW-Fisher test statistic sðP
!
Þ ¼ minw

!2X

LðTðP
!

; w
!ÞÞ and the adaptive weights wðP

!
Þ ¼ argmin

w
!
2X

LðTðP
!

; w
!ÞÞ

becomes computationally expensive when K is large. The amount of

computation is even more challenging when the AW-Fisher’s

method is applied to genomic data, where the same procedure is

repeated for thousands of genes or even millions of single nucleotide

polymorphisms. To overcome this difficulty, we propose a fast algo-

rithm to find ŵ based on the ordered P-values fPðiÞgK
i¼1

with Pð1Þ � . . . � PðKÞ. Specifically, by decomposing X into X ¼

[K

k¼1Xk with Xk ¼ fw
!

:
PK

j¼1 wj ¼ kg, it can be seen that sðP
!
Þ ¼

min
w
!
2X
fLðT ðw!; P

!
ÞÞg ¼ min1�k�Kmin

w
!
2Xk

fLðTðw!; P
!
ÞÞg. Given

1 � k0 � K, denote by w
!k0 ¼ ðw1

k0 ; . . . ;wK
k0 Þ the vector of

weights such that �2
PK

j¼1 wj
k0 logðPjÞ ¼ �2

Pk0

j¼1 logðPðjÞÞ (i.e. the

Fisher’s statistic using the first k0 smallest P-values). Then it is

straightforward to see that the test statistic involving the first k0

ordered P-values will generate the most significant LðTðP
!

; w
!ÞÞ in

Xk0
. This implies in Xk0

, only w
!k0

has to be considered for further

comparison. Therefore, instead of searching the whole space X, it is

enough to search only K vectors of weights fw!
1
; . . . ;w

!K
g to find the

adaptive weights ŵ. The proposed fast algorithm contains two steps:

first sorting K P-values [usually with complexity of OðKlogðKÞÞ] and

then searching K vectors of weights (with complexity of OðKÞ).
Therefore, the fast searching algorithm proposed in this section

reduces the computational complexity from Oð2KÞ to OðKlogðKÞÞ,
which can significantly reduce computing time when K is large.

Denote by p
!

obs the observed P-values from individual studies

and sobs ¼ sðp!obsÞ the observed AW-Fisher statistic. Theoretically,

the P-value of the AW-Fisher’s method PH0
ðS � sobsÞ can be calcu-

lated analytically for any K � 2. However, the formulae involve

the evaluation of a K-fold integral and the integration domain

becomes very complicated for K � 3, which makes the derivation

of the closed-form solution tedious and fallible. For illustration,

closed-form derivation of K¼2 and K¼3 are shown in

Supplementary Section SI. In Li and Tseng (2011), a permutation

test by randomly permuting class labels in each study was proposed.

Although this non-parametric approach has its merit of maintaining

gene dependency structure, it is computationally demanding and

difficult for generating precise small P-value, such as when

P-value< 10�4, which is a critical requirement for multiple testing

correction on thousands of genes. In this paper, we propose to use

importance sampling to obtain an accurate numerical approxima-

tion of PH0
ðS � sobsÞ. Importance sampling is a method to accur-

ately estimate the expectation of a function with very small value

using Monte Carlo sampling. The idea behind importance sampling

is to draw samples from a suitable new distribution function rather

than the original one of interest and assign a weight to each sample

based on the ratio of two density functions.

To evaluate AW-Fisher P-value PH0
ðS � sobsÞ using importance

sampling, we propose a beta-distribution density function f �ð�Þ to draw

P
!

instead of natural uniform distribution f(�) so that we can ‘over-sam-

ple’ those small P-values that result in a large S. It holds that

PH0
ðS � sobsÞ ¼ EH0

½IfS � sobsg	 ¼
ð
IfS � sobsgf ðP

!
ÞdP
!

¼
ð
I S � sobsf g f ðP

!
Þ

f �ðP
!
Þ
f � P

!
� �

dP
!

¼ E
�½IfS � sobsg �WðP

!
Þ	; (2)

where f(�) is the density of P
!

under the null and f �ð�Þ is the proposed

density function of P
!

for importance sampling. Importance sampling

weight Wð�Þ ¼ f ð�Þ=f �ð�Þ, Eð�Þ and E
�ð�Þ are the expectation with

respect to f(�) and f �ð�Þ respectively. Therefore, we can obtain ex-

pectation from the original measure using a more efficient new one

by applying weights for different samples in Monte Carlo method.

Under the null hypothesis and independence assumption between

different studies, Pk � UNIFð0; 1Þ for all 1 � k � K, so the joint

distribution of f ðP
!
Þ ¼ 1. If we instead use Betaðg; 1Þ distribution

as the proposed distribution of each study for importance sampling,

then f �ðP
!
Þ ¼ gKð

QK
k¼1 PkÞg�1. To implement importance sampling,

suppose we simulate p
!

i ¼ ðpi1; . . . ;piKÞ, where pik �
i:i:d:

Betaðg; 1Þ
for 1 � i � n and 1 � k � K. Denote by si ¼ sðp

!
iÞ. From

Equation (2), we calculate estimate of PH0
ðS � sobsÞ by

P̂H0
S � sobs; g; p

!
1; . . . ; p

!
n

� �
¼ 1

n
�
Xn

i¼1

I si � sobsf g � 1

gKð
QK

k¼1 pikÞg�1

 !
:

(3)

Our P-value evaluation procedure (also see the flowchart in

Supplementary Fig. S1) has the following steps:

1. For a targeted number of studies K and target P-value c, calcu-

late its AW-Fisher test statistic.

a. (Identify suitable g for given ct and K): Note that different g can

provide better importance sampling for different range of tar-

geted ct given K. When g¼1, the importance sampling method

reduces to the naive Monte Carlo method. To identify an appro-

priate g given ct and K, we simulate q
!

i ¼ ðqi1; . . . ;qiKÞ, where

1 � i � 1000 and qik �
i:i:d:

Unifð0; 1Þ. Denote by qi
1=g ¼

ðq!i1

1=g
; . . . ;qiK

1=gÞ with element-wise power to 1=g and

ri
ðgÞ ¼ sðq!i

1=g
Þ. Define r0 ¼ median1� i� 1000ðri

ðgÞÞ. Note that

since qik �
i:i:d:

Unifð0; 1Þ, q
1=g
iK � Betaðg; 1Þ. From Equation (3),

we have

/ðgÞ ¼ P̂H0
ðS � r0; g; q

!
i

1=g
; . . . ; q

!
1000

1=g
Þ

¼ 1

1000
�
X1000

i¼1

I r
gð Þ

i � r0

n o
� 1

gK
QK

k¼1 qiK
1=g

� �g�1

0
@

1
A: (4)

We choose gðK; ctÞ as the root of /ðgÞ ¼ ct, which can be numerical-

ly obtained using ‘uniroot()’ function in R. This choice of g guarantees

half of the simulated samples will effectively contribute to the import-

ance sampling calculation for each targeted ct. Alternatively, one can

choose g by minimizing the variance (i.e. find g such that

VarH0
½IfS � sobsg	 is minimized). However, for ct � 0:01, we set

g¼1 since the gain of importance sampling diminishes.

b. (Derive corresponding AW-Fisher statistic for targeted P-

value ct): Next, we derive the corresponding AW-Fisher stat-

istic SK;t for a targeted P-value ct given K. Given K and ct, we

use gðK; ctÞ (abbreviated as g hereafter) from the previous

step to draw o
!

i ¼ ðoi1; . . . ; oiKÞ, where 1 � i � 107

and o
!

i �i:i:d: Betaðg;1Þ. Denote by ti ¼ sðo!iÞ the corresponding

AW-Fisher statistic of o
!

i and tð1Þ � tð2Þ � . . . � tð107Þ are

ordered from t1; . . . ; t107 . Define
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mi ¼ P̂H0
ðS � tðiÞ; g; o

!
1; . . . ; o

!
107 Þ

¼ 1

107
�
X107

j¼1

I tj � t ið Þf g �
1

gK
QK

k¼1 ojk

� �g�1

0
@

1
A: (5)

Note that mi is monotonically increasing with respect to i and

m1 
 0. There exists i� such that mi� � ct < mi�þ1. The corre-

sponding AW-Fisher statistic SK;t given K and ct is chosen as

SK;t ¼ tði�Þ.
2. Specify a grid of targeted K ¼ 2; 3; . . . ; 100 and targeted AW-

Fisher P-values as fct; t ¼ 1; 2; . . . ; 198g ¼ f1; 0:99; 0:98;

0:97; . . . ; 0:03; 0:02; 0:01; 10�3; 10�4; 10�5; . . . ;10�100g.
3. (Interpolation to calculate P-value of a given Sobs): From Step

1b, the library of ct and SK;t ðt ¼ 1; . . . ; 198 and K ¼
2; . . . ; 100Þ is established for interpolation. For any given AW-

Fisher statistic Sobs and K, we apply function splinefun in R with

monoH.FC option using ðlogðSK;tÞ; logðctÞÞ, where

t ¼ 1; 2; . . . ; 198, to fit a smooth curve and identify the corre-

sponding P-value of Sobs. Note that we apply spline on log-scale

P-value to avoid numerical overflow.

REMARK. In Step 1a, given K, we simulate qik �
i:i:d:

Unifð0; 1Þ and take the

power of 1=g, instead of simulating from Betaðg; 1Þ. This design guar-

antees /ðgÞ is a monotone function with respect to g by eliminating the

uncertainty from sampling qik for each g.

For any future input P-values, we only need to calculate the AW-

Fisher statistics and interpolate the statistics to obtain AW-Fisher

P-value by the spline curve fitting. The design of our base

library fðlogðSK;tÞ; logðctÞÞ; ðt ¼ 1; . . . ; 198; and K ¼ 2; . . . ; 100Þg
facilitates accurate estimation for the AW-Fisher P-value in the

range of ð10�100;1Þ and K up to 100. Although the computation is

demanding to generate the base library, it only runs once before we

generate our AW-Fisher R package and will not affect computing

for users. In fact, as shown in Section 3.1.1, the new approach is

even faster than closed-form solution once the base library in the R

package is established.

2.2 Variability index of adaptive weights
As discussed in Issue 2 in the Section 1, the AW weight estimate

ŵg ¼ ðŵg1; . . . ; ŵgKÞ is discontinuous as a function of the input P-

values and thus may not be stable. Denote by Ugk ¼ 4 � VarðŵgkÞ
the variability index of the AW weight estimate for gene g in study

k, where the normalization factor 4 scales Ugk to range with-

in ½0; 1	. The variability index gauges the stability of ŵgk, where a

smaller variability index indicates a stable AW weight estimate.

However, Ugk is not easy to evaluate since ŵgk is binary. Here, we

propose a bootstrap procedure to calculate an estimate of Ugk. The

procedure is as follows:

1. Obtain a bootstrap sample and repeat the following procedure B

(b ¼ 1; . . . ;B) times.

� Denote by Dk 2 R
G�Nk the data matrix of study k, where G

is the total number of genes and Nk is the total number of

samples for study k. cki is the case–control label, where i 2
f1; . . . ;Nkg is the sample index and cki¼0 or 1, representing

sample i belongs to control or case group.

� Perform bootstrapping by resampling columns with replace-

ments within case and control, respectively. To be specific,

we create an empty data matrix Dk
ðbÞ 2 R

G�Nk . Then sample

the ith column of Dk
ðbÞ using jth column of Dk, where

j 2 fj0 : ckj0 ¼ ckig. This bootstrap procedure is stepped

through for i ¼ 1; . . . ;Nk with replacement (allowing Dk
ðbÞ

as identical columns).

Use bootstrapped data matrix Dk
ðbÞ to generate an AW

weight estimate ŵgk
ðbÞ and an effect size estimate ĥgk

ðbÞ
.

� Calculate the variability index estimate Ûgk of ŵgk for gene g in

study k, where Ûgk ¼ 4
B

PB
b¼1 ŵgk

ðbÞ � 1
B

PB
b0¼1 ŵgk

ðb0Þ
� �2

.

Here Ûgk ranges from 0 to 1 with Ûgk ¼ 0 represents ŵgk
ðbÞ ¼

ŵgk for all b, which indicates stable estimate of the AW weight since

its bootstrap variance is 0. Ûgk ¼ 1 represents ŵgk
ðbÞ ¼ 0 for half of

b0s and ŵgk
ðbÞ ¼ 1 for the other half of b0s. A large variability index

indicates an unstable estimate of the AW weight.

2.3 Resampling-based ensemble clustering for

biomarker categorization
In order to categorize detected genes into biomarker groups with

similar differential meta-pattern (Issue 3), we extended the boot-

strapping procedure in Section 2.2 to obtain a co-membership ma-

trix for all pairs of genes where each element of the co-membership

matrix represents a similarity of signed AW weight v̂ of two genes.

Specifically, denote by v̂gk
ðbÞ ¼ ŵgk

ðbÞ � signðĥgk
ðbÞÞ from Section 2.2.

Define co-membership matrix from each bootstrap sample b as

WðbÞ 2 R
G�G with elements Wgg0

ðbÞ ¼ 1 if v̂gk
ðbÞ ¼ v̂g0k

ðbÞ for all k,

and Wgg0
ðbÞ ¼ 0 otherwise. The final co-membership matrix is

defined as V ¼
PB

b¼1 WðbÞ=B. We further applied the tight cluster-

ing algorithm (Tseng and Wong, 2005) (tight.clust function within

R package tightClust) using the co-membership matrix V to obtain

tight modules. Tight clustering is able to produce tight and stable

gene modules without forcing all genes into clusters. Note that for

the clustering algorithm, the dissimilarity measure between two

genes i and j can be calculated as dij ¼ DðVi;VjÞ, where Vi 2 ½0; 1	G

is the ith column of the co-membership matrix V and D can be any

distance measurement mapping. Throughout this paper, we calcu-

late the dissimilarity measure using the Euclidean distance

dij ¼ jjVi � Vjjj2. The resulting gene modules show unique DE pat-

terns across multiple studies (namely meta-pattern). We perform the

biomarker categorization (clustering) procedure only on declared

DE genes at certain FDR cutoff. Genes of each resulting module are

then sorted by the variability index and visualized by heatmaps.

Below we perform simulations to demonstrate the performance

of the resampling-based ensemble clustering for biomarker

categorization.

Note that based on the co-membership matrix, one can use any

clustering algorithm to obtain the DE patterns. We used the tight

clustering algorithm throughout this manuscript due to its capability

to remove noise genes (genes that are not assigned to any cluster).

3 Results

3.1 Simulation results
3.1.1 Simulation and numerical evaluation for fast AW-Fisher

computing

In Section 2.1 we introduced the fast computation for the AW-

Fisher P-value via importance sampling and interpolation by spline

smoothing. In this section, this interpolation approach will be com-

pared to the original permutation-based approach in Li and Tseng

(2011) and Wang et al. (2012). The comparisons include evaluation

of accuracy and computing speed. In terms of computing speed, our
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approach applies a new linear sorting algorithm for searching

weights and an interpolation for P-value calculation. The improve-

ment of linear sorting algorithm is quite obvious: the search space

reduces from an exponential order Oð2KÞ to almost linear

order OðKlogðKÞÞ. Below we utilize the closed-form solution for

K¼2 (details in Supplementary Section SI.1) as the underlying

truth to compare the new approach with the existing permutation

approach. The linear sorting does not improve computing speed

when K¼2 and the improvement will mainly come from the inter-

polation. The simulation setting is described in Supplementary

Section SII.

Using the closed-form solution as the underlying truth, we eval-

uated the performance of the AW-Fisher P-value with K¼2 studies

from the interpolation approach using the permutation approach as

the primary baseline. Since the importance sampling method reduces

to Monte Carlo method when setting g¼1 in Equation (3), we also

treat the Monte Carlo method as a secondary baseline. To formally

evaluate the accuracy from the permutation approach, Monte Carlo

approach, or the interpolation approach, we utilized root mean

square error (rMSE): rMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPG1

g¼1 ðag � bgÞ2=G1

q
; where ag is

the �log10 (AW-Fisher P-value) for gene g; bg is the �log10 (AW-

Fisher P-value) for gene g from closed-form solution; G1 is the total

number of genes being evaluated; and the rMSE indicates the accur-

acy of P-value estimates with smaller rMSE for better estimation.

The result for (i) N1 ¼ 20; N2 ¼ 20 is shown in Table 1, the results

for (ii) N1 ¼ 50; N2 ¼ 50 and (iii) N1 ¼ 20; N2 ¼ 50 are shown in

Supplementary Tables S1 and S2. Our proposed interpolation ap-

proach is superior to permutation-based approach and the Monte

Carlo approach in terms of accuracy. In terms of computing time,

we want to de-emphasize the permutation-based approach because

in some cases the per study P-values will be calculated by permuta-

tion tests, where the permutations occur anyway so that calculating

the meta-analysis P-value through permutation will not incur much

additional cost. However, the permutation test is not always avail-

able, for example, when sample sizes per study may be too small to

perform permutation, or in a meta-analysis context one may only

have access to computed P-values, but maybe not the raw data.

Under these scenarios, Monte Carlo approach is more appropriate

to calculate the P-value. Regardless using the permutation-based

approach or the Monte Carlo approach as baseline, we observe

that the interpolation approach is much faster. Note that the inter-

polation approach is even faster than closed-form solution because

the interpolation is only based on spline curve fitting using data in

the library and does not implement importance sampling method

while the closed-form method requires evaluation of power and

logarithmic functions.

To further evaluate whether our proposed method can well con-

trol the Type I error rate, we have included QQ plots as well as esti-

mated Type I errors at various levels under the null. From the QQ

plots (Supplementary Figs S2, S3 and S4), we can see the genomic in-

flation factors ranging from 0.999 to 1.001, indicating that the Type

I error rate is well controlled. From the Type I error rate estimation

table (Supplementary Table S3), we observe that the Type I error

rate is correctly estimated around their nominal level, further cor-

roborating the accurate Type I error rate control of the proposed in-

terpolation method.

3.1.2 Simulation results for the variability index

The main simulation setting mimics a transcriptomic study by con-

sidering generative process of DE genes and correlation structures

between genes. The procedure generally follows Song and Tseng

(2014). Note that this simulation also applies to Section 3.1.1.

Details of the simulation procedure are in Supplementary Section

SII.

To evaluate the performance of the variability index, we consid-

ered different combinations of biological variance (r ¼ 1; 1:5; 2)

and sample sizes (N¼20, 50, 80). The result in Supplementary

Figure S5 shows that when the dataset has smaller sample size or

larger biological variation, the variability index becomes larger.

Since the variability index gauges the stability of the AW weight esti-

mate, it can be seen that noisy datasets tend to generate large vari-

ability index. In addition, we drew bar plot of the variability index

with respect to true positive (TP), false positive (FP) and false nega-

tive (FN). As shown in Supplementary Figure S6, FN has larger vari-

ability index, followed by FP, and lastly TP, under different

scenarios of sample sizes and noise level, which is expected since the

weight of TPs are likely to be stable, and the weight of FP and FN

are on the decision boundary, and thus unstable. The scatter plots of

P-value and the variability index are shown in Supplementary

Figure S7. We observed that with respect to the increase of

�log10ðP� valueÞ, the variability index goes up, and finally goes

down to zero.

3.1.3 Simulation result for biomarker categorization

To evaluate the performance of biomarker categorization, we

adopted a simulation procedure similar to Section 3.1.2 and Huo

et al. (2019). We simulated K¼4 studies in total and 50 control sub-

jects and 50 case subjects in each study. Among the G¼10 000

genes, we set 4% as homogeneously concordant DE genes, DE with

the same direction in all studies (all positive or all negative). We de-

note ‘homoþ’ as the homogeneously concordant DE genes with all

positive effect sizes and ‘homo�’ as the homogeneously concordant

DE genes with all negative effect sizes. We also set another 4% as

study-specific DE genes—differential expressed only in one study.

Among them, 1/4 are DE genes only in the first study with positive

effect sizes (denoted as ‘ssp1þ’), 1/4 are DE genes only in the first

study with negative effect sizes (denoted as ‘ssp1�’), 1/4 are DE

genes only in the second study with positive effect sizes (denoted as

‘ssp2þ’), and the rest 1/4 are DE genes only in the second study with

negative effect sizes (denoted as ‘ssp2�’). The rest of the genes are

Table 1. AW-Fisher P-value accuracy in terms of rMSE comparing

interpolation approach, permutation-based approach and Monte

Carlo approach with closed-form solution as benchmark

P-value range Interpolation Permutation Monte Carlo

B ¼ 103 B ¼ 104 B ¼ 103 B ¼ 104

(0.01, 1] 0.0002 0.0031 0.0014 0.0015 0.0002

(0.001, 0.01] 0.0003 0.071 0.035 0.042 0.0047

(0.0001, 0.001] 0.0007 0.31 0.15 0.25 0.037

(1e-10, 0.0001] 0.0006 3.3 2.5 3.3 2.5

(1e-50, 1e-10] 0.0023 16.6 15.7 16.6 15.7

(1e-100, 1e-50] 0.0069 59.1 58.1 59.1 58.1

Time 0.011 s 18.5 min 2.1 h 9.5 min 1.6 h

Note: Two studies (sample size N1 ¼ 20; N2 ¼ 20) are included as input.

B is the number of permutations/samplings, and the closed-form solution and

the interpolation approach do not require any permutation. The range of the

resulting AW-Fisher P-values is displayed in the first column. The computing

time for each method is displayed in the last row. The computing time for the

closed-form solution is 0.06 s.
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non-DE (denoted as ‘non-DE’). The biological variation parameter r

is set to 1 in this simulation.

By applying the AW-Fisher method, we obtained 794 genes

based on FDR at 5% under HSB HSB. Co-membership of these

genes were calculated with B¼1000 and used as input for our gene

module detection using the tight clustering algorithm. We identified

6 gene modules in these 794 genes. The detected gene modules are

tabulated against the true gene modules simulated in Table 2

(Module 0 contains scattered genes not assigned to any of the six

modules). The FDR is well controlled at 34=794 ¼ 4:3% while the

nominal FDR is 5%. The detected gene modules clearly correspond

to the true modules, and most of the non-DE genes were left out as

the noises. The meta-pattern, variability index and AW weight esti-

mates of these six modules are shown in Supplementary Figure S8.

This simulation study showed that the proposed algorithm can re-

cover the underlying gene meta-pattern.

Based on the co-membership matrix, we can perform any cluster-

ing algorithm to obtain the gene meta-pattern. Hence, we also

applied K-means and hierarchical clustering for comparison. The

confusion tables of the resulting gene modules and the underlying

true gene modules are shown in Supplementary Tables S4 and S5. In

order to benchmark the results, we adopted the adjusted Rand index

(Hubert and Arabie, 1985), which is a measure for the similarity be-

tween two clustering assignment results (ranges from 1 to �1), with

larger number indicating better consistency. Compared to the under-

lying truth, the adjusted Rand index for tight clustering, K-means

and hierarchical clustering are 0.83, 0.82 and 0.80, respectively.

3.2 Transcriptomic meta-analysis applications
3.2.1 Mouse metabolism example

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency was

found to be associated with energy metabolism disorder in children.

Two genotypes of the mouse model—wild-type (VLCAD þ/þ) and

VLCAD-deficient (VLCAD �/�)—were studied for four types of tis-

sues (brown fat, liver, heart and skeleton) with 3–4 mice in each

genotype group. In order to better demonstrate the biological inter-

pretability of the proposed method, we focused on the first three tis-

sues (brown fat, liver and heart) as our primary analysis. We also

analyzed all four tissues in order to demonstrate when the number

of studies K is large, the biomarker categorization based on the

unique AW weight estimate becomes infeasible but our proposed

method is much more tractable. Total number of probesets from

these three transcriptomic microarray studies is 14 495.

Supplementary Table S6a shows details of the study design. Two-

sided P-values and effect sizes were calculated using limma compar-

ing wild-type (VLCAD þ/þ) versus mutant (VLCAD �/�) mice in

each tissue. AW-Fisher meta-analysis P-values were obtained and q-

values were calculated by applying Benjamini–Hochberg procedure.

By controlling FDR at 5%, we obtained 967 DE genes. We calcu-

lated the variability index and generated gene co-membership ma-

trix using resampling techniques. We further applied the tight

clustering algorithm on the co-membership to identify gene modules

with unique meta-pattern. In this example, we successfully detected

six gene modules with different meta-patterns in Figure 1. For ex-

ample, the first and second biomarker modules (Gene clusters I and

II) are concordant genes that are up-regulated (or down-regulated)

in all tissues. The other biomarker modules have study-specific dif-

ferential patterns. For example, DE genes in Gene module III are

up-regulated in heart but not in brown fat or liver. To examine the

biological functions of these modules, we performed pathway en-

richment analysis for genes in each module using Fisher’s exact test.

The pathway database was downloaded from Molecular Signatures

Database (MSigDB) v5.0 (http://bioinf.wehi.edu.au/software/

MSigDB/), where a mouse-version pathway database was created by

combining pathways from KEGG, BIOCARTA, REACTOME and

GO databases and mapping all the human genes to their orthologs

in mouse using the Jackson Laboratory Human and Mouse

Orthology Report (http://www.informatics.jax.org/orthology.

shtml). Among the six gene modules with distinct meta-patterns,

Module I is enriched in enzyme activities (e.g. GO COFACTOR

BINDING; p ¼ 3:85� 10�4); Module II is enriched in pathways for

amino acid catabolism (e.g. REACTOME BRANCHED CHAIN

AMINO ACID CATABOLISM; p ¼ 9:31� 10�5); Module III is

enriched in defense related pathways (e.g. DEFENSE

RESPONSE; p ¼ 2:11� 10�6); Module IV is enriched in pathways

of metabolism of amino acids (e.g. REACTOME METABOLISM OF

AMINO ACIDS; p ¼ 2:36� 10�3); Module V is enriched in stimulus

related pathways (e.g. EXTERNAL STIMULUS; p ¼ 1:33� 10�3);

For Module VI, we did not detect any significantly enriched path-

ways. Interestingly, all of these pathways are known to be related to

different aspects of metabolism, which indicates that our method is

able to detect homogeneous and heterogeneous gene modules that are

biologically meaningful. Such biomarker categorizations may help en-

hance meta-analysis interpretations and motivate further biological

hypotheses. For example, it is intriguing why the defense related genes

in Module III are up-regulated only in heart but not in liver and

brown fat, and why the stimulus related genes in Module V are down-

regulated in heart and liver but not in brown fat. Among the six

detected meta-pattern modules, 5 (83%) of them are biologically in-

terpretable (defined as genes in the module are statistically enriched

using Fisher’s exact test with P-value<0.005 in at least one pathway).

In contrast, the biomarker categorization based on the unique AW

weight estimate is hard to characterize as there are 33 � 1 ¼ 26 mod-

ules. In addition, among these modules only 13 (50%) are significant-

ly enriched in at least one pathway with P-value<0.005.

In order to benchmark the improvement of computational speed

and feasibility, we also applied the original permutation approach

(Li and Tseng, 2011) with number of permutation B¼1000. The

entire analysis from raw data only took our proposed method 0.34 s

while the permutation approach required 6.57 min.

The variability index helps characterize the instability of the AW

weight estimate. Supplementary Table S7 listed 11 genes with simi-

lar P-values, but their AW weight estimates in the second study

(heart) can be different since their AW variabilities are large. For ex-

ample, P-values for probeset 1419484 a at were ð0:00039;

0:096; 0:0021Þ and its AW weight estimates were ŵ ¼ ð1; 1; 1Þ,
while P-values for probeset 1425567 a at were ð0:00036;

0:10; 0:0021Þ and its AW weight estimates were ŵ ¼ ð1; 0; 1Þ.

Table 2. Contingency table of 794 detected DE genes with simula-

tion underlying truth (on the columns) and the tight clustering

result with 6 target modules (on the rows)

Module homo� homoþ ssp1� ssp1þ ssp2� ssp2þ Non-DE

1 0 177 0 0 0 0 0

2 184 0 0 0 0 0 0

3 0 0 0 74 0 0 1

4 0 0 60 0 0 0 1

5 0 0 0 0 0 102 2

6 0 0 0 0 85 0 3

0 13 24 19 11 6 5 27

Note: 0 represents the scattered gene group. 1� 6 represent 6 detected

modules. Bolded numbers are genes with correct assignment.
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The variability index of ŵ ¼ ð1; 1; 1Þ in 1419484 a at is (0, 0.93,

0) and variability index of ŵ ¼ ð1; 0; 1Þ in 1425567 a at is (0,

0.94, 0), showing unstable weight estimate of the second study for

both gene probes.

In addition, we drew scatter plots of P-value and the variability

index in Supplementary Figure S9. Similar to what has been

observed in the simulation, with respect to the increase of

�log10ðP� valueÞ, the variability index goes up, and finally goes

down to zero. This is also expected because the weight on the

boundary (with moderate P-values) tends to be FP and FN, which

has larger variability. The extreme significant P-values provide

strong evidence to be TP, and thus have 0 variability.

Following the same procedure, we further applied the proposed

method on all four tissues. 1073 DE genes were detected at FDR

5%. The resulting meta-pattern visualization is shown in

Supplementary Figure S10. Among the top 10 detected meta-pattern

modules, 8 (80%) of them were biologically interpretable. In con-

trast, the biomarker categorization based on the original AW weight

estimate was intractable, since it produced 34 � 1 ¼ 80 modules. In

addition, among these modules, only 26 (33%) were significantly

enriched in at least one pathway with P-value<0.005.

3.2.2 HIV transgenic rat RNA-seq data

Li et al. (2013) conducted studies to determine gene expression dif-

ferences between F344 and HIV transgenic rats using RNA-seq

(GSE47474 in Gene expression Omnibus database. The HIV trans-

genic rat model is designed to study learning, memory and vulner-

ability to drug addiction and other psychiatric disorders to HIV

positive patients. Twelve F334 untreated rats and 12 HIV transgenic

rats in prefrontal cortex (PFC), hippocampus (HIP) and striatum

(STR) regions are sequenced for RNA-seq (see Supplementary Table

S6b). Tophat (Trapnell et al., 2009) was applied for alignment

(adopted by Li et al., 2013) and the alignment results were con-

verted to RNA-seq count data with 16 821 genes by BEDTools

(Quinlan and Hall, 2010). Genes with <100 total counts within any

brain region were filtered out and 11 824 genes remained. Potential

outliers were removed by checking the sample correlation heatmaps

(see Supplementary Fig. S11). R package edgeR (Robinson et al.,

2010) was adopted to perform differential expression gene detection

and two-sided P-values were obtained. AW-Fisher meta-analysis P-

values were evaluated and q-values were obtained by applying the

Benjamini–Hochberg procedure. By controlling FDR at 30%, we

obtained 145 DE genes. We loosen the FDR criteria to 30% since it

is well known that the transcriptomic signals in brain are generally

weak. We calculated the variability index and performed biomarker

categorization by using resampling techniques and the tight cluster-

ing algorithm. The result is shown in Supplementary Fig. S12. To

examine the biological functions of these modules, we also per-

formed pathway enrichment analysis using the same procedure as in

Section 3.2.1. As the results show, Module I is up-regulated in all

the three brain regions, and is enriched in pathways related to re-

sponse to virus (e.g. GO RESPONSE TO VIRUS; p ¼ 1:59� 10�3);

Module II is down-regulated in all the three brain regions, and is

enriched in pathways related to rhythmic process (e.g. GO

RHYTHMIC PROCESS; p ¼ 6:23� 10�4); Module III is especially

interesting since it is down-regulated in HIP, but up-regulated

in PFC and STR. It is enriched in transporter related pathways

(e.g. REACTOME INORGANIC CATION ANION SLC

TRANSPORTERS; p ¼ 3:67� 10�3). Since the brain is responsive

for the virus invasion, we anticipate that genes responding to virus

to be up-regulated, as observed in Module I. The down-regulation

of rhythmic process genes in Module II indicates that HIV virus may

have caused loss of rhythmic pattern in multiple brain regions.

Moreover, because different brain regions have different functions,

it is not surprising that transporter related genes (Module III) re-

spond differently to HIV in different brain regions. Among the three

detected meta-pattern modules, 3 (100%) of them were biologically

interpretable. In contrast, the biomarker categorization based on the

original AW weight estimate was difficult to characterize as it gener-

ated 33 � 1 ¼ 26 modules. In addition, among these modules, only

13 (50%) were biologically interpretable.

In addition, we drew scatter plots of P-value and the variability

index in Supplementary Fig. S13. Similar to what has been observed

in the simulation and the mouse metabolism data, we observed that

with respect to the increase of �log10ðP� valueÞ, the variability

index goes up, and finally goes down to zero.

In order to benchmark the improvement of computational speed,

we also applied the original permutation approach Li and Tseng

(2011) with B¼1000. It only took our proposed method 18.0 s

while it took the permutation approach 4.53 h.

4 Conclusion and discussion

Emerging omics datasets in the public domain have made genome-

wide meta-analysis appealing. AW-Fisher has become useful and

popular due to its capability to characterize study-specific contribu-

tions to the meta-analysis result. In this paper, we proposed novel

methods to further generalize the application of AW-Fisher. The

contributions of this paper are 3-fold. (i) We developed an AW-

Fisher weight variability index. This is essential to determine the sta-

bility of AW-Fisher weight estimates. (ii) We proposed a biomarker

categorization algorithm via a resampling procedure, which can effi-

ciently obtain gene modules of different meta-analysis differential

expression patterns. These meta-patterns can help establish biologic-

al hypotheses to quantify homogeneous and heterogeneous DE sig-

nals across studies. (iii) The previous version of the AW algorithm

relied on permutation analysis to calculate P-values, which set a

limitation for accuracy and computing speed. We proposed a fast

computation and weight searching algorithm for the AW algorithm

based on importance sampling, interpolation and a linear searching

complexity of the AW weight, which makes the AW-Fisher algo-

rithm more applicable for large-scale genomic applications. Finally,

the superior performance of the proposed methods is demonstrated

in extensive simulations and two real applications (mouse brain HIV

data and mouse metabolism data).

One potential limitation of the AW-Fisher’s method is that when

sample sizes vary dramatically among different studies, it is possible

that a DE gene from a study with larger sample size is more likely to

have weight one than a study with smaller sample size, because

under the alternative hypothesis, the significance level is also driven

by the sample size. However, this is a fundamental issue for all P-

value combination methods and a potential solution is by effect-size

combination methods where effect sizes and sample sizes can be sim-

ultaneously considered in the meta-analysis.

Our current AW-Fisher’s method has several potential exten-

sions. First, the adaptive weight concept can be extended from

Fisher’s method to other P-value combination meta-analysis meth-

ods, such as Stouffer’s method. The linear weight searching, import-

ance sampling and spline smoothing can equally be applied in order

to efficiently obtain accurate P-values (e.g. AW-Stouffer’s method).

Second, in addition to the AW-Fisher weight variance, another inter-

esting estimator (pgk) is the proportion of bootstrapping resamples
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of wgk that are 1. pgk is akin to stability selection (Meinshausen and

Bühlmann, 2010), which could achieve potential consistent weight

selection under certain assumptions.

An R package AWFisher (calling Cþþ) is available at

Bioconductor and GitHub (https://github.com/Caleb-Huo/AWFisher).

All datasets and programing code used to perform all analyses in this

paper are available in the Supplementary Material.
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