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Abstract

Motivation: Cell type identification is one of the major goals in single cell RNA sequencing (scRNA-

seq). Current methods for assigning cell types typically involve the use of unsupervised clustering,

the identification of signature genes in each cluster, followed by a manual lookup of these genes in

the literature and databases to assign cell types. However, there are several limitations associated

with these approaches, such as unwanted sources of variation that influence clustering and a lack

of canonical markers for certain cell types. Here, we present ACTINN (Automated Cell Type

Identification using Neural Networks), which employs a neural network with three hidden layers,

trains on datasets with predefined cell types and predicts cell types for other datasets based on the

trained parameters.

Results: We trained the neural network on a mouse cell type atlas (Tabula Muris Atlas) and a

human immune cell dataset, and used it to predict cell types for mouse leukocytes, human PBMCs

and human T cell sub types. The results showed that our neural network is fast and accurate, and

should therefore be a useful tool to complement existing scRNA-seq pipelines.

Availability and implementation: The codes and datasets are available at https://figshare.com/

articles/ACTINN/8967116. Tutorial is available at https://github.com/mafeiyang/ACTINN. All codes

are implemented in python.

Contact: matteop@mcdb.ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single cell RNA sequencing (scRNA-seq) enables the profiling of the

transcriptomes of individual cells, thus characterizing the heterogen-

eity of samples in manner that was not possible using traditional

bulk RNA-Seq (Hwang et al., 2018). However, scRNA-seq experi-

ments typically yield high volumes of data, especially when the num-

ber of cells is large (often many thousands). Thus, fast and efficient

computational methods are essential for scRNA-seq analyses.

One common goal of scRNA-seq analyses is to identify the cell

type of each individual cell that has been profiled. To accomplish

this, typically cells are first grouped into different clusters in an un-

supervised way, and the number of clusters allows us to approxi-

mately determine how many distinct cell types are present in the

sample. Each cluster should contain cells with similar expression

profiles, and so the aggregated profile of a cluster increases the sig-

nal to noise of the expression estimates. To attempt to interpret the

identity of each cluster, marker genes are found as those that are

uniquely highly expressed in a cluster, compared to all the other

clusters. These canonical markers are then used to assign the cell

types for the clusters, by cross referencing the markers with lists of

previously characterized cell type specific markers. While this pro-

cess is able to identify cell types, there are some limitations: (i) Since

the clustering method is unsupervised, all sources of variation influ-

ence the formation clusters, including effects that are not directly

related to cell types such as differential expression induced by cell

cycles. (ii) It is often difficult to find an optimal match between the
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marker genes associated with each cluster and the canonical markers

for specific cell types. Moreover, depending on the clustering param-

eters used, one cluster might contain multiple cell types, or one cell

type could be split into multiple clusters. (iii) Using canonical

markers to assign cell types requires background knowledge of cell

type specific markers, and sometimes these are not well character-

ized or difficult to find in the literature. Moreover, some canonical

markers may be expressed by more than one cell type, and some cell

types may have no known markers. (iv) The same types of cells proc-

essed by two distinct scRNA-seq techniques tend to cluster separate-

ly due to technical batch effects, which complicates cell type

identification in composite datasets. (v) Cell subtypes are often very

similar to each other, which limits efforts to separate them accurate-

ly into different clusters. To overcome many of the limitations of

existing approaches, new methods need to be developed.

Neural networks provide a popular framework for machine

learning algorithms which can be used to interpret complex datasets.

As a result, neural networks have been widely used in many fields,

including for the analysis of scRNA-seq data (Cho et al., 2018; Lin

et al., 2017; Lopez et al., 2018; Shaham et al., 2017). Since the out-

put data from scRNA-seq is feature-enriched and well-structured, it

is well suited as an input for neural networks. Here, we present

ACTINN (Automated Cell Type Identification using Neural

Networks) for scRNA-seq cell type identification. To overcome

many of the limitations of traditional cell type identification

approaches described above, we used a neural network with three

hidden layers, trained it on scRNA-seq datasets with predefined cell

types, and predicted cell types in other datasets based on the trained

parameters. We tested our neural network with several published

datasets and show that it is fast, efficient and accurate.

2 Materials and methods

2.1 Data normalization
We used several publicly available datasets in our analyses. The

mouse cell atlas datasets were collected from https://tabula-muris.

ds.czbiohub.org. The CD45 sorted leukocyte datasets were pub-

lished in Winkels et al. The T cell subtypes and PBMC datasets were

collected from https://support.10xgenomics.com/single-cell-gene-ex

pression/datasets. To filter and normalize the data, we first identi-

fied genes that were detected in both training set and test set. The

training set and the test set were then merged into one matrix based

on the common genes. Next, each cell’s expression value was nor-

malized to its total expression value and multiplied by a scale factor

of 10 000. The counts were increased by 1, and the log2 value was

calculated. To filter out outlier genes, the genes with the highest 1%

and lowest 1% expression were removed. The gene with the highest

1% and the lowest 1% standard deviation were also removed.

Finally, the matrix was split into the training set and the test set.

2.2 Neural network configuration
We used a neural network that contains an input layer, three hidden

layers and an output layer. The input layer had a number of nodes

equal to the number of genes in the training set. The 3 hidden layers

had 100, 50 and 25 nodes, respectively. The output layer had a num-

ber of nodes equal to the number of cell types in the training set.

Forward propagation was implemented as:

x i½ � ¼ g W i½ �x i�1½ � þ b i�1½ �
� �

where x[i] represents the output of the ith layer (x[0] represents the

input layer), b[i] represents the intercept of the ith layer, W[i]

represents the weight matrix of the ith layer and g represents the ac-

tivation function used in the neural network. Specifically, for the ac-

tivation function, the rectified linear unit (ReLU) function was used

for the input and hidden layers, which is defined as:

ReLU xð Þ ¼ max 0; xð Þ

For the output layer, the softmax function was used, which is

defined as:

softmax x j½ �ð Þ ¼
exp x j½ �ð ÞPk
j¼1 exp x j½ �ð Þ

where x[j] represents the jth element of the input vector for the out-

put layer, which has k elements, representing a total of k cell types

in the training set. For the loss function, we used the cross-entropy

function, which is defined as:

H y0; y
� �

¼
Xk

j¼1

y j½ �log y0 j½ �
� �

þ 1� y j½ �
� �

log 1� y0 j½ �
� �� �

where vector y represents the true label for the cell, y[j] is defined to

be 1 if the cell is the jth cell type, and the other elements in y are

defined to be 0. y0 represents the output of the output layer, and y0[j]
represents the posterior probability that the cell is the jth cell type.

L2 regularization was added to the loss function.

2.3 Parameters used in the neural network
The neural network model was implemented using TensorFlow

(https://www.tensorflow.org), and the code was written in python.

The parameters were initialized with Xavier initializer (Xavier et al.,

2010). The starting learning rate was set to 0.0001 with staircase ex-

ponential decay, the decay rate was set to 0.95 and the decay step

was set to 1000. This means that after every 1000 global steps, the

learning rate would be the original learning rate multiplied by 0.95.

50 epochs were used to train the neural network with a mini batch

size of 128, which is the number of samples used in training at every

global step. The L2 regularization rate was set to 0.005.

2.4 Unsupervised single cell analysis
To identify different cell types and find signature genes for each cell

type, Seurat (Butler et al., 2018) was used to analyze the digital ex-

pression matrix generated by scRNA-seq. Specifically, in Seurat,

cells with less than 1000 unique molecular identifiers (UMIs) and

genes detected in less than 10 cells were first filtered out. Second,

highly variable genes were detected and used for further analysis.

Third, the data was scaled for sequencing depth of each cell. Fourth,

principle component analysis (PCA) and t-distributed stochastic

neighbor embedding (tSNE) were used to reduce the dimension and

plot the data on a two-dimensional graph. Lastly, a graph-based

clustering approach was used to cluster the cells, then signature

genes were found and used to define cell type for each cluster.

3 Results

3.1 Overview of the neural network
We used a neural network with 3 hidden layers, each containing

100, 50 and 25 nodes, respectively (Supplementary Fig. S1). For the

activation functions, we used the softmax function for the ouput

layer and the rectified linear unit (ReLU) function for the other

layers. We used the cross-entropy function as the loss function. The

neural network model was implemented using TensorFlow, and the

code was written in python. We trained the neural network on 6
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Intel(R) Xeon(R) CPU E5-2660 v3 nodes, and the training process

took 0.5 min to complete with 1000 cells, 11 min with 32 000 cells

and 21 min with 56 000 cells. The maximum memory used in train-

ing with 56 000 cells was 18 GB. The code and datasets used in this

study are available at https://github.com/mafeiyang/ACTINN.

3.2 ACTINN model for murine cell types
We used 2 datasets from the Tabula Muris Consortium (2018) to

train and test our neural network. The datasets contain 100 605

cells from 20 mouse organs, and were sequenced by two distinct

techniques, 10� Genomics (10�) and Smart-seq2 (SS2). To ensure

we are using cells with high quality, we filtered out cells with less

than 300 detected genes, clustered the cells and identified marker

genes for each cluster using Seurat (Butler et al., 2018). The details

of the Seurat analysis can be found in the methods section. We

manually assigned cell types for each cluster based on canonical

markers (Fig. 1A). To make the analysis easier to interpret, we

merged similar cell types into one single cell type. For example, we

merged B cells, naı̈ve B cells, immature B cells, pro-B cells and late

pro-B cells from the TMA datasets into B cells. We focused on 12

cell types and selected cells that have the same labels between our

analyses and the Tabula Muris Consortium’s. This process resulted

in 56 112 cells (Fig. 1B). Cells processed by 10� have a median of

4787 unique molecular identifiers (UMIs) and 1558 genes detected,

and cells processed by SS2 have a median of 623 799 UMIs and

2448 genes detected.

To test the robustness of our neural network’s performance, we

first trained and tested it on cells processed by each scRNA-seq plat-

form separately. To this end, we randomly sampled 3000 cells for

testing, and used the remainder of cells for training. We repeated

this process 10 times, and the average training accuracies for the

10� dataset and the SS2 dataset were 99.997 and 99.963%, respect-

ively, and the average testing accuracies were 99.883 and 99.660%,

respectively (Fig. 1D). These results show that our neural network

can achieve very high accuracy when training and testing on datasets

generated by the same technique.

3.3 ACTINN overcomes batch effects introduced by

different techniques
Different scRNA-seq techniques can introduce significant batch

effects (Haghverdi et al., 2018) with the same cell types clustering

separately due to technical artifacts (Fig. 1C). To test our neural net-

work’s performance accounting for the batch effects introduced by

different techniques, we trained it on cells processed by one platform

and tested it on cells processed by the other. We first trained the

neural network on all the 10� cells and tested in on all the SS2 cells.

The training accuracy was 99.997% and the testing accuracy was

98.625%. Among the 288 incorrectly predicted cells, 118 mono-

cytes were predicted as B cells, 64 monocytes were predicted as epi-

thelial cells, 47 natural killer (NK) cells were predicted T cells

(Supplementary Table S1). We then trained the neural network on

the SS2 dataset and tested it on the 10� dataset. The training accur-

acy was 100% and the testing accuracy was 99.195%. Among the

283 incorrectly predicted cells, 150 endothelial cells were predicted

as epidermis, 46 T cells were predicted as NK cells, and there were

several other mispredictions (Supplementary Table S2).

3.4 Early stopping prevents overfitting of the training

set
To prevent overfitting the parameters on the training set, we ran-

domly sampled 5000 cells from the 10� dataset and 5000 cells from

the SS2 dataset. We trained the neural network on the 10� cells and

tested it on the SS2 cells. During the training process, we recorded

the accuracy and the cost after each epoch. The accuracy was

defined as the percentage of cells whose cell type was correctly pre-

dicted, and the cost was the output of the cost function after each

epoch. We found that the training accuracy saturated early (5

epochs), and the testing accuracy saturated at around 50 epochs

(Fig. 1E), and the cost decreased very slowly after 50 epochs

(Fig. 1F). These results indicate that early stopping can be used to re-

duce training time and prevent overfitting.

3.5 Cell type prediction using the mouse cell atlas
Since the cell types from the two mouse cell atlas datasets can be ac-

curately predicted, we combined the two datasets and used the com-

bined dataset as the reference to predict cell types for other datasets.

We first tried to predict cell types for a dataset that contains flow

cytometry sorted leukocytes from mouse aorta (Winkels et al.,

2018). All cells were predicted as leukocytes except for one erythro-

cyte, which we think is a doublet of an erythrocyte and B cell as

high expression of hemoglobin genes was detected (Fig. 2A). We

also carried out unsupervised analysis on the dataset and clustered

the cells using Seurat. Then we used the canonical markers to assign

the cell types for each cluster (Fig. 2B). Most cells had the same cell

type assignment by the two methods. However, our neural network

detected some NK cells, which were in the same cluster with the

T cells, and were assigned as T cells in the unsupervised clustering.

Fig. 1. Training and testing of the neural network on the Tabula Muris Atlas.

(A) Cell types obtained from the TMA. (B) Number of cells obtained for each

cell type from each technique. (C) The same cell type tends to cluster separ-

ately by techniques. (D) Training and testing accuracy of the neural network

when trained and tested using cells processed by the same technique. (E)

Training and testing accuracy after each epoch when trained with 5000 10�
cells and tested with 5000 SS2 cells. (F) Cost after each epoch when trained

with 5000 10� cells and tested with 5000 SS2 cells
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We checked the expression of CD3D, CD8A and GZMA (Fig. 2C),

and found no expression of CD3D and CD8A, but high expression

of GZMA in the NK cells, which suggests that these are likely NK

cells. To test if ACTINN produces consistent results from run to

run, we trained the neural network on the combined TMA dataset,

tested it on the mouse leukocytes dataset, and repeated this process

10 times. We found that most of the cells were assigned the same

label across all 10 runs (Supplementary Fig. S2A), and the frequency

for each cell type was also consistent between different runs

(Supplementary Fig. S2B).

It is generally thought that human and mouse share similar cell

types, and the same cell type from human and mouse share similar

expression profiles. To test this, we trained our neural network on

the mouse cell atlas datasets and used the parameters to predict the

cell types for a human peripheral blood mononuclear cell (PBMC)

dataset. We found 4 main populations in the PBMC dataset, namely,

B cells, monocytes, NK cells and T cells (Fig. 2D). We plotted the ca-

nonical markers for these 4 populations (Fig. 2E) and found that the

predicted cell types matched the expected marker expression. These

results suggest that the mouse cell atlas datasets can be used as a ref-

erence to identify cell types for both human and mouse cells.

3.6 ACTINN accurately identifies cell types not in the

reference
An scRNA-seq experiment may be performed on tissues where not

all the cell types in the data of interest are included in the reference

dataset. If a cell cannot be classified as a known cell type in the

training data, we would label it ‘uncertain’. To test if ACTINN can

identify cell types that are not in the reference, we trained the neural

network on the TMA datasets and tested it on the mouse leukocytes

plus 109 mouse nerve cells (the nerve cells are not in the training

data). We output the probabilities for each cell being one of the cell

types in the training data, and labeled the cell ‘uncertain’ if its high-

est probability is smaller than 0.95. We found that most of the B

cells, T cells, NK cells, monocytes and granulocytes were assigned

correctly (Supplementary Fig. S3A). By contrast, 105 out of 107

nerve cells were assigned ‘uncertain’ (Supplementary Fig. S3B).

These results show that ACTINN is able to identify cell types that

are not in the training dataset.

3.7 ACTINN accurately predicts cell subtypes
Although it is relatively easy to distinguish different cell types in

scRNA-seq using the unsupervised clustering methods, it is more dif-

ficult to further divide one cell type into cell subtypes. Here, we col-

lected five publicly available datasets (Zheng et al., 2017), each

containing one flow cytometry sorted T cell subtype. We merged

these datasets and selected the cells that have the same labels be-

tween our analyses and the flow cytometry sorting, and then used

these cells as a reference for the neural network. We then clustered

the selected cells and identified markers (Fig. 3A and B) for each sub

cell type using Seurat. For the test set, we used the T cells from the

human PBMC datasets mentioned above.

Fig. 2. Neural network predicts cell types for human and mouse datasets. (A)

Cell types predicted by the neural network for the mouse leukocyte dataset.

(B) Cell types identified by unsupervised clustering and canonical markers for

the mouse leukocyte dataset. (C) Violin plots showing three genes’ expres-

sion level in the NK and T cells from the mouse leukocytes. (D) Cell types pre-

dicted by the neural network for the human PBMC dataset. (E) TSNE plots

showing four marker genes’ expression for the human PBMC dataset

Fig. 3. Neural network predicts sub cell types. (A) TSNE plots showing six

maker genes’ expression for the reference T cell subtypes. (B) T cell subtypes

obtained to train the neural network. (C) T cells from the human PBMC were

grouped into seven clusters by the unsupervised method. (D) Subtypes pre-

dicted for the T cells from the human PBMC. (E) Dot plot showing the expres-

sion of six genes for the predicted subtypes, dot size represents the

percentage of cells expressing the gene, color scale represents the expres-

sion level of the gene

536 F.Ma and M.Pellegrini

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/2/533/5540320 by guest on 20 April 2024

Deleted Text: Figure 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz592#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz592#supplementary-data
Deleted Text: Figure 
Deleted Text: Figure 
Deleted Text: &hx201C;
Deleted Text: &hx201D;. 
Deleted Text: l
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz592#supplementary-data
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz592#supplementary-data
Deleted Text: 5 
Deleted Text: Figure 


To test our neural network’s ability to predict cell subtypes, we

trained it on the T cell subtype reference, and predicted the subtypes

for the T cells from the PBMC dataset (Fig. 3D). We then identified

marker genes for each predicted subtype. As expected, the marker

genes matched the ones from the reference (Fig. 3E). These results

show that our neural network can be used to accurately identify cell

subtypes. We found that the subtypes predicted by the neural net-

work did not perfectly match the cell types associated with the

Seurat clusters (Fig. 3C). Some clusters contained different subtypes

and some subtypes were composed of several clusters. We think the

difference was influenced by two factors: (i) Unsupervised clustering

considers all variance in the data, while the neural network is

trained to find the difference between the subtypes; (ii) It is difficult

to set the parameters optimally for the unsupervised analysis, which

can result in multiple cell types in one cluster or multiple clusters for

one cell type.

3.8 Comparison to other cell type identification tools
As the field of scRNA-seq is evolving rapidly, new ideas and meth-

ods are being published frequently. Several supervised scRNA-Seq

cell type identification methods were proposed recently. SuperCT

(Xie et al., 2019) uses a neural network, CaSTLe (Lieberman et al.,

2018) uses XGboost and SingleCellNet (Tan et al., 2018) uses a ran-

dom forest to annotate cell types in scRNA-Seq experiment. We

found that these three methods convert the expression values to bin-

ary signals (SuperCT and XGboost) or four categories (CaSTLe) be-

fore training the data. This conversion may significantly decrease

the complexity of the expression data, which makes it difficult to

distinguish between small changes in expression. We compared the

performance of the three methods to ACTINN in sub cell type iden-

tification. We trained CaSTLe and SingleCellNet using the T cell

subtype reference, and trained SuperCT on its human cell reference

as it does not allow user defined reference. Then we predicted the

subtypes for the T cells from the PBMC dataset. CaSTLe and

SingleCellNet failed to define most of the naı̈ve T cells and regula-

tory T cells, and SuperCT failed to distinguish T cell subtypes

(Supplementary Fig. S4A–D). Based on the predictions and marker

gene expression, we manually set the labels for the T cell subtypes

(Supplementary Fig. S4E). Then we calculated the prediction accur-

acy for ACTINN (73%), CaSTLe (59%) and SingleCellNet (57%)

(Supplementary Fig. S4F). These results show that ACTINN outper-

forms the 3 tools in finding small changes between subtypes.

4 Discussion

scRNA-seq provides high resolution profiling of the transcriptomes

of single cells. Typically, the first step in scRNA-seq analysis is to as-

sign each cell a cell type based on our prior knowledge of marker

genes. Current methods for cell type assignment first cluster the cells

in an unsupervised manner and rely on the canonical markers to

identify the cell types for each cluster. However, this approach has

several limitations, including the fact that the clusters may not opti-

mally segregate single cell types, and certain cell types may not have

previously characterized markers. Moreover, these methods are

computationally intensive, especially when the number of cells

becomes large. To render cell type identification in scRNA-seq more

efficient, we employed a neural network, trained it on cells with pre-

defined cell types, and used it to predict cell types for new datasets.

We first obtained and cleaned two datasets from the Tabula Muris

Consortium, then trained and tested our neural network on these

datasets with or without batch effect introduced by different scRNA-

seq platforms. The training accuracy always approached 100%, and

the testing accuracy was around 99.8% within a platform and 99.0%

when testing and training are performed across different platforms.

As the cell types in the two Tabula muris atlas datasets can be mutual-

ly predicted using our neural network, we merged them and used the

combined datasets as the reference to predict cell types for other data-

sets. The predicted cell types were well matched with the cell types

assigned using the canonical markers for both the mouse and human

datasets. We also trained and tested the neural network on 5 T cell

subtypes and found that the predicted subtypes showed the same

markers as the reference subtypes, which suggests that our neural net-

work can be used to predict sub cell types as well.

Compared to the traditional unsupervised methods used for cell

type identification, our neural network has the following advantages:

(i) It uses all the genes to capture the features for each cell type instead

of relying on a limited number of canonical markers. (ii) It focuses the

analysis on the signal associated with the variance between cell types,

while unsupervised clustering tends to be affected by other sources of

cell type independent variation (i.e. platform or cell cycle). (iii) It

requires no background knowledge of cell type markers, while the un-

supervised method requires users to have prior knowledge of canonic-

al markers for each cell type in their data. (iv) It is much more

computationally efficient than the traditional approach. Moreover,

users can subsample the reference cells to make the computation of

the neural network less compute intensive and more memory efficient.

We also compared ACTINN to three other cell type prediction tools,

and the results showed that ACTINN performs better in finding small

changes between subtypes.

There are some aspects of our approach that could be improved

in the future. As the neural network is supervised, the quantity and

quality of the reference data are critical. We anticipate that with

time more cell types from larger atlases should be used to train a

more comprehensive neural network. Also, better pairing of refer-

ence and test sets will undoubtedly improve performance. For ex-

ample, the soon to be developed human cell atlas should be used to

predict human cell types instead of the mouse cell atlas.

Nonetheless, we showed that even with the current reference data

our neural network is computationally efficient and accurate, and

should improve cell type identification pipelines.
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