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Abstract

Motivation: The rapid improvement of phenotyping capability, accuracy and throughput have

greatly increased the volume and diversity of phenomics data. A remaining challenge is an efficient

way to identify phenotypic patterns to improve our understanding of the quantitative variation of

complex phenotypes, and to attribute gene functions. To address this challenge, we developed a

new algorithm to identify emerging phenomena from large-scale temporal plant phenotyping

experiments. An emerging phenomenon is defined as a group of genotypes who exhibit a coherent

phenotype pattern during a relatively short time. Emerging phenomena are highly transient and di-

verse, and are dependent in complex ways on both environmental conditions and development.

Identifying emerging phenomena may help biologists to examine potential relationships among

phenotypes and genotypes in a genetically diverse population and to associate such relationships

with the change of environments or development.

Results: We present an emerging phenomenon identification tool called Temporal Emerging

Phenomenon Finder (TEP-Finder). Using large-scale longitudinal phenomics data as input, TEP-

Finder first encodes the complicated phenotypic patterns into a dynamic phenotype network. Then,

emerging phenomena in different temporal scales are identified from dynamic phenotype network

using a maximal clique based approach. Meanwhile, a directed acyclic network of emerging

phenomena is composed to model the relationships among the emerging phenomena. The experi-

ment that compares TEP-Finder with two state-of-art algorithms shows that the emerging phenom-

ena identified by TEP-Finder are more functionally specific, robust and biologically significant.

Availability and implementation: The source code, manual and sample data of TEP-Finder are all

available at: http://phenomics.uky.edu/TEP-Finder/.

Contact: shang@nwpu.edu.cn or kramerd8@msu.edu or chen.jin@uky.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomedical studies have been ushered into a new era by the rapid de-

velopment of large-scale genotyping and phenotyping technologies

(Alemany et al., 2018; Cruz et al., 2016; Flood et al., 2016;

Gudbjartsson et al., 2015; Kuhlgert et al., 2016). Recent studies

demonstrate that by integrating both phenomics and genomics, we

can better understand organism behaviors and identify new genes

that govern phenotypes and response to the varying environments

(Cobb et al., 2013; Emanuel et al., 2017; Sudlow et al., 2015).
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More specifically, by analyzing large-scale plant photosynthetic

phenotype data, researchers can identify complex aggregate pheno-

typic traits, and explore the processes or genetic components that

control a trait and the essential conditions under which the trait

emerge (Heid and Winkler, 2017; Visscher et al., 2017).

The main computational challenge in omics data analysis arises

from its unsupervised nature. It is generally believed that the emerg-

ing phenomena among multiple phenotypes measured across several

genotypes (e.g. gene knockouts) reveals, to a great extent, the com-

mon regulatory roles of the knocked out genes in the biological sys-

tem. An emerging phenomenon refers to a phenotypic pattern that

multiple genotypes have correlated phenotype values during a serial

of continuous time points (Cruz et al., 2016). Given temporal

phenotype data where rows are genotypes and columns are time

points, an emerging phenomenon is defined as a group of genotypes

(rows) that have a similar phenotypic pattern during a relatively

long and continuous temporal range (columns). See Section 3 for the

mathematical definition of emerging phenomenon. A sample emerg-

ing phenomenon in plant photosynthesis phenotype data is shown in

Figure 1. The experiment was done under the fluctuating light con-

ditions (between 0 and 1000 lmolm�2s�1). Five selected genotypes

(P1. . .P5) were measured using three photosynthetic phenotypes,

namely photosynthetic system II activity ðUIIÞ, photoprotection

(qESV) and photoinhibition (qI). The relative phenotype values were

calculated by comparing each genotype with the reference (col-0)

using logged fold change. The shadowed area indicates an emerging

phenomenon of the five plants between 12:30 and 14:30, during

which, all the five genotypes have a similar phenotypic pattern.

Emerging phenomena is universal in phenotyping experiments

esp. under dynamic environmental conditions. They are highly tran-

sient and diverse, dependent in complex ways on both environmen-

tal conditions and development (Cruz et al., 2016). Revealing

emerging phenomena is vital toward the identification of meaningful

differences in biological function among genotypes, which may help

biologists to examine potential phenome–genome relationships in a

genetically diverse population and to associate such relationships

with the change of environments or development. It is, however,

unclear what specific patterns biomedical researchers should look

for given the complexity of the biological system and its responses to

environmental perturbations. Besides, the large variance in pheno-

types, due to the biodiversity and the variance in environmental dis-

tribution, adds more challenges to the already difficult task (Cruz

et al., 2016; Flood et al., 2016; Yang et al., 2017).

To address this challenge, we propose a new tool called

Temporal Emerging Phenomenon Finder (TEP-Finder) as the first

approach to capture emerging phenomena with various temporal

scales and arbitrary phenotype variation shapes (see Fig. 2). TEP-

Finder automatically transforms large-scale phenomics data into

emerging phenomenon patterns, thus facilitates the translation of

information into knowledge. TEP-Finder has two phases. First,

TEP-Finder encodes phenotype-based relationships into a dynamic

network using non-parametric clustering and generates seeds. It

then identifies all the emerging phenomena in different temporal

scales and constructs a directed acyclic network of emerging phe-

nomena. To demonstrate the effectiveness of TEP-Finder, we

applied TEP-Finder on a large-scale plant photosynthesis phenotyp-

ing experiment, and the results show that TEP-Finder can reliably

and accurately identify high-quality emerging phenomena from

Fig. 1. A sample emerging phenomenon (shadowed area) identified in a plant

photosynthesis phenotyping experiment under fluctuating light conditions

(a). In the experiment, five genotypes (chloroplast-targeted single mutant

lines of Arabidopsis thaliana, labeled as P1, P2, P3, P4 and P5) were pheno-

typed continuously and three photosynthetic phenotypes (UII , qESV and qI)

were captured. The data show how the three phenotypes change with the

changes of light conditions (b–d). In the shadowed area, all five genotypes

have similar values on all three phenotypes, indicating that there is an emerg-

ing phenomenon during the highlighted time period

Fig. 2. The workflow of TEP-Finder. Given the temporal phenomics data, it

identifies significant seed phenomena in every time frame; by expanding

each seed to longer time frames, it discovers emerging phenomena that ap-

pear and disappear subject to the change of environments or development;

the relationships among all the emerging phenomena are modeled by a

directed acyclic network called EP-DAG
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data. Comparing with the existing models, TEP-Finder has the fol-

lowing advantages:

• TEP-Finder is the first approach to capture emerging phenomena

with diverse scales systematically;
• TEP-Finder constructs a network of emerging phenomena to pro-

vides a graph-based representation of the complex hierarchy of

emerging phenomena;
• TEP-Finder successfully discovers emerging phenomena in an

Arabidopsis photosynthetic phenotyping experimental data with

high biological significance.

2 Background

An emerging phenomenon is defined as a group of genotypes who has

a pattern of correlated phenotypes in a serial of continuous time

points (Cruz et al., 2016). In the literature, given a set of predefined

patterns, the minimal genotype contributor set can be identified using

existing data mining techniques such as association rule mining (Hipp

et al., 2000; Weiß, 2014) or subspace trajectory clustering (Agrawal

et al., 1998; Soltanolkotabi et al., 2014). However, given the unsuper-

vised nature, most emerging phenomena are not pre-definable. To

our knowledge, there is no existing algorithm exactly designed for

emerging phenomena identification. Tools, such as DHAC and NPM

(Gao et al., 2015; Park and Bader, 2012), may be slightly modified to

achieve the goal. Here we discuss two existing approaches with add-

itional steps adopted for emerging phenomenon discovery.

DHAC models show how a network change with time (Park and

Bader, 2012). Assuming that the edges in a network are conditionally

independent given group membership, DHAC uses a probabilistic

model to translate a hierarchical stochastic block to the dynamic do-

main, thus clustering a time-evolving network based on the observa-

tions at several specific time points. The rationale is that any node in

a network cluster at a specific time point should be influenced by clus-

ters at nearby time points. DHAC can be employed to group geno-

types by matching clusters across multiple time points with additional

steps that transform longitudinal phenomics data into a dynamic net-

work (called DHACþ). However, to facilitate dynamic network clus-

tering, DHAC considers global features on all temporal points rather

than local features. Subsequently, the DHAC-based method cannot

identify emerging phenomenon at different temporal scales.

NPM is a non-parametric clustering method that can simultaneously

cluster subjects with arbitrary cluster shapes (Gao et al., 2015). NPM

represents the phenotypes of each genotype in a serial of continuous

time points as a cloud of points. Each point of the cloud corresponds to

a vector in the sequential phenotype measurements taken for the geno-

type. Two similar shapes of clouds represent that two genotypes have a

coherent phenotype pattern in a given time frame. Note that NPM is

more advantageous than the Pearson correlation on the identification of

a set of genotypes with coherent phenomics data. It is because Pearson

correlation requires all the variables to follow a normal distribution,

which is not always held for the phenomics data, while NPM does not

make any assumption about the underlying data distribution and thus is

particularly suitable for phenomics data analysis. NPM can be employed

to identify emerging phenomena by applying it repeatedly on every time

frame of a longitudinal phenomics dataset (called NPMþ). However, it

is difficult to pre-define the time scale of emerging phenomena or to

identify the relationships between overlapped emerging phenomena.

Furthermore, NPM is not a deterministic method so that the results are

dependent on the initialization and the selection of anchor points.

The unmet needs to effectively identify high-quality emerging

phenomena necessitates the development of tools that can

automatically transform large-scale phenomics data into emerging

phenomenon patterns, thus facilitate the translation of information

into knowledge. To precisely identify emerging phenomena with dif-

ferent temporal scales, we propose TEP-Finder. In our experiment,

TEP-Finder has been compared with NPMþ and DHACþ. The

results demonstrate that TEP-Finder is better for capturing emerging

phenomena and relationships among them.

3 Definition of emerging phenomenon

In a long temporal phenotype dataset MðP;T Þ, Ti is a time frame

associated with experimental environments, treatments and out-

comes ðTi 2 T Þ, and Pj is a genotype to study ðPj 2 PÞ, e.g. a gene

knockout or a inbred line. The phenotype values of genotype Pj in

time frame Ti are represented by a set of data points

Di;j ¼ fxi;j
1 ; . . . ; xi;j

mg. In the plant photosynthetic phenotyping experi-

ment using DEPI (Cruz et al., 2016), the phenotypes are mainly

photosynthetic system II activity ðUIIÞ, photoprotection (qESV) and

photoinhibition (qI). An emerging phenomenon ei is defined as fol-

lows (see example in Fig. 1).

Definition 3.1 Emerging Phenomenon. Given the temporal phenotype

data MðP; T Þ, an emerging phenomenon CðPk;TkÞ is a group of geno-

types PkðPk � PÞ that exhibit coherent phenomena during continuous

temporal range TkðTk � T Þ, where jPkj � K1; jTkj � K2, and the per-

centage of significant phenotype values in e is greater than or equal to

K3. K1, K2 and K3 are user specified thresholds.

Note that in an emerging phenomenon CðPk;TkÞ, certain percentage of

phenotype values of should be significantly different from the refer-

ence. The definition does not require all the phenotype values of

CðPk;TkÞ to be significant because, when the environmental conditions

vary dynamically, phenotype values often periodically switch between

significance and insignificance (see Fig. 1). Hence, it is more reasonable

to require a certain portion but not all of the phenotype values to be

significantly different from that of the reference. Since a priori does not

apply, new algorithms are needed for the identification of emerging

phenomenon.

For a large-scale phenotyping experiment, the total number of identi-

fied emerging phenomena could be large. To better manage and use

them, we construct an emerging phenomenon directed acyclic network

(EP-DAG) G defined as:

Definition 3.2 Emerging Phenomenon DAG. An EP-DAG G is a DAG,

where each node in G represents an emerging phenomenon CðPk;TkÞ,
and node CðPi;TjÞ is a descendent of node CðPh;TkÞ if and only if Pi �
Ph and Tj � Tk.

The outputted EP-DAG is available in the OBO format. It, once gener-

ated from data, can be visualized with Cytoscape (Smoot et al., 2011)

or OntoVisT (Srivastava and Sahni, 2011). It automatically supports

emerging phenomenon search, phenotype relationship identification

and multiple phenotyping experiments comparison, leading to

improved computational efficiency and succinct representation. To our

knowledge, there is no existing work focused on the construction of

EP-DAGs.

4 Materials and Methods

To systematically identify emerging phenomena in long-term pheno-

typing experiments and to examine the interactions between emerg-

ing phenomena and dynamic environments in a genetically diverse

population, we introduce a new algorithm called TEP-Finder. TEP-

Finder has two phases. First, it identifies seed phenomena in every
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time frame of a longitudinal phenomics dataset, where a time frame

is a predefined minimal temporal range of any emerging phenom-

ena. Second, by expanding each identified seed phenomena to longer

time frames, TEP-Finder discovers emerging phenomena that appear

and disappear subject to the change of environments or time.

Multiple emerging phenomena are then merged, pruned and con-

nected to form a phenomenon network to facilitate phenotype

search, comparison and functional analysis. The diagram of the

whole process is shown in Fig. 2.

4.1 TEP-Finder Phase 1. Identifying seed phenomenon
An emerging phenomenon e is considered as the phenotypes of mul-

tiple genotypes that have similar variation trends in a continuous time

period. Biologically, such time period can be transient or can last for

a relatively long time. To identify e with varying length, we consider a

seed-based approach. Namely, we segment the whole experiment dur-

ation into multiple time frames, each being the minimal temporal

range of any emerging phenomena. Then, at every time frame, we

seek seed phenomena that are potentially extendable to a longer time

period. The seed identification phase can be divided into four steps.

4.1.1 Data segmentation and data representation

Given the temporal phenotype dataMðP; T Þ, we segment T into sep-

arated time frames with a fixed length m using the sliding window ap-

proach. Here, the window width is the smallest temporal period of

any emerging phenomenon (e.g. 30 min) that users can specify.

We adopt a meta-clustering approach to identify the relation-

ships among all the tested genotypes in each time frame Ti (Caruana

et al., 2006; Lingras et al., 2016). In the meta-clustering process, we

repeatedly cluster the phenotype values of all the genotypes P in Ti

using non-parametric clustering with random anchor points (Gao

et al., 2015). The center of non-parametric clustering is a cloud-of-

points representation. Since all the phenotype values are collected in

a relatively short time, we examine the dependence among different

phenotypes while ignoring the sequential order among the values

and simply characterizing the phenotypes of genotype Pj in time

frame Ti by the set of data points Di;j ¼ fxi;j
1 ; . . . ; xi;j

mg, which we

refer to as cloud-of-points representation.

4.1.2 Phenotype clustering

Following the standard framework of mixture models, we assume that

there are K different underlying distributions in time frame Ti, where

each distribution is introduced to capture a different ‘shape’ of the

cloud-of-points representation, and all the phenotype values observed

in the cloud-of-points representation are drawn independently from

one of the K distributions (Figueiredo and Jain, 2002). More specifical-

ly, let f1ð�Þ; . . . ; fKð�Þ be the density functions for the K underlying dis-

tributions, and let p1; . . . ;pK be the prior probabilities for choosing

each distribution. Then, for genotype Pj in time frame Ti, the likelihood

of observing the cloud-of-points representationDi;j is then given by

PrðDi;jÞ ¼
XK

k¼1

pkPrðDi;jjfi;jÞ ¼
XK

k¼1

�
pk

Ym

h¼1

fi;jðxi;j
h Þ
�
: (1)

Following the framework of maximum likelihood estimation, we

find the optimal density functions ffjð�ÞgK
j¼1 by solving the optimiza-

tion problem

max
f1 ;...;fK ;P

Xn

j¼1

log PrðDijÞ (2)

where PrðDijÞ is given in Equation 1, and n is the total number of

genotypes inM.

This optimization problem can be effectively solved by employ-

ing NPM, a non-parametric clustering method for phenomics data

analysis (Gao et al., 2015). Based on the Nadaraya–Watson method

for kernel density estimation (Parzen, 1962; Rosenblatt, 1956;

Sprent, 2009) and following the framework of maximum likelihood

estimation, NPM uses optimal density functions and applies a non-

parametric clustering technique to group genotypes into the same

cluster if their clouds-of-points share similar arbitrary shapes. The

non-parametric approach avoids the parametric assumption of the

underlying distribution so that NPM is suitable to model the non-

linear interactions among multiple phenotypes (Gao et al., 2015).

Since the clustering process is dependent on the initialization and the

selection of anchor points, we repeat NPM multiple times to obtain

all the meta-clustering results.

4.1.3 Dynamic phenotype network construction

In this step, we construct a dynamic phenotype network GðP; E; T Þ,
where P is the set of genotypes, T is the set of time frames and E ¼
fE1;E2; . . . ; Ekg represents edges in different time frames. In each

time frame Ti, we check whether any two genotypes Pj and Ph are

frequently grouped into the same cluster in meta-clustering. If the

co-occurrence is greater than a predefined threshold K4, we add

edge hPj;Phi to Ei. In the dynamic network G, while the nodes are

identical, the edges vary over time, indicating emerging phenomena

emerge and disappear with the change of time.

A running example is shown in Figure 3. In the example, T ¼
fT1;T2;T3g and P ¼ fA;B;C;D;E; F;Gg. Given the frequency of

concurrence of every two genotypes in T1, T2 and T3 (the table on

the left), and let K4 be 0.8, we identify all the edges (shaded blocks)

and construct the dynamic network in the middle panel of Figure 3.

4.1.4 Seed phenomena identification

We identify the seed phenomena by repeatedly applying a maximal

clique-based approach on every time frame of the dynamic network

GðP; E; T Þ. Clique is a special structure such that any two nodes in

it are adjacent, implying a close relationship among all the nodes

that belong to the same clique. A maximal clique is a clique that can-

not be extended by including one more adjacent node, meaning it is

not a subset of a larger clique.

More specifically, we adopt the Bron–Kerbosch algorithm to

identify all the maximal cliques (Bron et al., 1972). The basic form

Fig. 3. Illustrative example of the dynamic phenotype network construction.

Values in the table represent the co-occurrence frequencies of any two geno-

types being in the same cluster in three different time frames fT1;T2;T3g. We

add edge hPj ;Phi to a slice of the dynamic phenotype network if the corre-

sponding co-occurrence frequency of genotypes Pj and Ph is greater than a

threshold (shaded blocks). The middle panel shows the dynamic network, in

each slice of which, the maximal cliques are displayed in the right panel
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of the Bron–Kerbosch algorithm is the recursive backtracking that

searches for all maximal cliques in a given network. Its performance

has been further improved by defining a pivot vertex set, allowing it

to backtrack more quickly in branches of the search that contain no

maximal cliques (Cazals and Karande, 2008; Tomita et al., 2004).

Let C be the set of all the maximal cliques in the dynamic net-

work GðP; E; T Þ, maximal clique CðPj;TiÞ 2 C defines a seed phe-

nomenon with its genotype set being Pj and its time frame being Ti.

A running example is shown in the right panel of Figure 3. The

maximal cliques in T1 are C1;1 ¼ fA;B;C;Dg; C1;2 ¼ fD;E; Fg;
C1;3 ¼ fD; F;Gg.

4.2 TEP-Finder Phase 2. Extending from seeds to

emerging phenomenon
After identifying all the seed phenomena in the minimal time frames,

we extend them to longer time frames. This phase has four steps.

4.2.1 Emerging phenomenon identification

To identify emerging phenomena, the general idea is to combine

seed phenomena in adjacent time frames. More specifically, for

CðPj;TiÞ, which is the jth seed phenomenon in time frame Ti, we

join it with every seed in time frame Tiþ1 CðPk;Tiþ1Þ, resulting in

CðPj;k;Ti;iþ1Þ, where Pj;k represents the intersection of Pj and Pk.

Then, we determine whether CðPj;k;Ti;iþ1Þ is a new emerging phe-

nomenon using the following rules developed based on the defin-

ition of the emerging phenomenon (see Definition 3.2). The

combination process will continue on the followed time frames (i.e.

Tiþ2; . . . ;Tn), until all the seed phenomena are examined.

• Discard CðPj;k;Ti;iþ1Þ if jPj;kj < K1, is not an emerging

phenomenon;
• Replace CðPj;TiÞ with CðPj;k;Ti;iþ1Þ if Pj;k ¼ Pj � K1.
• Replace CðPk;Tiþ1Þ with CðPj;k;Ti;iþ1Þ if Pj;k ¼ Pk � K1.
• Accept CðPj;k;Ti;iþ1Þ as a new emerging phenomenon if Sj;k 6¼ Sj

and Sj;k 6¼ Sk and jSj;kj � K1.

Following the example of the dynamic phenotype network and

maximal cliques in Figure 3, the emerging phenomenon identifica-

tion procedure starting from T1 is shown in Figure 4. In Figure 4a,

one of the seed phenomena that start from T1 or T2 is P2 ¼
CðfD;E; Fg; fT1gÞ and P4 ¼ CðfC;E;Fg; fT2gÞ, respectively. The

join of P2 and P4 is P9 ¼ CðfE;Fg; fT1;2gÞ, which, according to

Definition 3.1, is saved as an emerging phenomenon in time frame

T1;2. Similarly, for the other seeds in T1 and T2, we join them pair-

wisely and save all the qualified emerging phenomena (see the blue

colored notes in Fig. 4a). Next, we join all the emerging phenomena

in time frame T1;2 with the seeds in T3, resulting in the emerging

phenomena in time frame T1;2;3. For example, P18 ¼
CðfE; Fg; fT1;2;3gÞ is the result by joining P9 ¼ CðfE; Fg; fT1;2gÞ
and P14 ¼ CðfC;E;F;Gg; fT3gÞ. Note that P18 replaces P9 since

they have the same genotypes and the time frame of P18 contains

that of P9. Those who do not qualify the definition of emerging phe-

nomenon are discarded (all the gray notes in Fig. 4a).

4.2.2 Significance test

Given the temporal phenotype data MðP;T Þ, we compare the

phenotype values of every genotype Pi with the reference using

logged fold change, resulting in the relative phenotype values. The

reference could be the wild-type in mutant experiments, the parental

lines in recombinant inbred line experiments, or the average of all

the genotypes in population experiments. Without losing generality,

all the significant phenomena can be identified using a user given

logged fold change threshold or with the computation of the false

discovery rate. Other significance tests can also be applied for the

same purpose. If the percentage of significant phenotype values of

an emerging phenomenon is less than a user given threshold K3, the

emerging phenomenon is discarded.

4.2.3 EP-DAG construction

To model the complex relationships among all the emerging phe-

nomena, we construct an EP-DAG G. G is a DAG with a virtual

root node Proot. We first connect all the emerging phenomena

found in any individual time frame directly to Proot (see example in

Fig. 4b). Next, we add an edge pointing from every emerging

phenomenon to another one if the latter is generated by joining the

former with other ones and both of them start from the same

time frame. For example, in Figure 4b, an edge is pointing from

P8 ¼ CðfA;B;Cg; fT1;2gÞ to P17 ¼ CðfA;Cg; fT1;2;3gÞ. Finally, we

add an edge pointing from one emerging phenomenon CðPj;TiÞ
to another one CðPh;TkÞ, if Pj � Ph; Ti � Tk, and CðPh;TkÞ is not

a descendent of CðPj;TiÞ. For example, we add edges pointing

from P5 to P8, P15 to P23 and P14 to P21 (see the dotted edges in

Fig. 5b).

4.2.4 EP-DAG pruning

Finally, to reduce the redundancy of the emerging phenomenon, we

merge the highly overlapped emerging phenomena and remove

emerging phenomena with insignificant phenotype values. Note that

if an emerging phenomenon is discarded because it does not satisfy

the user given thresholds (e.g. the percentage of significant values

less than K3), its children will be redirect to its patent emerging phe-

nomena. See examples in Figure 4a and b. Mathematically, given

two emerging phenomena CðPj;TiÞ and CðPh;TiÞ in the same time

frame, if jPj � Phj � 1 and jPh � Pjj � 1, we remove the two

emerging phenomena and compose a new one called CðPj [ Ph;TiÞ.
Meanwhile, the edges connecting to CðPj;TiÞ and CðPh;TiÞ are

redirected to CðPj [ Ph;TiÞ.

Fig. 4. Illustrative example on extending a seed phenomenon to a longer time

frame starting from the same time point. (a) The maximal cliques of G1 are at

the first level. Then they are joined with the maximal cliques of G2 and G3 to

generate longer emerging phenomena. (b) The result is pruned using the pro-

cedure introduced in Section 4.2.1
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5 Results

5.1 Data description
For performance evaluation, we used the long temporal plant photo-

synthesis phenomics data in Gao et al. (2015). The phenotyping experi-

ment was carried out by testing 182 chloroplast-targeted single mutant

lines (each with at least four biological replicates) of Arabidopsis thali-

ana under dynamic environmental conditions using DEPI (Cruz et al.,

2016). Three kinds of phenotypes, i.e. photosynthetic system II activity

(UII), photoprotection (qESV) and photoinhibition (qI) were collected at

112 time points. See experiment details in Cruz et al. (2016).

TEP-Finder was implemented with Python 2.7. The following

parameters for TEP-Finder were used in the experiment: number of

genotypes K1 ¼ 5, number of time points K2 ¼ 10, percentage of sig-

nificant phenomena K3 ¼ 0:5, number of time points per time frame

10, overlap rate between two adjacent time frames 90%; number of

runs of clustering per time frame 100. The final results consist of

4318 emerging phenomena and an EP-DAG with 7789 edges.

5.2 Methods to compare
We compared TEP-Finder with NPMþ and DHACþ. The latter two are

the methods modified from NPM and DHAC, respectively (see Section

2). The major difference in these methods locates on the process of seed

phenomenon identification. More specifically, NPMþ consists of the fol-

lowing two steps. First, given the phenotype data MðP; T Þ, we call

NPM once at every time frame to obtain the clustering results. Second,

the clusters are used as the inputs to TEP-Finder Phase 2 (see Section

4.2). In DHACþ, we first preprocess the phenomics dataMðP; T Þ using

the Phase 1 of TEP-Finder, resulting in the dynamic phenotype network

G. Second, DHAC is adopted to identify seed phenomena in G instead

of searching for the maximal cliques. Finally, the seed phenomena are

used as the inputs to TEP-Finder Phase 2 (see Section 4.2). Note that the

only difference between NPMþ, DHACþ and TEP-Finder is how the

seed phenomena are identified. Comparing NPMþ and DHACþ with

TEP-Finder is critical because it can test whether our meta-clustering fol-

lowed with maximal clique approach is appropriate to generate seeds,

which form the basis for the identification of emerging phenomena.

5.3 Performance evaluation using Gene Ontology

enrichment
An emerging phenomenon consists of a list of chloroplast-targeted

single mutant lines that exhibit coherent and significant phenomena

in a continuous time frame. It is expected that the knockout genes

would be involved in the same biological process or have a similar

molecular function. Therefore, we tested whether the knockout

genes in the same emerging phenomenon are also enriched in Gene

Ontology (GO). GO includes three categories: biological process,

molecular function and cellular component. Given a set of genes and

their GO annotations, GO enrichment analysis identifies the over-

represented GO terms. In our experiment, data were downloaded

from the GO website in March 2017, and clusterProfiler (Yu et al.,

2012) was used for the enrichment test.

Figure 6a shows that the percentage of emerging phenomena at

each level of the EP-DAG using GO biological process. Clearly,

TEP-Finder is constantly better than DHACþ, esp. at deep levels of

the EP-DAG. The high performance on deep levels is important be-

cause emerging phenomena at deep levels often represent abnormal

photosynthetic behaviors in a relatively more extended time period.

TEP-Finder and NPMþ have a similar trend, but TEP-Finder is still

better than NPMþ on most of the cases. Specifically, the averaged

percentage of the enriched emerging phenomena of TEP-Finder is

0.80, which is 0.70 for NPMþ. Similar results are found on the GO

enrichment test on the molecular function category. In general, the

performance of TEP-Finder is higher than NPMþ and DHACþ at

(a)

(b)

Fig. 6. Evaluation of emerging phenomena using Gene Ontology enrichment

on biological process (a) and molecular function (b). The x-axis represents

the level of the EP-DAG. The y-axis represents the percentage of the emerg-

ing phenomena enriched in at least one GO term. Blue, green and red repre-

sent the results of TEP-Finder, NPMþ and DHACþ. (Color version of this

figure is available at Bioinformatics online.)

Fig. 5. Illustrative example on EP-DAG construction. (a) Three sub-DAGs are

built based on different starting time points. (b) All of them are merged into

one DAG using the procedure introduced in Section 4.2.3
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each level of EP-DAG (Fig. 6b). The averaged percentage of the

enriched emerging phenomena of TEP-Finder is 0.66, while the val-

ues of NPMþ and DHACþ are 0.56 and 0.43, respectively.

While the first experiment shows that TEP-Finder has more

enriched emerging phenomena than the other two, it is not clear

whether the enriched GO terms are at a shallow or deep level of the

GO. Therefore, in the second experiment, we compared the distribu-

tion of the enriched GO terms among the three methods. Since the

first level of the EP-DAG is the virtual root node, the comparison

was carried out at the second, third and fourth level. We only tested

the first three valid levels of EP-DAG because, in the results of

DHACþ, the number of emerging phenomena after three levels are

too few to compare. Figure 7 shows the cumulative distribution of

the GO biological process terms and the molecular function terms at

the first three valid EP-DAG levels. It is constant that there are more

deep-level enriched GO terms in TEP-Finder than the other two.

5.4 Performance evaluation using gene association
Given an EP-DAG, gene-to-gene similarity can be calculated based

on the topological structure of the DAG. We thereby test the correl-

ation between EP-DAG based gene similarities with the GO molecu-

lar function based gene similarities. To calculate the gene-to-gene

similarities based on the EP-DAG, we adopted the widely used

Resnik method (Resnik, 1995). Specifically, given any two genes gi

and gj, we identify their least common ancestor term and calculate

the gene–gene similarity using simðgi; gjÞ ¼ log N
Ni

, where N is the

total number of genes in the ontology and Ni is the number of genes

annotated to the lowest common ancestor. The GO-based gene

similarities were calculated using a web service named InteGO2

(Peng et al., 2016). All the similarities were normalized to the range

of [0,1].

Figure 8 shows the experimental results on the three networks

constructed using TEP-Finder, NPMþ and DHACþ, respectively. In

general, there is a strong correlation between the gene–gene similar-

ities based on TEP-Finder and based on the GO. Specifically, the R2

score of TEP-Finder is 0.89, significantly higher than that of the

other two methods (i.e. 0.60 for NPMþ and 0.46 for DHACþ).

This experiment suggests that the EP-DAG built by TEP-Finder is

well organized.

5.5 Biological significance
Although we now have deep knowledge of the core processes of

photosynthesis, the ‘ancillary components’ essential for function in

living cells under dynamic conditions are largely unexplored (Zhu

et al., 2008). Intriguingly, these ancillary components probably

evolved as plug-in functional modules to adapt the core processes to

different conditions. Understanding their functions may allow us to

combine these modules in different organisms, to achieve rapid

improvements in the photosynthetic efficiency. The identification of

the emerging phenomena of chloroplast-targeted single knockouts

may enable systematic analysis of genotype–phenotype connections

and provides a clue on the characterization of specific ‘ancillary

processes’ that support efficient photosynthesis. Note that many of

the ancillary photosynthetic processes down-regulate the capture of

light energy, preventing photodamage but at the cost of light-

capture efficiency. From an evolutionary perspective, these processes

can be viewed as balancing needs for energy and the avoidance of

deleterious effects from photosynthesis.

We first analyzed the identified emerging phenomena from the

gene evolution perspective. Since essential genes are often slow

evolving compared with genes with non-lethal mutant phenotypes,

the genes identified only in the emerging phenomena under fluctuat-

ing light varying conditions may evolve faster than those in the

emerging phenomena under smooth light conditions. The ratio Ka/

Ks, which measures the relative rates of synonymous and non-syn-

onymous substitutions at a particular site, is often used for the

estimation of evolutionary rates (Peterson and Masel, 2009). In

our experiment, the averaged Ka/Ks ratio of the 50 genes appeared

only in the emerging phenomena under strong and smooth light

conditions is 0.164, while the averaged Ka/Ks ratio of the 45 genes

identified uniquely under fluctuating and strong light conditions

is 0.192, significantly higher than the former (permutation test,

P¼0.013).

We then analyzed the emerging phenomena from the perspective

of photosynthetic functionality. Two emerging phenomena (A and

B) were categorized under the same strong fluctuating light condi-

tions in the middle of the day (between 500 and 1000 lmolm�2s�1

four times repeated) due to distinctively different photosynthetic

phenotypes (Fig. 9 and Supplementary Fig. S2, A, orange; B, blue).

The emerging phenomenon A consists of mutant lines AT1G12250,

AT1G80030, AT4G24750 and AT5G03455. They are sensitive to

fluctuating light, showing large extent of decreases in photosystem

II (PSII) activity and decreases in qESV (photoprotection) under high

light intensity compared to the low light. Mutant lines in emerging

phenomenon B (AT1G14590, AT1G54580, AT2G40400,

AT3G10470, AT4G31560, AT5G03455 and AT5G39830) have

less extent of decreases in PS II activity with higher qESV indicating

less sensitivity to the fluctuating light. As the important genes re-

sponsive to dynamic light conditions, sensitivity of mutant would be

increased. Thus, for mutant lines that are shown a sensitive pheno-

type under the conditions, it indicates that the mutated genes are re-

sponsible for maintaining robust photosynthesis under the stress

conditions. Hence, we hypothesize that the genes in A may contrib-

ute to photoprotection in response to natural light dynamics (see the

selected samples in Fig. 9). According to the GO, these genes are

involved in arsenate reductase activity and the photosynthesis-

related biological processes, including arsenate reductase activity

Fig. 7. Cumulative distributions of identified emerging phenomena at differ-

ent levels, which are enriched in Gene Ontology (GO) biological process cat-

egory (a) and molecular function category (b). The x-axis represents the level

of GO. The y-axis represents the percentage of emerging phenomena

enriched at each GO level. The blue, green and red line represent the result of

TEP-Finder, NPMþ and DHACþ. (Color version of this figure is available at

Bioinformatics online.)
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and oxidation-reduction process. Most of them are related to cellu-

lar redox balance, which are important for regulation photosyn-

thesis, yet mode of function of found genes in this study is still partly

remained elusive (Bauer and Papenbrock, 2002; Hall et al., 2010).

This analysis may provide new insights and open the new possibility

to understand how plants are adapted dynamic conditions. Mutant

lines in B stay high qE and minor decrease in PS II activity in the

high light indicating those mutants are less sensitive to dynamic light

conditions. It shows that the mutate genes in B are less likely respon-

sible to adapt fluctuating light conditions. A functional analysis

based on GO shows that these genes are involved in cell cycle, cell

division and protein complex oligomerization, and protein folding

fatty acid biosynthetic process cytochrome b6f complex assembly.

Also, the averaged Ka/Ks ratio of A and B is 0.24 and 0.22,

respectively, which is significantly higher than that of randomly

selected chloroplast-targeted genes (permutation test, P¼0.024 and

0.013).

The biological analysis demonstrates that accurately identifying

emerging phenomena from plant phenotyping data may be valuable

toward the characterization of specific ancillary processes that sup-

port efficient photosynthesis.

6 Discussion and conclusion

Comprehensive analysis of emerging phenomena is required to im-

prove our understanding of the quantitative variation of complex

phenotypes and to attribute gene functions (Flood et al., 2016).

However, unlike frequent patterns, emerging phenomena may re-

occur frequently or may appear only once during an experimental

period, depending on the experimental design. TEP-Finder is the

first tool toward capturing the emerging phenomena in large-scale

longitudinal phenotyping experiments, leading to the identification

of the minimum set of distinct actors needed to produce an undefined,

complex aggregate phenotypic trait. Particularly, TEP-Finder can

(a)

(b)

Fig. 8. Comparing GO-based similarity with the EP-DAG-based similarity. Gene pairs were clustered into 10 groups based on their GO-based similarities (x-axis),

and for each group of gene pairs, we calculated the averaged EP-DAG-based similarity (y-axis). Blue, green and red represent the results of TEP-Finder, NPMþ
and DHACþ. (Color version of this figure is available at Bioinformatics online.)

Fig. 9. Two emerging phenomena found under strong fluctuating light condi-

tions (between approximately $500 l mol m�2 s�1 (lower light) and $1000 l

mol m�2 s�1 (higher light) four times repeated) have distinctively different

photosynthetic phenotypes. Only two selected genotypes are shown for each

group. In the first emerging phenomenon (group A, orange), plants have con-

stantly low photoprotection yet the PS II activity decreased with the increased

lights, indicating they are under stress. In the second one (group B, blue), less

decrease of PS II activity and with high photoprotection as light increases,

indicating they are well accommodated with the rapid changes of light. (Color

version of this figure is available at Bioinformatics online.)

Temporal emerging phenomenon identification 575

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/2/568/5532221 by guest on 10 April 2024

Deleted Text: pe
Deleted Text: p-value
Deleted Text: s
Deleted Text: C
Deleted Text: s


identify emerging phenomena in different temporal scales from the

data and also can construct a directed acyclic network (EP-DAG) for

better data management. The GO and gene–gene association based

performance evaluation show that TEP-Finder is better than the exist-

ing tools regarding biological significance.

An important component of TEP-Finder is the meta-clustering

that repeatedly calls NPM with random anchor points for kernel

density estimation. We tested whether the meta-clustering approach

can lead to more robust results. Specifically, given the same input,

we ran TEP-Finder and NPMþ three times and calculated the differ-

ences between the results of the three runs. Supplementary Figure S1

shows the average number of genes per emerging phenomenon (indi-

cated by circle area) at each level of the EP-DAG. In Supplementary

Figure S1a, the three runs of TEP-Finder are similar to each other,

indicated by the highly overlapped circles, whereas the three runs of

NPMþ, as shown in Supplementary Figure S1b, are distinctively dif-

ferent. In summary, the adoption of the meta-clustering approach

ensures TEP-Finder to be robust enough for emerging phenomenon

mining.

K1 is the lower bound for the number of genotypes involved in

an emerging phenomenon. By changing K1, the requirement for the

smallest number of genotypes in an emerging phenomenon is

changed. Smaller K1 may result in identifying emerging phenomena

with less genotypes and with longer temporal range. Similarly, K2 is

the lower bound for the continuous temporal range of an emerging

phenomenon. It is related with the experimental duration that the

user is interested in. Smaller K2 may result in identifying emerging

phenomena with more genotypes and with shorter temporal range.

In summary, users can vary K1 and K2 to obtain emerging phenom-

ena with different number of genotypes and different experimental

duration. K3 is the minimum percentage of statistically significant

phenotype values in the same emerging phenomena. To our know-

ledge, K3 is difficult to specify. We suggest to fix K1 and K2 and ex-

plore the results by varying K3. Supplementary Table S1 indicates

that in our experimental data, with the increase of K3, the EP-DAG

becomes more concise (shallower and has less amount of nodes),

and the majority of the removed nodes are intermediate ones. It

suggests that to choose an appropriate K3, users can start with a

high value and then gradually reduce it. At the same time, users

should check whether the leaf nodes (which are the emerging phe-

nomenon with the longest temporal duration) captures long-term

patterns that user desired. As a future work, we will develop new

algorithms to automatically optimize the parameters of TEP-

Finder.

Although TEP-Finder is originally designed for identifying the

emerging phenomenon in plant long temporal phenotyping experi-

ments, it can be applied on any other temporal data as long as the

format of the data holds. For example, we may apply TEP-Finder to

temporal gene expression data to identify a group of genes who ex-

hibit a coherent gene expression pattern during a continuous period

of the experiment. Alternatively, TEP-Finder can be applied on spa-

tial data such as high-throughput phenotype data collected with

unmanned aerial vehicles (Shi et al., 2016; Thorp et al., 2018). To

this end, TEP-Finder can be utilized to discover coherent patterns

during continuous spatial sub-regions.
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