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Abstract

Motivation: Computational approaches for predicting drug–target interactions (DTIs) can provide

valuable insights into the drug mechanism of action. DTI predictions can help to quickly identify

new promising (on-target) or unintended (off-target) effects of drugs. However, existing models

face several challenges. Many can only process a limited number of drugs and/or have poor prote-

ome coverage. The current approaches also often suffer from high false positive prediction rates.

Results: We propose a novel computational approach for predicting drug target proteins. The

approach is based on formulating the problem as a link prediction in knowledge graphs (robust,

machine-readable representations of networked knowledge). We use biomedical knowledge bases

to create a knowledge graph of entities connected to both drugs and their potential targets. We pro-

pose a specific knowledge graph embedding model, TriModel, to learn vector representations (i.e.

embeddings) for all drugs and targets in the created knowledge graph. These representations are

consequently used to infer candidate drug target interactions based on their scores computed by

the trained TriModel model. We have experimentally evaluated our method using computer simu-

lations and compared it to five existing models. This has shown that our approach outperforms all

previous ones in terms of both area under ROC and precision–recall curves in standard benchmark

tests.

Availability and implementation: The data, predictions and models are available at: drugtargets.

insight-centre.org.

Contact: sameh.kamal@insight-centre.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The development of drugs has a long history (Drews, 2000). Until

quite recently, pharmacological effects were often discovered using

primitive trial and error procedures, such as applying plant extracts

on living systems and observing the outcomes. Later, the drug devel-

opment process evolved to elucidating mechanisms of action of drug

substances and their effects on phenotype. The ability to isolate

pharmacologically active substances was a key step towards modern

drug discovery (Sneader, 2005; Terstappen et al., 2007). More re-

cently, advances in molecular biology and biochemistry allowed for

more complex analyses of drugs, their targets and their mechanisms

of action. The study of drug targets has become very popular with

the objective of explaining mechanisms of actions of current drugs

and their possible unknown off-target activities. Knowing targets of

potential clinical significance also plays a crucial role in the process

of rational drug development. With such knowledge, one can design

candidate compounds targeting specific proteins to achieve intended

therapeutic effects.

However, a drug rarely binds only to the intended targets, and

off-target effects are common (Xie et al., 2012). This may lead to

unwanted adverse effects (Bowes et al., 2012), but also to successful

drug re-purposing, i.e. use of approved drugs for new diseases

(Corbett et al., 2012). To illustrate the impact off-target effects can
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have in new therapy development, let us consider aspirin that is cur-

rently being considered for use as a chemopreventive agent

(Rothwell et al., 2010). However, such a therapy would be ham-

pered by known adverse side-effects caused by long-term use of the

drug, such as bleeding of upper gastrointestinal tract (Li et al.,

2017). After identifying the exact protein targets of aspirin that

cause these adverse effects, the proteins can be targeted by newly

developed and/or re-purposed drugs to avoid the unwanted side-

effects of the proposed treatment.

Large-scale and reliable prediction of drug–target interactions

(DTIs) can substantially facilitate development of such new treat-

ments. Various DTI prediction methods have been proposed to date.

Examples include chemical genetic (Terstappen et al., 2007) and

proteomic methods (Sleno and Emili, 2008) such as affinity chroma-

tography and expression cloning approaches. These, however, can

only process a limited number of possible drugs and targets due to

the dependency on laboratory experiments and available physical

resources. Computational prediction approaches have therefore

received a lot of attention lately as they can lead to much faster

assessments of possible drug–target interactions (Mei et al., 2013;

Yamanishi et al., 2008).

The work of Yamanishi et al. (2008) was one of the first

approaches to predict drug targets computationally. Their approach

utilized a statistical model that infers drug targets based on a bipart-

ite graph of both chemical and genomic information. The BLM-NII

(Mei et al., 2013) model was developed to improve the previous

approach by using neighbour-based interaction-profile inference for

both drugs and targets. More recently, (Cheng et al., 2012a, b)

proposed a new way for predicting DTIs, where they have used a

combination of drug similarity, target similarity and network-based

inference. The COSINE (Rosdah et al., 2016) and NRLMF (Liu

et al., 2015) models introduced the exclusive use of drug–drug and

target–target similarity measures to infer possible drug targets. This

has an advantage of being able to compute predictions even for

drugs and targets with limited information about their interaction

data. However, these methods only utilized a single measure to

model components similarity. Other approaches such as the

KronRLS-MKL (Nascimento et al., 2016) model used a linear com-

binations of multiple similarity measures to model the overall simi-

larity between drugs and targets. Non-linear combinations were also

explored in (Mei et al., 2013) and shown to provide better

predictions.

Recently, Hao et al. (2017) proposed a model called DNILMF

that uses matrix factorization to predict drug targets over drug in-

formation networks. This approach showed significant improve-

ments over other methods on standard benchmarking datasets (Hao

et al., 2017; Yamanishi et al., 2008). All the previously discussed

works were designed to operate on generic similarities of drug struc-

ture and protein sequence, therefore they can provide efficient pre-

dictions on new chemicals. More recently, approaches that

incorporate prior knowledge about drugs and targets were proposed

to enhance predictive accuracy on well-studied chemicals and tar-

gets. Such models may not be best suited to de novo drug discovery.

However, they may provide valuable new insights in the context of

drug repurposing and understanding the general mechanisms of

drug action. The current state-of-the-art work in this context is ar-

guably the DDR model (Olayan et al., 2018), which uses a multi-

phase procedure to predict drug targets from relevant heterogeneous

graphs. The gist of the approach is to combine various similarity in-

dices and random walk features gained from the input graphs by

means of non-linear fusion. Similarly, the NeoDTI model (Wan

et al., 2019) predicts DTIs using supporting information about drugs

and targets and a non-linear learning model over heterogeneous net-

work data.

Despite continuous advances of similarity based approaches like

DDR, these models depended on time-consuming training and pre-

diction procedures as they need to compute the similarity features

for each drug and target pair during both training and prediction.

Also, the models still have a high false positive rate, especially when

using large drug target interaction datasets like DrugBank_FDA

(Olayan et al., 2018).

Here, we propose a method utilizing prior knowledge about

drugs and targets, similarly to the DDR and NeoDTI model. Our

method overcomes the afore-mentioned limitations by approaching

the problem as link prediction in knowledge graphs. Knowledge

graphs are a data representation model that represents relational in-

formation as a graph, where the graph nodes represent entities and

edges represent relations between them. Facts are modelled as (sub-

ject, predicate, object) (SPO) triples, e.g. (Aspirin, Drug–Target,

COX-1), where a subject entity (drug) is connected to an object en-

tity (target protein) through a predicate relation (Drug–Target). In

recent years, knowledge graphs have been successfully used for

knowledge representation and discovery in many different domains,

including life sciences (Dumontier et al., 2014; Lehmann et al.,

2014; Mu~noz et al., 2019).

Our work utilizes the fact that the current drug target knowledge

bases like DrugBank (Wishart et al., 2006) and KEGG (Kanehisa

et al., 2017) are largely structured as networks representing infor-

mation about drugs in relationship with target proteins (or their

genes), action pathways and targeted diseases. Such data can natur-

ally be interpreted as a knowledge graph. The task of finding new

associations between drugs and their targets can then be formulated

as a link prediction problem based on knowledge graph embeddings

(Nickel et al., 2016).

We have proposed a new knowledge graph embedding based ap-

proach, TriModel, for predicting drug target interactions in a multi-

phase procedure. We first used the currently available knowledge

bases to generate a knowledge graph of biological entities related to

both drugs and targets. We then trained our model to learn efficient

vector representations (i.e. embeddings) of drugs and target in the

knowledge graph. These representations were then used to score

possible drug target pairs using a scalable procedure that has a linear

time and space complexity. We compared our method to other

state-of-the-art models using experimental evaluation on standard

benchmarks. Our results show that the TriModel model outper-

forms all other approaches in areas under ROC and precision recall

curve, metrics that are well suited to assessing general predictive

power of ranking models (Davis and Goadrich, 2006).

2 Materials

In this section we discuss the datasets that we used to train and

evaluate our model. We present the standard benchmarking data-

sets: Yamanishi_08 (Yamanishi et al., 2008) and DrugBank_FDA

(Wishart et al., 2008), and we present statistics for elements in both

datasets. We also discuss some flaws in the Yamanishi_08 dataset,

and we present a new KEGG based drug targets dataset that

addresses these flaws.

2.1 Standard benchmarks
The Yamanishi_08 (Yamanishi et al., 2008) and DrugBank_FDA

(Wishart et al., 2008) datasets represent the most frequently used

gold standard datasets in the previous state-of-the-art models for
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predicting drug targets (Olayan et al., 2018). The DrugBank_FDA

(Wishart et al., 2008) dataset consists of a collection of DTIs of

FDA approved drugs that are gathered from DrugBank Database

(https://www.drugbank.ca). The Yamanishi_08 dataset is a collec-

tion of known drug target interactions gathered from different sour-

ces like KEGG BRITE (Kanehisa et al., 2006), BRENDA

(Schomburg et al., 2004), SuperTarget (Günther et al., 2007) and

DrugBank (Wishart et al., 2008). It consists of four groups of drug

target interactions corresponding to four different target protein

classes: (i) enzymes (E), (ii) ion-channels (IC), (iii) G-protein-coupled

receptors (GPCR) and (iv) nuclear receptors (NR). The data in these

groups vary in terms of size and positive to negative ratios as shown

in Table 1, ranging from 90 known DTIs with 1:15 as in the NR

group to 2926 DTIs with 1:100 in the E group. These properties

of the datasets affect the effectiveness of both training and

evaluating models that use them. For example, the NR DTIs group

has the largest positive to negative ratio among all the groups in

the Yamanishi_08 dataset and therefore they are the easiest for

predictive models in terms of evaluation. Contrary to that, the state-

of-the-art models show the worst evaluation results on the NR

group compared to other groups. This happens due to the low num-

ber of available DTIs training instances, which affects the models’

generalization on the training data.

2.2 New KEGG based benchmarking dataset
The Yamanishi_8 benchmarking dataset was published in 2008, and

it contained drug target interactions from various sources including

the KEGG BRITE, BRENDA and SuperTarget databases

(Yamanishi et al., 2008). In recent years, these sources have wit-

nessed multiple developments [modifications, deletions, additions of

many brand new records to their data (Hecker et al., 2012; Placzek

et al., 2017)]. These modification have directly affected the

Yamanishi_08 dataset, where a subset of the identifiers of both its

drugs and targets has been modified through these developments.

This affects the ability to link these drugs and targets to their

corresponding properties, e.g. associated pathways, diseases, or

other biological entities in the recent versions of biological know-

ledge bases. These modifications have also included various newly

discovered drug target interactions that are not included in the

Yamanishi_08 dataset. For example, the KEGG database alone con-

tains 12 112 drug target interactions, while the total number of drug

target interactions in the Yamanishi_08 dataset is only 5127.

To overcome these limitations, we propose a new drug target

interaction benchmarking dataset that depends on recent versions of

biological knowledge bases and includes a larger set of drug target

interactions than the Yamanishi_08 dataset. We propose

KEGG_MED, a dataset which is collected by extracting all the drug

target interactions from the KEGG medicus database (https://www.

genome.jp/kegg/medicus.html). The KEGG_MED dataset contains

4284 drugs and 945 targets which are connected with 12 112 drug

target interactions. Table 1 shows a summary of statistics of the con-

tent on the dataset. Later in this paper, we report our results on this

new suggested benchmark (in addition to the comparative validation

on DrugBank_FDA) so that future approaches can be compared to

our model.

2.3 Supporting knowledge graphs
Link prediction with knowledge graph embedding models require

data to be modelled in a graph form, where the objective is to pre-

dict new links between graph entities. In the case of drug target

discovery, we use supporting data from biomedical knowledge bases

to generate informative graphs around drug target interactions.

We generate a knowledge graph for each dataset to provide descrip-

tive features for both drugs and targets. These knowledge graphs are

extracted from different sources like KEGG (Kanehisa et al., 2017),

DrugBank (Wishart et al., 2006), InterPro (Mitchell et al., 2019)

and UniProt (Consortium, 2017). In our study we use a customized

set of knowledge assertions about both drugs and targets.

Supplementary Appendix S1 and Supplementary Table S1 contain

more information about the relation types present in each know-

ledge graph, and about their construction. For further information

about the construction of such knowledge bases we refer to the

work of Himmelstein et al. (2017) that provides a study of systemat-

ic integration of biological knowledge for learning drug–target

interactions.

We generate a group-specific knowledge graph of information

extracted from KEGG and UniProt for each DTI groups in the

Yamanishi_8 dataset, while we use the DrugBank with UniProt

knowledge bases to model information about DTIs of the

DrugBank_FDA dataset. The information extracted in both cases is

modelled as a graph of interconnected biological entities (schema

shown in Fig. 1).

3 Methods

The knowledge graph embedding models we use follow a generative

approach to learn low-rank embedding vectors for knowledge

Table 1. Statistics of elements in the benchmarking datasets used

in this work

Dataset Group Drugs Proteins DTIs Corruptions P2N

Yamanishi_08 E 445 664 2926 �300K 1.00%

IC 210 204 1476 �41K 3.57%

GPCR 223 95 635 �21K 3.03%

NR 54 26 90 1314 6.67%

All 791 989 5127 �777K 0.66%

DrugBank_FDA — 1482 1408 9881 �2.1M 0.48%

KEGG_MED — 4284 945 12 112 �4M 0.30%

Note: The DTIs column represent the number of known drug target

interactions, the Corruptions column represent the number of all possible

combinations of drugs and targets that are not in the known drug target inter-

actions which is used as negative in model training and evaluation, and the

P2N column represents the ratio of positive to negative instances.
Fig. 1. A graph schema for a knowledge graph about drugs, their target

genes, pathways, diseases and gene networks extracted from KEGG and

UniProt databases
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entities and relations. For learning the embeddings, multiple techni-

ques can be used, such as tensor factorization [c.f. the DistMult

model (Bordes et al., 2013)] or latent distance similarity [c.f. the

TransE model (Yang et al., 2015)]. The goal of all these techniques

is to model possible interactions between graph embeddings and to

provide scores for possible graph links. In the following, we provide

details on the knowledge graph embedding procedure and the design

of our proposed model, TriModel.

3.1 Knowledge graph embedding
Knowledge graph embedding (KGE) models learn a low rank vector

representation of knowledge entities and relations that can be used

to rank knowledge assertions according to their factuality. They are

trained in a multi-phase procedure. First, a KGE model initializes all

embedding vectors using random noise values. It then uses these

embeddings to score the set of true and false training facts using a

model-dependent scoring function. The output scores are then

passed to the training loss function to compute training error. These

errors are used by optimizers like AMSGrad (Reddi et al., 2018) to

generate gradients and update the initial embeddings, where the

updated embeddings give higher scores for true facts and lower

scores for false facts. This procedure is performed iteratively for a

set of iterations, i.e. epochs in order to reach a state where the learnt

embeddings provide best possible scoring for both true and false

possible facts.

In the rest of this paper, we use E and R to denote the set all enti-

ties and relations in a knowledge graph respectively, where Ne and

Nr represent the number of instances in E and R respectively.

We also use HE and HR which denote the embeddings of entities and

relations respectively, where HEðiÞ is the embedding of entity i,

HRðjÞ is the embedding of relation j, and fmðs; r;o;HÞ denotes the

score of the fact that a subject entity s is connected to an object en-

tity o with a relation r based on the embedding values H of the

model m.

3.2 Embeddings representation
TriModel is a knowledge graph embedding model based on tensor

factorization that extends the DistMult (Yang et al., 2015) and

ComplEx (Trouillon et al., 2016) models. It represents each entity

and relation using three embedding vectors such that the embedding

of entity i is HEðiÞ ¼ fe1
i ; e

2
i ; e

3
i g where all embedding vectors have

the same size K (a user-defined embeddings size). Similarly, the

embedding of relation j is HRðjÞ ¼ fw1
j ;w

2
j ;w

3
j g. em and wm denote

the m part of the embeddings of the entity or the relation, and m 2
f1;2; 3g represents the three embeddings parts. The embeddings in

the TriModel model are initially with random values generated by

the Glorot uniform random generator (Glorot and Bengio, 2010).

The embedding vectors are then updated during the training proced-

ure to provide optimized scores for the knowledge graph facts.

3.3 Training procedure
The TriModel is a knowledge graph embedding model that follows

the multi-phase procedure discussed in Section 3.1 to effectively

learn a vector representation for entities and relation of a knowledge

graph. First, the model initializes its embeddings with random noise.

It then updates them by iterative learning on the training data.

In each training iteration i.e. epoch, the model splits the training

data into mini-batches and executes its learning pipeline over each

batch. The learning pipeline of the model learns the embeddings of

entities and relations by minimizing a negative softmax log-loss that

maximizes the scores of true facts and minimizes the scores of

unknown facts (assumed false during training). This loss is defined

as follows:

LTriModel
spo ¼ �/spo þ logð

P
o0 exp ð/spo0 ÞÞ

�/spo þ logð
P

s0 exp ð/s0poÞÞ

þ k
3

XK

k¼1

X3

m¼1

ðjem
s j

3 þ jwm
p j

3 þ jem
o j

3Þ
(1)

where x0 represents an entity e : e 6¼ x; e 2 E; em
i is the embedding

part m of the entity embedding HEðiÞ; wm
i is the embedding part m

of the relation embedding HRðiÞ; /spo denotes the score of the triple

(s, p, o), m denotes the embedding part index, k denotes a configur-

able regularization weight parameter and jxj is the absolute of x.

The term k
3

PK
k¼1

P3
m¼1ðjem

s j
3 þ jwm

p j
3 þ jem

o j
3Þ is the nuclear 3-norm,

which is a regularization term (Lacroix et al., 2018) that enhances

model generalization over datasets with large entity vocabularies.

The scores of the TriModel model are computed using an embed-

dings interaction function (scoring function) that is defined as

follows:

fTriModelðs; r;o;HÞ ¼
XK

e1
s w1

r e3
o þ e2

s w2
r e2

o þ e3
s w3

r e1
o: (2)

It uses a set of three interactions: one symmetric interaction:

(e2
s w2

pe2
o) and two asymmetric interactions: (e1

s w1
pe3

o) and (e3
s w3

pe1
o)

for a convenient graphical explanation of the interaction (see

Supplementary Fig. S2). This approach models both symmetry and

asymmetry in simple form similar to the DistMult (Yang et al.,

2015) model where the DisMult model can be seen as a special case

of the TriModel model if the first and third embeddings parts are

equivalent (e1 ¼ e3). We include more details about the training pro-

cedure in Supplementary Appendix S2.

4 Results

In this section we describe the configuration of the data used in the

experimentation, the evaluation protocol, the setup of our experi-

ments and the results and findings of our experiments. We also com-

pare the predictive accuracy of our model to selected existing

approaches, including the state-of-the-art one.

4.1 Evaluation protocol
In order to facilitate comparison with the state-of-the-art models,

we use a 10-fold cross validation (CV) to evaluate our model on the

Yamanishi_08 and DrugBank_FDA datasets. First, we split the drug

target interaction data into 10 splits i.e. folds. We then evaluate the

model 10 times on each split, where the model is trained on the

other 9 splits. This procedure is repeated 5 times and average results

across these runs are reported. This is to further minimize the impact

of data variability on the result stability.

In each training configuration we use the known drug target

interactions as positives, and all other possible combinations be-

tween the investigated dataset drugs and protein targets as negatives.

This yields different positive to negative ratios since the datasets

have different number of drugs, targets and drug target interactions

(see Table 1 for exact statistics of the ratios for each dataset).

We use the area under the ROC and precision recall curves

(AUC-ROC and AUC-PR respectively) as an indication of the

predictive accuracy of our model. We compute both metrics on the

testing data (DTIs), where we divide the testing data into three

groups: (i) Sp, containing testing drug target interactions where

both the drug and the target are involved in known drug target inter-

actions in the training data, (ii) Sd, containing testing drug target
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interactions which contain drugs that have no known drug target

interactions in the training data, (iii) St, containing testing data of tar-

gets that has not involved in any known drug target interactions in

the training data. The main reason for splitting the data this way was

that one of the methods could not be compared with the others on

the St, Sp data. The largest Sp group, however, generally exhibits least

fluctuations across particular cross-validation runs, and therefore it is

arguably most representative in terms of the comparative validation.

We also compute aggregated weighted AU-ROC, AU-PR scores

for comparing the different models regardless the data group. These

scores are defined as follows:

M ¼
X

g

xg �Mg; (3)

where g 2 fSp; Sd ; Stg, M represents the aggregated score (AUC-ROC

or AUC-PR), Mg is the specific score value for the group g, and xg is

the weight of the particular data group computed by dividing the num-

ber of instances in g by the total number of instances in Sp [ Sd [ St.

4.2 Experimental setup
We use the supporting knowledge graph to perform a grid search to

learn the model’s best hyperparameters. In all of our experiments we

initialize our model embeddings using the Glorot uniform random

generator (Glorot and Bengio, 2010) and we optimize the training

loss using the AMSGrad optimizer (Reddi et al., 2018), where the

learning rate ðlrÞ 2 f0:01; 0:02;0:03g, embeddings size ðKÞ 2 f50;

100;150; 200g and batch size ðbÞ 2 f128;256; 512;1024; 4000g.
The rest of the grid search hyper parameters are defined as follows:

the regularization weight ðkÞ 2 f0:1;0:3;0:35;0:01; 0:03; 0:035g,
dropout ðdÞ 2 f0:0; 0:1; 0:2; 0:01;0:02g. The number of training

epochs is fixed to 1000. The outcome best parameter for this grid

search is included in Supplementary Table S2.

We use Tensorflow framework (GPU) along with Python 3.5 to

perform our experiments. All experiments were executed on a Linux

machine with processor Intel(R) Core(TM) i70.4790K CPU @

4.00 GHz, 32 GB RAM, and an nVidia Titan Xp GPU. We include the

training runtime of the TriModel model for each cross-validation iter-

ation for all the investigated benchmarks in Supplementary Figure S1.

4.3 Comparison with state-of-the-art models
We evaluate our model on the Yamanishi_08 and DrugBank_FDA

datasets, and we compare our results to the following state-of-the-art

models: DDR (Olayan et al., 2018), NRLMF (Hao et al., 2017),

NRLMF (Liu et al., 2015), KRONRLS-MKL (Nascimento et al.,

2016), COSINE (Lim et al., 2016) and BLM-NII (Mei et al., 2013).

The comparison is made using the metrics of area-under-the-ROC

(AUC-ROC) and precision–recall (AUC-PR) curves.

Figure 2 presents overall results in terms of the AUC-ROC and

AUC-PR scores for all compared models. The overall scores are

combined across all testing configurations (Sp; Sd ; St) for each data-

set, where each specific score is computed as described in Eq. 3.

The results show that the TriModel model outperforms all other

models in terms of AUC-ROC and AUC-PR on every benchmarking

dataset. The TriModel model achieves a better AUC-PR score with a

margin of 4%, 2%, 3%, 3%, 4% on E, IC, GPCR, NR and

DrugBank_FDA datasets respectively. It should be noted that we did

not include the COSINE method in Figure 2 as it is specifically

designed to predict new drugs that do not have DTIs in the training

phase. As such, the description of the method only reports accuracy

on the new drug configuration (Sd), while the presented combined

scores require values of all three evaluation configurations.

Table 2 shows a detailed comparison of the TriModel model and

state-of-the-art models on all the standard benchmarking datasets

for the different evaluation settings Sp, Sd and St. It also shows the

relative number (in per cent) of drug–target statements available for

each of the three validation settings.

The results in Table 2 show that the TriModel model outper-

forms other state-of-the-art models on 13 out of 15 different AUC-

ROC experimentation configurations. In case of AU-PR, our model

is better 14 out of 15 configurations. The results also show that the

experimental configurations where our model is not the best repre-

sent a small portion of the total number of DTIs, while the

TriModel model provides consistently better results for the largest

Sp partition of the validation data.

Table 2 also show the results of the TriModel model on our pro-

posed KEGG_MEDD dataset, where the model’s AUC-PR scores

are 0.18, 0.18 and 0.94 and its AUC-ROC scores are 0.81, 0.58 and

0.99 on the configurations Sd, St and Sp respectively. No comparison

with existing tools has been performed as their published versions

cannot be directly applied to this dataset.

4.4 Limitations
Despite the very promising results achieved by the prior knowledge-

based models like DDR and TriModel, their predictive capabilities

are best suited to finding new associations between well-studied

drugs and targets (useful for instance in the drug repurposing con-

text). If one needs predictions for de novo drug discovery, the mod-

els that utilize drug structure and target sequence similarities (e.g.

Fig. 2. Bar chart for the values of the area under the roc curve (AUC-ROC) and area under the precision recall curve (AUC-PR) for the TriModel compared to other

state-of-the-art models on standard benchmarking datasets. All values are rounded to two digits and multiplied by 100 to represent a percentage (%). DB repre-

sents the DrugBank_FDA dataset
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BLM-NII, COSINE, KRONRLS-MKL, NRLMF or NRLMF) will

likely deliver better results.

4.5 Web application for exploring the TriModel

predictions
To let users explore our results, we have designed a web application

(Hosted at: http://drugtargets.insight-centre.org). The application

allows for searching the predictions of the TriModel model. One

can look for predictions using either drugs or targets as queries.

Queries concerning multiple entities are possible simply by append-

ing new terms to the search query. The results are presented as a

table of the TriModel model scores of all the possible drug–target

associations of the searched term.

The predictions provided by the web application are learnt by training

the TriModel model on all the Yamanishi_08 dataset. The prediction

scores are then computed for all possible drug–target combinations

induced by the dataset. The scores of known drug interactions in the

Yamanishi_08 dataset are set to 1, while the scores of all other drug target

interactions are the normalized outcome of the TriModel predictions. The

table of predictions in the application indicates the origin of each score,

where a unique label ‘Experimental Evidence’ is given to known DTIs

and another label ‘Model Prediction’ is assigned to the predicted scores.

5 Discussion

In the following we discuss possible reasons for the improved per-

formance of our approach when compared to existing methods.

We also review the limitations of the current DTI prediction bench-

marks and discuss impact of data stratification on the predictive

power of the models. Last but not least, we present tentative results

in expert-based validation of predictions of our model that are not

covered by the benchmark datasets. These results show high promise

in terms of actual new discoveries predicted by our model.

5.1 Distinctive features of the presented approach
The relative success of the TriModel model can be attributed to

two distinctive features not present in the state-of-the-art models.

Firstly, we model input for the training as knowledge graphs. This

allows for encoding multiple types of associations within the same

graph and thus utilizing more complex patterns. Other models that

use graph-based data are limited in this respect as they only employ

networks with single relation type. Secondly, the TriModel model

uses a generative approach to learn efficient representations for both

drugs and their targets. This approach enables scalable predictions of

large volumes of drug–target interactions as it uses linear training time

(Nickel et al., 2016) and constant prediction time, which is not the

case of the existing works. Furthermore, the TriModel model is able

to predict other biological associations within the training data (e.g.

drug and target pathways) with no extra computational effort. This

shows substantial promise for further development of this technique.

5.2 Impact of data stratification on the predictive power
The Yamanishi_08 dataset is divided into four groups of DTIs accord-

ing to the functionality of the target proteins. The groups are enzymes

(E), ion-channels (IC) G-protein-coupled receptors (GPCR) and nuclear

receptors (NR). The objective of this categorization is to distinguish be-

tween models specifically tailored to predicting targets associated with

a particular drug class (Yamanishi et al., 2008). Olayan et al. (2018)

confirmed that organizing the drug target interactions into groups

according to the target’s biological functionality enhances the predict-

ive accuracy of models trained on such stratified data.

Based on our observations, we suggest a different explanation.

The differences in performance appear to correlate with the relative

numbers of negative examples in the grouped and full dataset con-

figuration. Table 1 shows that the full Yamanishi_08 dataset config-

uration has a 0.66% positive to negative ratio, while the groups E,

IC, GCPR and NR have 1, 3.57, 3.03 and 6.67% respectively. These

differences can explain the variability of model performance quite

well, since predicting positive instances is generally harder with

more negatives present in the data (Liu et al., 2007). In addition,

dividing the DTI information gives rise to groups like the GPCR and

NR groups. These contain only a small number of true DTIs (635

and 90 DTIs respectively), which further hampers the ability of

models to generalize well (as we show in Section 2).

5.3 Validating the discovery potential of TriModel
Good performance of a model in benchmark tests is no doubt im-

portant. For various reasons like overfitting or training data

Table 2. A comparison with state-of-the-art models on standard datasets using multiple configurations (Sp ;Sd ;St )

Note: The state-of-the-art results were obtained from (Olayan et al., 2018). The count (%) represents the percentage of the configuration instances, and the DB

and KM columns represent DrugBank_FDA and KEGG_MED respectively. All the experimental configurations on all the datasets are evaluated using a 10-fold

cross validation which is repeated 5 times. The M. column represents metrics. The Ft. column represents model’s feature type. The structure feature type repre-

sents protein and drug structure based features and Ext. denotes extensive prior knowledge features. Underlined scores represent the best scores in their feature

category while the overall best results are in bold and highlighted with green colour. (Color version of this table is available at Bioinformatics online.)
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imbalances, however, good benchmark results may not necessarily

mean that the model can effectively support new discoveries.

Laboratory validation can ultimately confirm the model predic-

tions as actual discoveries, but this is costly and time-consuming to

be done at large scale. One can, however, perform alternative vali-

dations of the predictions using data that was not used for training

the model. Such complementary validation can provide stronger

foundations for claiming a model has high generalization power.

We have performed a complementary validation of the TriModel’s

predictions by manual analysis of top-10 drug–target associations per

each of the examined benchmarking datasets. To decide whether or not

the associations are true positives, we reviewed available literature. We

only validated the predictions that were not part of the training data.

The validation outcome shows that the TriModel model achieves 7 out

of 10, 7 out of 10, 8 out of 10, 7 out of 10 and 6 out of 10 true predic-

tions on the E, IC, GPCR, NR, DB datasets respectively. A detailed ver-

sion of the validated predictions is included in Supplementary Table S3.

One can easily see that our model puts actual drug–target intro-

ductions (some of which were only recently discovered) high up in

the result list. This is very promising for further development of the

model and its deployment in clinical application scenarios.

6 Conclusions and future work

In this work, we have approached the problem of predicting new drug

targets as a link prediction task in biomedical knowledge graphs. We

have presented the TriModel model, a knowledge graph embedding

model that can efficiently predict new drug target interactions. We have

generated knowledge graphs of biological entities related to drugs and

targets using available biological knowledge bases like KEGG, UniProt

and DrugBank. We have then used these knowledge graphs to train the

TriModel model to learn efficient vector representation for both drugs

and targets. In experiments using a standard benchmark data, we have

demonstrated that the TriModel model outperforms state-of-the-art

models in terms of both the area under ROC and precision recall curves.

Our study has also led to several secondary findings and contri-

butions. We have shown that dividing datasets of drug target inter-

actions into groups based on target properties does not positively

affect the predictive accuracy of computation models. It can result in

groups with very few drug target interactions, which negatively

affects the accuracy of learnt models. Last but not least, we have

developed a new KEGG based drug target interactions dataset that

tackles the issues in the Yamanishi_08 dataset, and provides a richer

set of up-to-date drug target interactions.

In future, we intend to explore how incorporation of more con-

text data relevant to the target prediction problem can further im-

prove the accuracy of our model. Last but not least, we will validate

selected predictions of our model in laboratory experiments to dem-

onstrate the clinical relevance of our results.
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