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Abstract

Motivation: The identification of sub-populations of patients with similar characteristics, called

patient subtyping, is important for realizing the goals of precision medicine. Accurate subtyping is

crucial for tailoring therapeutic strategies that can potentially lead to reduced mortality and

morbidity. Model-based clustering, such as Gaussian mixture models, provides a principled and in-

terpretable methodology that is widely used to identify subtypes. However, they impose identical

marginal distributions on each variable; such assumptions restrict their modeling flexibility and

deteriorates clustering performance.

Results: In this paper, we use the statistical framework of copulas to decouple the modeling of mar-

ginals from the dependencies between them. Current copula-based methods cannot scale to high

dimensions due to challenges in parameter inference. We develop HD-GMCM, that addresses

these challenges and, to our knowledge, is the first copula-based clustering method that can fit

high-dimensional data. Our experiments on real high-dimensional gene-expression and clinical

datasets show that HD-GMCM outperforms state-of-the-art model-based clustering methods, by

virtue of modeling non-Gaussian data and being robust to outliers through the use of Gaussian

mixture copulas. We present a case study on lung cancer data from TCGA. Clusters obtained from

HD-GMCM can be interpreted based on the dependencies they model, that offers a new way of

characterizing subtypes. Empirically, such modeling not only uncovers latent structure that leads

to better clustering but also meaningful clinical subtypes in terms of survival rates of patients.

Availability and implementation: An implementation of HD-GMCM in R is available at: https://bit

bucket.org/cdal/hdgmcm/.

Contact: vaibhav.rajan@nus.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In several diseases, including cancer, patients exhibit a remarkable

degree of variation, in genetic landscape, lifestyle and environmental

factors, and this heterogeneity presents a formidable challenge to

healthcare (Saria and Goldenberg, 2015). Precision medicine

attempts to address this challenge by tailoring diagnostic, prognostic

and therapeutic strategies to patient sub-populations with similar

characteristics; the identification of such groups is called patient

subtyping or stratification (Mirnezami et al., 2012). Development of

computational approaches that can leverage high-throughput mo-

lecular data for subtyping is an active research area, with a broader

goal of gaining deeper understanding of associations between bio-

logical entities such as genes, proteins and drugs, to expand our sci-

entific knowledge (Lin et al., 2019).

Clustering has been successfully used for subtyping, e.g. in lung

cancer subtyping using gene-expression data (Chen et al., 2013),

and pan-cancer integrative analysis using multiple high-throughput

measurements (Hoadley et al., 2014), that have led to improved

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 621

Bioinformatics, 36(2), 2020, 621–628

doi: 10.1093/bioinformatics/btz599

Advance Access Publication Date: 1 August 2019

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/2/621/5542387 by guest on 20 April 2024

http://orcid.org/0000-0002-6748-6864
https://bitbucket.org/cdal/hdgmcm/
https://bitbucket.org/cdal/hdgmcm/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz599#supplementary-data
https://academic.oup.com/


outcome prediction and new taxonomies with valuable prognostic

information. High-dimensionality, where the number of samples (n)

is lower than the number of dimensions (p) is a common characteris-

tic of omics datasets, and is known to deteriorate the performance

of classical clustering algorithms (McWilliams and Montana, 2014).

A common approach is to employ dimensionality reduction (e.g.

through PCA) before clustering: such methods often lack interpret-

ability, are not sufficiently robust or yield suboptimal results

(Bouveyron and Brunet-Saumard, 2014).

Mixture models are a principled statistical approach to clustering,

where inferred clusters can be interpreted through the lens of the under-

lying distributional assumptions. On gene-expression datasets, mixture

models were found to outperform widely used classical methods like

K-means and hierarchical clustering (Thalamuthu et al., 2006).

Although mixture models are over-parameterized in high dimensions,

which make parameter inference difficult, variable selection techniques

and parsimonious covariance structures alleviate the problems to a

large extent and enable their use in subtyping (Baek and McLachlan,

2011; Städler et al., 2017; Xie et al., 2010). However, through the

choice of the multivariate distribution, model-based clustering imposes

distributional assumptions on the marginals, along each dimension,

and these marginal distributions are assumed or forced to be identical

(e.g. a multivariate normal imposes univariate normal distribution on

each marginal); such assumptions restrict their modeling flexibility.

The statistical framework of copulas provides a modular param-

eterization of multivariate distributions that decouples the modeling

of marginals from the dependencies between them. Various paramet-

ric families model both the strength and shape of dependencies (see

Fig. 1). This allows each marginal to be chosen independently from

any distribution and the dependency model offers a richer character-

ization than single-number metrics like Pearson’s or Spearman’s cor-

relation coefficients. Thus, when interest lies mainly in discovering

feature dependencies, copulas provide an elegant model of dependen-

cies with no restrictive assumptions on the marginals. Such models

have been used extensively in finance (Patton, 2009) and more recent-

ly in dependency clustering that discovers clusters based on their de-

pendency patterns (Rajan and Bhattacharya, 2016; Rey and Roth,

2012; Tekumalla et al., 2017). For many applications, including clus-

tering, a semi-parametric model works well, where copulas are used

to model dependency patterns, assuming no fixed parametric model

for the marginals. However, copulas are rarely used in high-

dimensional settings—either parameter estimation is intractable or

they lose their modeling flexibility (Joe, 2014).

In this paper, we present a copula-based method, called

HD-GMCM, for dependency clustering of high-dimensional data.

We use a specific copula model, the Gaussian mixture copula model

(GMCM) that can model a wide variety of dependencies including

asymmetric, tail and multimodal dependencies (Bhattacharya and

Rajan, 2014; Bilgrau et al., 2016). HD-GMCM uses Alternating

Expectation Conditional Maximization (AECM) for parameter esti-

mation. To overcome the limitations of previous parameter estima-

tion methods for GMCM and enable HD-GMCM to scale to high

dimensions, we use constrained covariance structures (McNicholas

and Murphy, 2008), to reduce the local dimensionality of each clus-

ter. This reduces the number of parameters to be estimated at high

dimensions but induces a model selection problem that we address

through the use of a penalized likelihood approach with the LASSO

penalty (Khalili and Chen, 2007). To our knowledge, HD-GMCM

is the first copula-based clustering model that can fit high-

dimensional data, where p>n.

Our experiments on several real high-dimensional gene-expression

and clinical datasets show that HD-GMCM outperforms state-of-the-art

model-based clustering methods. With a marginal-free copula-based

approach, HD-GMCM is better at modeling non-Gaussian data and

is found to be robust to outliers in our experiments. We present a

case study on lung cancer, where we illustrate the benefits of

HD-GMCM for both dependency analysis and clustering. Clusters

obtained from HD-GMCM can be interpreted based on the depend-

encies they model. Such modeling not only uncovers latent structure

that leads to better clustering but also meaningful subtypes in terms

of survival rates of patients. We believe that further analysis of such

dependency patterns may also lead to more fine-grained character-

ization of associations between biological entities to gain deeper

insights on their interactions.

2 Related work

2.1 Model-based clustering of high-dimensional data
For a review on model-based clustering of high-dimensional data

and a discussion on information loss due to dimensionality reduc-

tion before clustering, see Bouveyron and Brunet-Saumard (2014).

Two categories of approaches have been developed for model-based

clustering of high-dimensional data:

(1) Subspace clustering methods cluster data and simultaneously

attempt to reduce locally each cluster’s dimensionality. Mixture of

Fig. 1. Copulas enable independent parameterization of marginals and dependencies: (left) Gaussian copula models symmetric dependencies, with Gamma and

Gaussian marginals; (center) Clayton copula models lower tail dependencies (where lower values have higher dependence than higher values in the two varia-

bles), with Gaussian marginals; (right) Clayton copula, with Student’s t and exponential marginals. Various copula families define the shape of the dependencies

while their parameters determine the strength of association
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factor analyzers (MFA) (Ghahramani and Hinton, 1997; McLachlan

et al., 2003) is one of the earliest such approaches. Since the number

of covariance parameters grows quadratically with the data dimen-

sionality, constrained covariance structures were introduced in MFA

through a family of parsimonious Gaussian mixture models

(PGMMs; McNicholas and Murphy, 2008; McNicholas et al., 2010).

Bouveyron et al. (2007) developed HDDC that uses a combination of

subspace clustering and parsimonious modeling for GMMs.

(2) Variable selection methods select relevant variables for clus-

tering that are assumed to primarily determine the cluster structure

in the data. A recent review on variable selection methods in model-

based clustering can be found in Fop et al. (2018). A broad class of

techniques uses penalized clustering criteria (Pan and Shen, 2007).

Marbac and Sedki (2017) proposed a clustering method,

VarSelLCM, with an efficient inference algorithm through the use of

a new information criterion. Using this criterion simplifies model se-

lection and works particularly well for p>n cases, for moderately

large n. In a recent work on subtyping, Gaussian graphical models

were used for high-dimensional clustering in MixGlasso (Städler

et al., 2017). They also use a penalized likelihood that adapts to the

number of clusters, sample size and scale of the clusters.

2.2 Copulas and mixture models
Due to their flexible characterization of multivariate distributions,

mixtures of copulas have been used in various contexts (Fujimaki

et al., 2011; Kosmidis and Karlis, 2016; Rey and Roth, 2012). None

of these address the problems of clustering high-dimensional data.

Vine copulas, that are hierarchical collections of bivariate copulas,

can scale to moderately high dimensions but at the cost of exponen-

tially increasing complexity for model selection and estimation

(Müller and Czado, 2018). Elidan (2013) provides a comparison of

copulas with machine learning models including a discussion on fit-

ting copulas to high-dimensional data.

The GMCM was proposed by Tewari et al. (2011). Unlike mixtures

of copulas, GMCM is a copula family where the (latent) copula density

follows a Gaussian mixture model (GMM; the following section has

details). This has considerable advantages for copula-based clustering

since clusters can be inferred directly from the dependencies obviating

the need for marginal parameter estimation. This was leveraged for clus-

tering by Bhattacharya and Rajan (2014) who designed an expectation

maximization (EM) algorithm for GMCM parameter estimation. An

improved mixed EM and Gibbs sampling-based approach, for clustering

was designed by Rajan and Bhattacharya (2016) to fit both real and or-

dinal data. Bilgrau et al. (2016) discuss computational and statistical hur-

dles in GMCM parameter estimation and offer some resolutions, but

none of these methods work well for clustering high-dimensional data.

In a related work, Li et al. (2011) studied a specific case of GMCM to

design a meta-analysis method called reproducibility analysis, that can

be used to verify the reliability and consistency of multiple high-

throughput experiments.

3 Background

Consider n i.i.d. instances of p-dimensional data, X ¼ ½xij�n�p ¼
ðX1; . . . ;XpÞ, where i denotes the observation and j denotes the dimen-

sion. Single subscript denotes the index along dimension, unless speci-

fied otherwise. For example Xj denotes the jth dimension of data.

3.1 Gaussian mixture model (GMM)
Let / denote the multivariate normal distribution. The probability

density function (PDF) of a G-component GMM is given by

Gðx;#Þ ¼
PG

g¼1 pg/ðx; lg;RgÞ, with mixing proportions pg > 0 such

that
PG

g¼1 pg ¼ 1, component-specific mean vectors, lg, and covari-

ance matrices, Rg. We use # ¼ ðp1; . . . pG; l1; . . . ; lG;R1; . . . ;RGÞ to

denote all the parameters.

3.2 Copulas
Let Fj denote the marginal cumulative distribution function (CDF) of

Xj along the jth dimension. A CDF transformation, Uj ¼ FjðXjÞ, maps

a random variable to a scalar that is uniformly distributed in ½0; 1�.
However, the joint distribution of all p marginal CDFs is not uniform

and is modeled by a copula, which is a multivariate distribution func-

tion C : ½0;1�p ! ½0; 1�, defined on random variables Uj. Copulas

uniquely characterize continuous joint distributions (Sklar, 1959): for

every joint distribution with continuous marginals, FðX1; . . . ;XpÞ,
there exists a unique copula function such that FðX1; . . . ;XpÞ ¼
CðF1ðX1Þ; . . . ; FpðXpÞÞ; and the converse is also true. It can be shown

that the corresponding joint density is given by the product of the indi-

vidual marginal densities fj and the copula density c:

f ðxÞ ¼ cðF1ðx1Þ; . . . ;FpðxpÞÞPp
j¼1fjðxjÞ: (1)

Equation (1) shows how copulas enable flexible constructions of

multivariate densities by decoupling the specification of marginals

(fj) and dependence structure (c), thus allowing us to choose each

parametric family independently from each other (as shown in

Fig. 1). Equation (2) [derived from (1)], illustrates how copula fami-

lies can be defined by the choice of the joint density f that determines

the dependence structure:

cðU1; . . . ;UpÞ ¼
f ðxÞ

Pp
j¼1fjðxjÞ

: (2)

3.3 GMCM
In GMCM, the dependence is obtained from a GMM. Let Wjð#Þ and

wjð#Þ denote the jth marginal CDF and PDF, respectively, of Gð#Þ.
Let W�1

j denote the inverse CDF and Yj ¼ W�1
j ðUjÞ. Using Eq. (2),

we obtain the GMCM copula density:

cGðU;#Þ ¼
GðW�1

j ðUÞÞQp
j¼1 wjðW�1

j ðUjÞÞ
(3)

GMCM can be used to obtain cluster labels l 2 f1; . . . ;Gg
through a semi-parametric MAP estimate arg maxlPðl ¼ gj#;XÞ,
using rank-transformed marginals in the data as estimates of Uj

(Bhattacharya and Rajan, 2014). Supplementary Appendix SA pro-

vides a more detailed description of copulas and GMCM.

3.4 GMCM parameter inference
Semi-parametric inference of GMCM, for applications that use only

the dependence structure, obtains estimates of copula parameters #,

without estimating the marginal parameters. Maximizing the copula

likelihood cG is difficult and, in practice, the pseudo-likelihood:

L ¼
Yn

i¼1

XG
g¼1

pg/ðyijlg;RgÞ (4)

is used. Genest et al. (1995) study the properties of estimates based

on the pseudo-likelihood and show that for continuous-valued mar-

ginals, the estimator is consistent and asymptotically normal. Such

estimates have been used for the Gaussian copula (Hoff et al.,

2007). However, even obtaining a maximum likelihood estimate

through the pseudo-likelihood, arg max#LðUÞ, poses challenges for

GMCM that are discussed in detail by Bilgrau et al. (2016).
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The main challenge is due to the inverse CDF W�1
j that has no

closed-form expression. A Pseudo Expectation Maximization (PEM)

approach (Bilgrau et al., 2016; Tewari et al., 2011) iteratively alter-

nates between estimating yij ¼ W�1
j ðÛj ;#Þ and updating # by E and M

steps. They use a grid search-based heuristic to compute the

inverse CDF. However, this is prohibitively expensive as it scales expo-

nentially with dimensionality. Moreover, since the estimates Ûj are not

constant across iterations of PEM, there is no guarantee of conver-

gence, resulting in biased estimates. Bhattacharya and Rajan (2014) de-

sign an algorithm using an approximation to yij (Eq. (5)) and prove its

convergence. But empirically, its clustering performance is found to de-

teriorate with increasing data dimensionality, particularly when p>n.

Another reason why previous inference methods cannot fit high-

dimensional data is due to a matrix inversion step during covariance

estimation. When n � p the matrix is singular and the inversion

fails. To address this problem we impose constraints on the covari-

ance matrix through PGMM (McNicholas and Murphy, 2008) (see

Supplementary Appendix SA for a summary of PGMM). The use of

PGMM enables a parsimonious GMCM model in a q-dimensional

space where q<p and avoids singular matrices. But this poses a new

problem of model selection, since now we have to select the covari-

ance structure family as well as the number of latent factors. So, we

use a model selection criterion—the LASSO-penalized BIC (LPBIC),

which is designed for high-dimensional settings for the PGMM fam-

ily (Bhattacharya and McNicholas, 2014).

4 HD-GMCM: our inference algorithm

Our new inference algorithm, called HD-GMCM, uses the penalized

likelihood approach (Khalili and Chen, 2007), with an LASSO pen-

alty for the mean parameters of G. We maximize:

Lpen ¼ logLð#jxÞ �
XG
g¼1

pg

Xp

j¼1

uðlgjÞ

where uðlgjÞ ¼ nknjlgj � cjj, where lgj is the jth element in lg, c is

the mean of all the data points and kn is a tuning parameter that

depends on n.

HD-GMCM uses the approximate expression for yij in terms of the

CDF uij derived in Bhattacharya and Rajan (2014). For each i and j, yij

can be approximated as follows (Proof in Supplementary Appendix SB):

y �
XG
g¼1

pg

rg

ffiffiffiffiffiffi
2p
p

0
@

1
A
�1

u� 0:5þ
XG
g¼1

pglg

rg

ffiffiffiffiffiffi
2p
p

0
@

1
A

2
4

3
5 (5)

In addition, we apply another crucial condition on the inverse

distribution values: in any iteration, if the computed yij value is out-

side the range defined by condition 6, we set the value of yij to the

nearest boundary point of the range, to satisfy the condition. This

step does not decrease the likelihood at each iteration of the algo-

rithm, as shown in the proof of Theorem 1.

jðyðtþ1Þ
ij � y

ðtÞ
ij Þj � j2j� 2y

ðtÞ
ij j; where j ¼ min

j;g
ðl̂jgÞ (6)

To estimate the parameters, we use the AECM algorithm

(McNicholas et al., 2010; Meng and Van Dyk, 1997). There are two

stages of the algorithm. At the first stage of the algorithm, when esti-

mating p̂g and l̂g, we define ẑi ¼ ðẑ i1; . . . ; ẑiGÞ showing the compo-

nent membership of the ith observation: ẑig ¼ 1 if yi belongs to the

gth component and ẑ ig ¼ 0 otherwise. The component memberships

ẑ i are treated as the missing data at the first stage. So, the expected

complete data log-likelihood is

Qðp̂; l̂Þ ¼
Xn

i¼1

XG
g¼1

ẑ ig log p̂g

þ
Xn

i¼1

XG
g¼1

ẑ ig log f/ðyijl̂g; R̂gÞg � uðl̂Þ;

where ẑig ¼ p̂g/ðyijl̂g; R̂gÞ=
PG

j¼1 p̂ j/ðyijl̂g; R̂gÞ: The M-step

maximizes Q to update the parameter estimates pg and lg. The estima-

tion of pg is complicated and as seen in Khalili and Chen (2007), we also

empirically observe good results with p̂g ¼
Pn

i¼1
ẑ ig

n . The mean parameter

estimate is as follows (derivation in Supplementary Appendix SC), where

bg is a vector with p elements, its jth element being signðl̂m
gj � cjÞ:

l̂g ¼
Pn

i¼1 ẑigyiPn
i¼1 ẑ ig

� nknp̂gR̂gbg (7)

At the second stage of the AECM algorithm, we take the missing

data as the group labels zi and the unobserved latent factors q to

estimate the covariance matrix using a PGMM structure. The com-

ponent covariance matrices R̂1; . . . ; R̂G are updated, depending on

the family of PGMM model used, using analytic expressions found

in McNicholas and Murphy (2008). These two stages are iterated

until convergence, i.e. until the change in pseudo-likelihood is less

than a pre-defined threshold c (jLðtþ1Þ � LðtÞj < c) or until a mono-

tonic increase in copula likelihood (cG) is observed. The tuning par-

ameter kn can be chosen by cross-validation. Some choices suggested

Algorithm 1. HD-GMCM

Input: Observed n datapoints [as n�p-dimensional matrix

X ¼ ðx1; x2; . . . ; xpÞ] and number of clusters G.

Initialize: Set #ð0Þ using random start or K-means clustering

under the constraints that p̂ð0Þg > 0;
PG
g¼1

p̂ð0Þg ¼ 1 and R̂ð0Þg is

positive definite. Set uij ¼ ~FjðxijÞ (percentile ranks).

repeat

Reset y:

y
ðtþ1Þ
ij ¼

XG
g¼1

p̂ðtÞgffiffiffiffiffiffi
2p
p

r̂ðtÞg;jj

0
@

1
A
�1

uij þ
1ffiffiffiffiffiffi
2p
p

XG
g¼1

p̂ðtÞg l̂ðtÞgj

r̂ðtÞg;jj

� 1

2

2
4

3
5

ensure that

jðyðtþ1Þ
ij � y

ðtÞ
ij Þj � j2j� 2y

ðtÞ
ij jwhere j ¼ minðl̂ jgÞ

j;g

:

Stage I

ẑ
ðtþ1Þ
ig ¼

p̂ðtÞg /ðyðtÞi jl̂
ðtÞ
g ; R̂ðtÞg ÞPG

g¼1 p̂ðtÞg /ðyðtÞi jl̂
ðtÞ
g ; R̂ðtÞg Þ

p̂ðtþ1Þ
g ¼

Pn
i¼1 ẑ

ðtÞ
ig

n

l̂tþ1
g ¼

Pn
i¼1 ẑ

ðtþ1Þ
ig yiPn

i¼1 ẑ
ðtþ1Þ
ig

� nknp̂gR̂
ðtÞ
g bt

g

Stage II

R̂ðtþ1Þ
g is estimated based on the PGMM family used.

until convergence criterion is met:
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by previous authors include kn ¼ ðlog nÞ1=2=np and kn ¼ 1=p

(Bhattacharya and McNicholas, 2014). The complete HD-GMCM

method is shown in Algorithm 1. Due to the inexact update used for

p̂g, stages I and II of AECM do not guarantee monotonic increase of

likelihood. However, empirically we observe monotonic increase in

all our experiments as discussed in Supplementary Appendix SH. In

Supplementary Appendix SD, we prove that the introduction of our

approximation in the ‘Reset y’ step preserves the property of mono-

tonic increase in likelihood in each iteration.

Theorem 1. In Algorithm HD-GMCM, the estimates of y from (5) and

(6) in the ‘Reset y’ step preserves the property of monotonic increase in

the likelihood L over each iteration.

4.1 Computational complexity
The time complexity is dominated by the computation of / for cal-

culating z
ðtþ1Þ
ig in stage I of each iteration. The worst-case time com-

plexity for each iteration is given by OðnqGp2Þ. Empirically, we

obtained good results with just a few (<10) iterations.

4.2 Model selection
The Bayesian Information Criterion (BIC) is commonly used for selecting

the number of components and was empirically found to be effective for

the GMCM model (Bhattacharya and Rajan, 2014). However, in high

dimensions, BIC is prone to under-estimating the number of components

(Giraud, 2014). To address this problem for mixture models an LPBIC

was proposed by Bhattacharya and McNicholas (2014), that can be used

to select the number of latent factors (q), PGMM covariance structure

family as well as the number of components (G). LPBIC can be applied

in our case since we use a penalized likelihood (Lpen)-based model.

5 Experiments

5.1 Clustering performance on real datasets

Baseline methods: We compare the performance of HD-GMCM on

clustering tasks (here, the number of clusters is assumed to be

known) with state-of-the-art model-based clustering algorithms

HDDC (Bouveyron and Brunet-Saumard, 2014), VarSelLCM

(Marbac and Sedki, 2017) and MixGlasso (Städler et al., 2017). We

also compare with the previous best GMCM-based clustering algo-

rithms: GMCM (Bilgrau et al., 2016) and EGMCM (Rajan and

Bhattacharya, 2016). We use GMMs, PGMM (McNicholas et al.,

2018) and K-means as additional baselines. R implementations (R

Core Team, 2018) were used in all cases. For all the EM-based algo-

rithms including HD-GMCM, five different K-means initializations

were used, where K-means itself uses a random initialization. The

result with the best BIC is reported.

Evaluation metrics. We use Adjusted Rand Index (ARI) (Hubert

and Arabie, 1985) and Adjusted Mutual Information (AMI) (Vinh

et al., 2010). In both metrics higher values indicate better clustering.

Both metrics are 0 for independent clusterings, have maximum value

1 for identical clusterings and can be negative.

Datasets. We use eight publicly available gene-expression data-

sets: Leukamia (Wouters, 2011), Colon Cancer (Boulesteix et al.,

2011), Prostrate (Chung et al., 2018), Breast Cancer (Hothorn,

2018), Khan500 and NC160 (James et al., 2017) and Lusc-Methyl

and Lusc-rnaseq (Weinstein et al., 2013). We also use a clinical data-

set, SCADI that has attributes of children with physical and motor

disability (Zarchi et al., 2018). We follow the preprocessing steps

described in McWilliams and Montana (2014). Statistics of the data-

sets are shown in Table 1.

Results. Table 1 shows the ARI and AMI obtained by HD-

GMCM and baseline methods on each dataset. In six out of the nine

cases, HD-GMCM outperforms GMCM, GMM, PGMM, K-means,

VarSelLCM, HDDC and MixGlasso. Out of the remaining three

cases, performance of HD-GMCM is comparable to that of the best

performing algorithm. Algorithms GMCM and GMM (not shown)

fail to cluster any of the datasets. GMCM fails in the covariance esti-

mation step (details in Section 3) while GMM and HDDC, that as-

sume Gaussian data, are affected by outliers (also discussed in

Section 5.2).

We evaluate the effect of varying cluster signal in the data. Our

experiments (in Supplementary Appendix SF) show that HD-

GMCM outperforms other baselines when the clusters are not well

separated, while the simpler K-means outperforms HD-GMCM as

well as other baselines designed for high-dimensional data (HDDC

Table 1. Performance of HD-GMCM and baselines on real datasets

Dataset n p G Metric HD-GMCM EGMCM GMCM HDDC VarSelLCM MixGlasso K-means PGMM

Leukamia 38 999 3 ARI 0.59 0.185 — 0.133 0.291 — 0.226 0.226

AMI 0.49 0.256 — 0.245 0.4 — 0.158 0.158

SCADI 70 206 7 ARI 0.297 0.034 — 0.247 0 — 0.210 0.334

AMI 0.377 0.058 — 0.341 0 — 0.397 0.434

Colon cancer 62 2000 2 ARI 0.156 �0.005 — �0.025 0.018 — �0.026 �
AMI 0.083 �0.006 — 0.031 0 — 0.031 �

Khan500 63 500 4 ARI 0.116 0.181 — 0.057 0.085 0.16 0.178 0.159

AMI 0.201 0.337 — 0.167 0.198 0.32 0.163 0.319

Breast cancer 49 500 2 ARI 0.132 0.010 — 0.004 �0.011 — 0.000 0

AMI 0.098 0.015 — 0 �0.016 — 0.004 0

NC160 64 500 14 ARI 0.37 0.36 — 0 0.309 — 0.439 �
AMI 0.434 0.428 — 0 0.385 — 0.426 �

Prostrate 102 300 2 ARI 0.13 0 — 0 0 — 0.058 0.026

AMI 0.097 0 — 0 0 — 0.052 0.012

Lusc-rnaseq 130 206 2 ARI 0.0157 �0.010 — — �0.008 �0.01 �0.0073 0

AMI 0.021 �0.044 — — �0.004 �0.0027 �0.0055 0

Lusc-Methyl 130 234 2 ARI 0.004 �0.004 — — �0.005 �0.007 �0.007 0

AMI 0.004 �0.001 — — 0.008 �0.005 �0.005 0

Note: Row-wise best results in bold. ARI, Adjusted Rand Index; AMI, Adjusted Mutual Information; n, number of samples; p, dimensions; G, number of clus-

ters, — indicates that algorithm fails to run.
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and VarSelLCM) when the clusters are well separated. Our prelim-

inary experiments (in Supplementary Appendix SG) suggest that

LPBIC is effective for model selection particularly when the number

of components is low.

Illustration. Figure 2 illustrates the advantage of using a copula-

based model, through a scatterplot of two features from the Leukamia

dataset and the corresponding latent variables [Yj ¼ W�1
j ðUj)]. The

feature selection procedure is outlined in Supplementary Appendix SJ.

No cluster structure is seen in the data but in the latent copula space,

GMCM captures the cluster structure well.

5.2 Simulation study
We compare the performance of HD-GMCM and baselines on syn-

thetic high-dimensional data with varying proportions of Gaussian

and non-Gaussian features. Our experimental results

(Supplementary Appendix SE) show that HD-GMCM outperforms

state-of-the-art algorithms for non-Gaussian data, while being com-

parable to baselines for Gaussian data. We also observe that outliers

are assigned a separate cluster that results in singularity during par-

ameter inference, for HDDC and GMM, and is one of the reasons

for their failure (also in real data). Rank-based models, including

copulas, are known to be robust to outliers (Huber, 1981), and is

one of the strengths of GMCM.

5.3 Case study: lung cancer
Survival separability. We evaluate the clusters obtained on lung can-

cer RNA-Seq data (lusc-rnaseq) from TCGA, by HD-GMCM,

EGMCM and MixGlasso, with respect to their clinical phenotypes,

in terms of survival probability. The survival probabilities are esti-

mated using Kaplan–Meier method and the P-values are obtained by

the log-rank test on the survival analysis based on the cluster mem-

berships. Figure 3 shows the survival curves obtained on clusters

from HD-GMCM, EGMCM and MixGlasso. We observe that only

HD-GMCM yields significant clusters (P�value < 0:05) that are the

least overlapping indicating a good separation of patient subtypes.

Dependency analysis. A copula-based model discovers latent struc-

ture based on dependencies. We illustrate its advantages through a

visualization of bivariate dependency patterns in the lung cancer data.

Note that GMCM models the dependencies of all the dimensions; here,

we only show three. Figure 4 shows the differences in bivariate depend-

ency patterns between the two clusters obtained from HD-GMCM.

Each scatterplot shows pairwise feature associations and the univariate

distribution (in diagonal cells). Note that survival does not have a nor-

mal distribution and the distribution varies in the two clusters. The bi-

variate pattern between smoking and survival is distinctly different

between the two clusters: in the cluster with higher survival probability

patients tend to smoke less when they are older. GMCM, that can

model non-linear and asymmetric dependence, distinguishes the clus-

ters based on such patterns. The strength of these associations can be

measured using correlations of fitted bivariate copulas (Table 2). Note

that other copula families could also be used. In contrast, a linear re-

gression line that is shown in each of the subplots only measures linear

dependence. Such copula-based models are succinct and statistically

principled way of characterizing dependencies within subtypes.

6 Conclusion

In this paper, we present a new copula-based algorithm for cluster-

ing high-dimensional data. We use the GMCM model, that can

model non-linear and asymmetric dependencies, particularly in non-

Gaussian data. We overcome the limitations of previous GMCM-

based clustering methods through the use of constrained covariance

matrices and LASSO-penalized likelihood and design an AECM al-

gorithm that can scale to high dimensions. Our experiments on real

gene-expression and clinical datasets show that HD-GMCM outper-

forms state-of-the-art model-based clustering methods and obtains

Fig. 2. Scatterplot of features from the Leukamia dataset (a) and the corre-

sponding latent variables (Y) in copula space, where clusters are apparent

(b). Ellipses denote components inferred by GMCM

(a) (b) (c)

Fig. 3. Kaplan-Meier survival curves with P-values using log-rank test: clusters obtained from (a) MixGlasso, (b) EGMCM and (c) HD-GMCM
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meaningful patient subtypes from high-dimensional data. Copulas

have been effectively used in modeling dependencies, and our clus-

tering method, for the first time, enables their use for high-

dimensional omics data (where n<p). The clusters obtained from

HD-GMCM are interpretable through the modeled dependency pat-

terns. Such dependency patterns offer a novel and statistically prin-

cipled way of characterizing subtypes that can potentially lead to

deeper insights on interactions between clinical and genetic entities.
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