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Abstract

Motivation: Biomedical event extraction is fundamental for information extraction in molecular biology and biomed-
ical research. The detected events form the central basis for comprehensive biomedical knowledge fusion, facilitat-
ing the digestion of massive information influx from the literature. Limited by the event context, the existing event
detection models are mostly applicable for a single task. A general and scalable computational model is desiderated
for biomedical knowledge management.

Results: We consider and propose a bottom-up detection framework to identify the events from recognized argu-
ments. To capture the relations between the arguments, we trained a bidirectional long short-term memory network
to model their context embedding. Leveraging the compositional attributes, we further derived the candidate sam-
ples for training event classifiers. We built our models on the datasets from BioNLP Shared Task for evaluations.
Our method achieved the average F-scores of 0.81 and 0.92 on BioNLPST-BGI and BioNLPST-BB datasets, respect-
ively. Comparing with seven state-of-the-art methods, our method nearly doubled the existing F-score performance

(0.92 versus 0.56) on the BioNLPST-BB dataset. Case studies were conducted to reveal the underlying reasons.
Availability and implementation: https://github.com/cskyan/evntextrc.

Contact: kc.w@cityu.edu.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The unbridled growth of publications in biomedical literature data-
bases offers a great opportunity for researchers to stand on the
shoulders of giants for cutting-edge advancements. Nonetheless, it is
also a challenge to digest the extensive information from the huge
volume of textual data in a heterogeneous manner. Information
extraction (IE) is an effective approach to summarize the knowledge
into expressive forms for management and comprehension; it can be
integrated with other knowledge resources for innovative discovery
(Rebholz-Schuhmann ef al., 2012). Examples include protein—pro-
tein interactions (Mallory et al., 2016), drug—drug interaction
(Zhao et al., 2016), causal relationships between biological entities
(Perfetto et al., 2016) and other topic-oriented association mining
systems (Canada et al., 2017; Lim et al., 2016).

Over the past decades, considerable efforts have been devoted
toward rule-based (Bui and Sloot, 2012) and trigger-based (Bjorne
et al., 2010; Bjorne and Salakoski, 2011) detection methods for
biomedical event extraction from PubMed abstracts (Ananiadou
et al., 2010). In general, trigger detection dominates the whole pre-
diction process whose performance greatly affects the final event
detection (Pyysalo et al., 2012). Trigger identification method has
been well-studied and improved. The latest trigger-based approach

using deep neural network has shown its strength in general event
extraction tasks (Nguyen et al., 2016). Combining with lexical and
semantic features, word embedding (Mikolov et al., 2013) is pro-
posed to build an advanced trigger classifier (Zhou et al., 2014).
Nevertheless, trigger detection is a multiclass classification prob-
lem with limited annotation labels. The well-known datasets from
BioNLP Shared Task (BioNLPST) include BioNLP’09 (Kim et al.,
2009), BioNLP’11 (Kim et al., 2011), BioNLP’13 (Nédellec et al.,
2013) and BioNLP’16 (Nédellec et al., 2016). The trigger-based
methods are based on the dependency parse tree and character n-
grams. The dependency parser in natural language processing
(NLP) is well-studied (Nivre et al., 2016) and has been developed
from empirical techniques to neural network models (Chen and
Manning, 2014). However, there is a performance deviation from
the traditional applications when applied to biomedical literature
due to the contextual variations. The parser that was developed
specifically for biomedical text mining (BioNLP) such as McCC]
(McClosky and Charniak, 2008) is necessary for biomedical IE
(Luo et al., 2017). Bidirectional long short-term memory
(BiLSTM) has been applied to medical event detection in clinical
records (Jagannatha and Yu, 2016). Nonetheless, its events are bin-
ary relations which are very different from the complex events in
BioNLPST.

©The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 637

20z Iudy 0} uo 1senb Aq 0E6Y7SS/E9/Z/9E/2IOIHE/SONBWIONUIONG/WOO"dNO-0ILUSPED.//:SARY WOl PSPEojUMOQ


http://orcid.org/0000-0003-0369-4979
http://orcid.org/0000-0001-6062-733X
https://github.com/cskyan/evntextrc
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz607#supplementary-data
Deleted Text: E
Deleted Text: -
Deleted Text: -
Deleted Text: 5
Deleted Text: ,
Deleted Text: s
Deleted Text: -
Deleted Text: BioNLP&hx2019;09 
Deleted Text: BioNLP&hx2019;11 
Deleted Text: BioNLP&hx2019;13 
Deleted Text: ,
Deleted Text: BioNLP&hx2019;16 
Deleted Text: information extraction
Deleted Text: -
https://academic.oup.com/

638

S.Yan and K.-C.Wong

One of the major concerns behind this is that the trigger predic-
tion errors would propagate along the downstream tasks. The train-
ing data for trigger detection is quite limited because the ground
truth labels are not even given in the BioNLP Shared Task datasets.
In addition, the training samples are not easily selected manually.
Consequently, it becomes an unbalanced multiclass classification
problem which is the main barrier for performance improvement in
the subsequent biomedical text mining tasks.

In this study, we proposed a novel method to detect biomedical
events using a different strategy. We do not need the annotation of trig-
gers and the cumbersome dependency parsing for each sentence. We as-
pire to model the context embedding for each argument. The argument
embeddings are adopted to detect directed relations. The proposed
neural network model is applicable to general event extraction, thanks
to the universality of the underlying neural language models (Bengio
et al., 2003). Our method is specially designed for biomedical event ex-
traction while keeping replaceable components (e.g. pretrained word
embedding) for general event extraction tasks. The remainder of this
article is organized in the following order. First, we briefly introduce
the datasets and indicate the defectiveness of the existing approaches.
Next, we sketch out the framework of our approach and then elaborate
the procedures in detail. After that, we evaluate our method and make
a comprehensive comparison with other approaches on the BioNLP
Shared Task dataset. Then, we demonstrate the effectiveness of our
method by investigating the underlying reasons through experiments.

2 Datasets

In order to ensure fair comparisons among different approaches, we
adopted two datasets from the BioNLP Shared Task with 1
(BioNLPST-BB) and 9 (BioNLPST-BGI) event type(s). The datasets
contain the events of bacteria localization and the genetic processes
concerning the bacterium Bacillus subtilis, respectively. The entities
are annotated with entity types in both training and testing set. In
each annotated event, the involved entities have been assigned differ-
ent roles called argument types and the event contains a direction
pointing from one to another. We aim to measure how the perform-
ance changes with different event types for model generalization es-
timation. The development set is initially used to validate the
prediction model or tune the hyperparameters. However, it only
contains 3 out of 10 event types in BioONLPST-BGI. Therefore, we
combine the training set and the development set as a single anno-
tated dataset for each task. As shown in Table 1, the event types are
extremely imbalanced in BioNLPST-BGI; it means that the event de-
tection is an imbalanced multiclass classification problem.

The events come from the sentences of PubMed abstracts and the
biological entities are annotated by curators or name entity recogni-
tion (NER) tools. The objective of event detection is to annotate the
relationships among the preannotated or recognized entities. For ex-
ample, the sentence ‘We now report that the purified product of gerE
(GerE) is a DNA-binding protein that adheres to the promoters for
cotB and cotC’. has totally six preannotated entities, “T1: purified
product of gerE’, ‘T2: GerE’, ‘T3: DNA-binding protein’, ‘T4:
promoters’, “T5: cotB’ and “T6: cotC’. It contains two ‘PromoterOf’

Table 1. Statistics of the events for two tasks in BioNLP Shared Task

events (E1: promoters->cotB; E2: promoters->cotC) and two
‘Interaction’ events (E3: GerE->cotB; E4: GerE->cotC). The events
are different from the traditional binary relations (e.g. gene-gene inter-
action) due to the difficulty of recognizing their directions and the di-
versity of the entity types as well as the event types. Under the context
of knowledge graph topology, our prediction is a directed edge with a
specific type instead of a plain binary relation. The mentioned example
can be used to construct a directed graph with six nodes (entities) and
four edges (events). We directly adopted the tokenization and NER
results (e.g. “T1: Protein’, “T2: Protein’, “T3: Protein’, “T4: Promoter’,
‘TS: Gene’ and “T6: Gene’) from the annotated datasets.

Besides the event annotations (e.g. E1: T4->Té6, E2: T4->TS,
E3: T2->TS, E4: T2->T6), the argument labels (e.g. “T1: Protein’,
“T2: Protein’, ‘T3: Protein’, “T4: Promoter’, ‘TS5: Gene’ and ‘Té6:
Gene’) within each event type are also used in our method. Table 2
shows the summary of the numbers of argument in each task. It is
obvious that the labels for the argument types are also imbalanced.
The arguments are all annotated upon the recognized entities.
Therefore, we assume that the error rate of the entity recognition is
very low and can consider it as known information.

The triggers used in most of the existing approaches are not offi-
cially released in the datasets and they are manually annotated by
the researchers. However, those trigger words vary across different
tasks; it heavily requires manual preprocessing. Furthermore, the
classification errors in the trigger detectors can propagate to the ar-
gument detection and event detection. In fact, the nonexistence of
trigger words does not affirm the absence of events since different
authors may have different writing styles and the triggers are not
guaranteed to appear in the sentence. Therefore, we do not use any
trigger-based method in our study. Instead, the context of the argu-
ments within each event is considered for feature construction.

Table 2. Statistics of the arguments for two tasks in BioNLP Shared
Task

Task Argument Training Development
type set set
BioNLP Shared Task 2011—  Action 92 16
Bacteria—gene interactions
Agent 125 15
Entity 15 /
Gene 36 3
Member 15 /
Promoter 38 /
Protein 29 /
Regulon 10 /
Site 29 /
Target 185 21
Transcription 31 3
BioNLP Shared Task 2016—  Bacteria 168 118
bacteria biotopes
Location 260 184

Task Event type Arguments Training set Development set

BioNLP Shared Task 2011—bacteria—gene interactions ActionTarget Action->Target 108 18
Interaction Agent->Target 126 18
PromoterDependence Promoter->Protein 32 /
PromoterOf Promoter->Gene 36 /
RegulonDependence Regulon->Target 11 /
RegulonMember Regulon->Member 15 /
SiteOf Site->Entity 17 /
TranscriptionBy Transcription->Agent 25 3
TranscriptionFrom Transcription->Site 14 /

BioNLP Shared Task 2016—bacteria biotopes Lives_In Bacteria->Location 327 223
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Fig. 1. Overview of the neural network architecture for argument embedding and event detection. VecEntNet is trained for argument detection using the argument annotations
in the training set. The parameters of VecEntNet is then fixed and the hidden layer of the MLP in VecEntNet is used as the input of VeComNet. VeComNet is trained for
directed event detection using the event annotations in the training set. The testing data are passed to VecEntNet for generating argument embedding which is put into

VeComNet for event prediction

3 Methodology

3.1 An overview of the event detection framework

The overall workflow of our proposed event detection method is
shown in Figure 1. We take the tokenized words in the dataset as in-
put and transform them into word vectors trained on the PubMed
literature. For each event argument W, and W,,, we input the stream
of words on both sides of them to a BILSTM for constructing the
context embeddings (Melamud ez al., 2016) of arguments. We train
the context embedding model (VecEntNet) using the annotations of
arguments in each task. The context embeddings are further used to
train the event detection model (VeComNet) for detecting event
types and directions.

3.2 Word embedding

To construct robust features for argument recognition, we use the
distributed representations of words in a sentence instead of the
traditional N-gram features (Mikolov et al., 2013). The adopted
word vectors are pretrained on a corpus of 10876 004 biomedical
abstracts from PubMed, which contains 1701632 distinct words
and 200 dimensions (Kosmopoulos et al., 2015). The training is
actually a transformation from the one hot encoding of the words to
a continuous space with dimension reduction. Such unsupervised
training on a large corpus captures the general features of each word
and help prevent overfitting.

3.3 Bidirectional LSTM

LSTM (Gers, 1999) is a recurrent neural network (RNN) cell
that can be trained to decide which information should be
forgotten or kept. BILSTM is broadly utilized in NLP tasks to learn
contextual representations from phrases or sentences (Melamud
et al., 2016). Therefore, we use the words surrounding the recog-
nized entities to train the contextual representations. As shown in
Figure 1, W, and W,, are recognized as two biological entities which
can be a word or a phrase. The word embedding sequences
Wo...W, and W, ... W, are extracted from two directions as the
inputs of a BILSTM. In practice, we set up a window size # to nor-
malize the sizes of two word sequences and use a dummy word to
pad the sequence with length less than #. The inputs are then modi-
fied as followed.

J?O = <XO,X1> = <Wa—u:a, Wa+u:a> (1)

X1 = (X2,X3) = (Whst, W)
where x; stands for the surrounding words of entity i, W, is the se-
quence of word embeddings from the ath to bth word. We adopt a
closed boundary strategy to construct the contextual word sequences
because the named entities itself may contain useful information to dis-
tinguish the argument context. As for the example mentioned in
Section 2, the word ‘promoters’ itself indicates that it is probably an
‘Agent’ argument in the event of ‘PromoterOf’, since it is a general
word that is also applicable to other entities. In contrast, the words
‘cotB’ and ‘cotC’ do not have any contribution to the context model-
ing, which will be forgotten in BILSTM. Given the window size # =3,
the inputs for event promoters->cotB are xo = [adheres, to,
the, promoters; and, cotB, for, promoters]; x1 = [the, promoters,
for, cotB; DummyWord, cotC, and, cotB]. The word streams are then
input into LSTM cells. On the other hand, the output of BILSTM is the
concatenation output vector of the left-to-right LSTM and the right-to-
left LSTM. In the above-mentioned example, the outputs of the
BiLSTM layers are represented as LSTM([adheres, to, the,
promoters|) concatenations with LSTM([and, cotB, for, promoters])
and LSTM([the, promoters, for, cotB]) concatenations with
LSTM([PADDING, cotC, and, cotB]), where LSTM(][...]) is the last
output of the LSTM layer.

BiLSTM (X0, X1) = LSTM(W,_,,.0)BLSTM(W,,..,)

BiLSTM(X2, X3) = LSTM(W, ) OLSTM(Wy10g) )

3.4 Argument embedding

We use multilayer perceptron (MLP) to train the argument classifi-
cation model. As observed in Table 2, the skewed label distribution
is a challenge for argument identification. We separate this multila-
bel classification problem into several binary classification problems
under the one-versus-all strategy. Then we train each argument clas-
sifier separately using the estimator formulated in Equation (3). We
use Dropout layer (Srivastava et al., 2014) with dropout rate 0.2 in
MLP as regularization to prevent overfitting.

§ = MLP(x) = Sigmoid(F, (Tanh(F; (BILSTM(x)))))  (3)

where Fi(x) = Ajx + b; is a fully connected layer in MLP, Tanh is
the hyperbolic tangent activation function and Sigmoid is the
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activation function of the last layer of MLP. To tackle the imbal-
anced problem, we first estimate the distribution of the binary labels
from the training dataset, and then use weighted binary cross-
entropy in Equation (4) as the loss function to optimize the neural
network model.

loss = — > (zyilogy,; + (1 —2)(1 —y;) log(1—3,;))  (4)

i

where y; is the true label of sample i and z represents the weight of
positive class. The class weight z is estimated as 1 — £ with the num-
ber of positive class 7 and the total number of the samples N.

After VecEntNet is trained, we are able to extract the argument
embedding R from the first layer of the MLP (Equation 5) for event
detection. In particular, the triggers are actually embedded in the
context of each argument. The trigger information, as well as their
relations to the arguments, is encoded into the argument embedding
for event detection.

R(X) = F; (BILSTM(%)) (S)

All possible pairs of recognized entities within each sentence are
considered as candidate samples. For the classifier of an event type
e; : (arg,,arg,), we take the input x* as the concatenation of both ar-
gument embeddings for each recognized entity of candidate pairs
within one sentence [Equation (6)]. Since we are not aware of the
true argument type for each entity, we use both embedding types
with different orders for the entity pairs.

X = (RargS (zO)EBRargr (§O)> Rarg( (771 )GaRargs (;51)) (6)

VeComNet is designed for detecting the event types as well as
the event direction of a candidate pair of recognized entities. To be
consistent, we also build the multiclass classifiers under the one-ver-
sus-all strategy for event detection. For an event type e;, we encode
the direction arg, — arg, as 1 and others as 0. As a result, the label
for a directed event type has two bits, in which one bit encodes the
existence of this event type and another one encodes the direction.
Therefore, the binary classification problem for each event type is
transformed into a multilabel classification problem.

Similar to word vector, argument vector also possess the com-
positional attribute. To reflect the direction from the model, we use
a subtract layer to combine the two input vectors as VeCom(x )
[Equation (7)] and use it to predict the direction. The subtraction of
the two argument vectors can be regarded as the multiplication of

the concatenation of them and a factor matrix where [

]
A
denotes the identity matrix. We explicitly multiply this factor matrix
to conduct the vector composition before proceeding to the fully
connected layer. In addition, the subtraction layer can decrease the
number of neurons in the MLP, and thus its model generalization.
As for the existence, we take the L' — Norm of VeCom(x*) as input
to another MLP for existence prediction.

VeCom(x*) = Rarg (%0)PRarg, (¥0)

0, o) 7
_Rargr(xl)@Rargs(xl) 7

The resultant directed event estimator is demonstrated in
Equations (8) and (9) representing the existence and direction
respectively.

y* = MLP*(Abs(VeCom(x*)))

= Sigmoid(F; (ReLU(F; (Abs(VeCom(x*)))))) ®

9" = MLP'(VeCom(x*)) )

= Sigmoid(F) (ReLU(F; (VeCom(x*)))))
where Fi(x) = Ajx+ b} and F(x) = Alx + b} are fully connected
layers, Abs is a layer for absolute value calculation, ReLU is the rec-
tified linear unit activation function. Binary cross-entropy is adopted
as loss function and stochastic gradient descent (SGD) is employed
as the optimizer to train the classifiers for each event type.

4 Results

The training set and development set are combined to form an anno-
tated dataset. We evaluated our method under 10-fold cross-
validation. For the arguments or events in BiloNLPST-BGI with less
than 20 data instances, we changed to 5-fold cross-validation to en-
sure that the testing set would not have less than 2 classes. To ensure
the training quality of those few labels, we randomly duplicated the
samples in the training set so that the prediction model for each
event type is trained on balanced data. Only the training samples
were duplicated when training the argument embedding. The testing
samples were neither duplicated nor used in argument embedding.
We trained our models on a Linux machine equipped with a 32-core
CPU and 32GB RAM. The hyperparameters used in the experiments
are summarized in Supplementary Tables S1 and S2. Parameter ana-
lysis is also conducted to demonstrate the robustness of our method.
The results shown in the Supplementary Materials indicate that our
method are not sensitive to the hyperparameters.

4.1 Performance of VecEntNet and VeComNet

during training

We use accuracy and mean-squared error to keep track of iterative
training. As depicted in Figure 2 and Supplementary Figures S1-S9,
VecEntNet converges roughly at the 10th epoch and keeps stable in
the following training. Therefore, we use 20 epochs as the default
hyperparameter in the subsequent experiments. Figure 2a shows
that only the argument ‘Gene’ converges slower than others.
Nevertheless, the overall performance of training VecEntNet and
VeComNet is desirable.

4.2 Performance of VecEntNet and VeComNet under

10-fold cross-validation

We evaluate the overall performance with precision, recall and
F-score under 10-fold cross-validation experiments. We can observe
from Figure 3 and Supplementary Figures S10-S15 that VecEntNet
performs very well in most of the argument classifications on
BioNLPST-BGI. However, it is expected that VecEntNet can be
underestimated on the tasks with limited training samples such as
‘Entity’, ‘Gene’ and ‘Site’. Nevertheless, VeComNet achieves robust
performance by leveraging the argument embedding of VecEntNet.
As for the performance on BioNLPST-BB dataset shown in
Figure 3c, we can observe that both VecEntNet and VeComNet can
be scaled for enhanced performance once sufficient data are given.
Our proposed model definitely performs well on balanced data but
it is also applicable to imbalanced labels due to the weighted loss
function proposed in VecEntNet. The detailed performance is tabu-
lated in Supplementary Tables S3, S4 and Table 3.

Regarding the two worst cases of argument classification,
‘Entity’ and ‘Gene’ (F-scores = 0.15 and 0.37), their corresponding
event detection is still satisfactory (F-scores = 0.97 and 0.76) as
observed from Supplementary Table S3. We can also observe
that the argument with better performance (‘Site’ and ‘Promoter’)
within the same event type can compensate the weaknesses of the
worse one.

4.3 Performance comparison with other top-ranked

approaches

We compared our performance with that of the best method in the
competition on BioNLPST-BGI dataset with respect to each event
type. As tabulated in Table 4, VeComNet and the Uturku’s
approach Bjorne and Salakoski (2015) have their own merits on per-
formence. VeComNet performs the best on ‘Interaction’,
‘RegulonMember’, ‘SiteOf’, ‘TranscriptionBy’ events with signifi-
cant improvement on the F-scores (0.12, 0.32, 0.68, 0.4) compared
to the best existing approach; and has competitive performance on
‘RegulonDependence’ and ‘TranscriptionFrom’ events. The per-
formance of VeComNet on other events are stable where its average
performance is better than the Uturku’s approach. The method from
Uturku seems to overfit the dataset since, in most of the event types,
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Fig. 2. Training loss of (a) VecEntNet as well as (b) VeComNet on BioNLPST-BGI dataset and those on (c) BioNLPST-BB. More details and high resolution version can be

found in Supplementary Figures S1-S9
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Fig. 3. Microaverage ROC curves of (a) VecEntNet as well as (b) VeComNet on BioNLPST-BGI and those on (c) BioNLPST-BB. More details and high resolution version can

be found in Supplementary Figures S10-S15

Table 3. Performance of VecEntNet and VeComNet on BioNLPST-
BB dataset

VecEntNet VeComNet

Bacteria Location Lives_In
Accuracy 0.88 0.82 0.92
Precision 0.66 0.69 0.89
Recall 0.74 0.77 0.96
F-score 0.69 0.72 0.92
Train time (s) 771.44 757.76 4.83
Test time (s) 0.72 0.74 0.15

Table 4. Performance comparison between VeComNet and the
best method (Uturku) on BioNLPST-BGI development dataset

Method VeComNet Uturku (Bjorne
etal., 2012)

Event type Precision Recall F-score Precision Recall F-score
ActionTarget 0.7 0.91 0.79 0.94 0.92 0.93
Interaction 0.73 0.82 0.77 0.75 0.56 0.64
PromoterDependence 0.82  0.84 0.82 1.00 1.00 1.00
PromoterOf 0.79 0.78 0.76 1.00 1.00 1.00
RegulonDependence  0.97  0.99 0.98 1.00 1.00 1.00
RegulonMember 0.99 0.99 0.99 1.00 0.50 0.67
SiteOf 0.95 0.98 0.97 1.00 0.17 0.29
TranscriptionBy 095 0.99 0.97 0.67 0.50 0.57
TranscriptionFrom 0.99 099 0.99 1.00 1.00 1.00
Micro Average 0.823 0.835 0.813 0.91 0.83 0.79

Note: The digits in bold means it performs the best compared with other
method in each metrics such as precision, recall, 1.

it achieved the ideal F-score of 1.0 while our proposed method does
not. Our method stands out from other approaches because of its
generalization ability.

Table 5. Performance comparison between VeComNet and other
top-ranked methods (Deléger et al., 2016) on BioNLPST-BB test
dataset

Method Precision Recall F-score
VeComNet 0.89 0.96 0.92
VERSE (Lever and Jones, 2016) 0.51 0.62 0.56
TurkuNLP (Mehryary et al., 2016) 0.63 0.45 0.52
LIMSI 0.39 0.65 0.49
HK 0.60 0.39 0.47
whunlpre 0.56 0.41 0.47
DUTIR (Li et al., 2016) 0.57 0.38 0.46
WXU 0.56 0.38 0.46

Note: The digits in bold means it performs the best compared with other

method in each metrics such as precision, recall, 1.

From Table 5, we can observe that VeComNet has the strongest
power in the single event prediction. The fewer the arguments and
event types contained in the detection task, the more powerful
VeComNet will be. Furthermore, VeComNet is a generic model that
can be used in different event detection tasks without any tuning
and modification. The robustness and predictive power of
VeComNet enables it to be a promising model in the area of bio-
medical event extraction.

5 Case studies

To reveal how our method works, we randomly picked some cases
from the testing dataset. The sample sentence ‘The expression of
rsfA is under the control of both sigma(F) and sigma(G).” with ID
‘PMID-10629188-S5’ in the testing dataset of BioNLPST-BGI has
four recognized entities [Ty: ‘expression’, T5: ‘rsfA’, T3: ‘sigma(F)’,
Ty ‘sigma(G)’] and three events (ActionTarget: [Action|T; —
[Target]T>, Interaction: [Agent]T3 — [Target]T>, Interaction:
[Agent]T4 — [Target]T>) as ground true annotations. We obtained
11 argument models by fitting VecEntNet on the training dataset
with the argument annotations. We further gained the argument
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embeddings for each possible pair of entities [totally 7(n — 1) pairs
given 7 recognized entities in a sentence] in both training and testing
datasets. For the above-mentioned sample, some of the candidate
pairs generated are (T1,T2), (T2, T1),({T2,T3),(T3,T2),(T2, T4),
(T4, o), (T1,T3),(T1,T4). The argument models for event type
ActionTarget are arg,crion and argearee.. We take them as functions
and the candidate pairs of entities as input. The argument embed-
dings we obtained for (Ti,Tz) are (arg,cion(T1)Pargy, ge(T1),
arg et (T2)Parg, ion (T2)). Since we are not aware of the argument
type, the entities belong to, we concatenated both argument embed-
dings for each entity and let VeComNet to determine. The argument
embeddings are obtained for other candidate entity pairs with re-
spect to different event types in a similar way. We used argument
embeddings as the input of VeComNet models. The predicted labels
for the aforementioned candidate entity pairs are (1,1),(1,0),
(0,0)...(0,0) with respect to ActionTarget event and (0, 0), (0, 0),
(1,0),(1,1),(1,0),(1,1),(0,0),(0,0) with respect to Interaction
event, in which the first label indicates the existence of the corre-
sponding event and the second label indicates whether the event is
pointed from the first entity to the second one. The binary labels
were further post-processed to generate the predicted biomedical
events. For instance, the candidate pairs (Ty,T>) and (T, Ts) are
predicted as (1, 1) and (1,0) for ActionTarget and Interaction even-
ts, respectively. It means that it exists an ActionTarget event
Ty — T» (expression->rsfA) and an Interaction event T3 — T,
[rsfA->sigma(F)] in this sentence.

6 Discussion

For many years, scientific literature has served as the major outlet for
novel discovery and result dissemination. To extract useful knowledge
from the literature for downstream management and query tasks, IE
is proposed to automate this process. Biomedical event extraction is
fundamentally important because it is able to systematically organize
the knowledge as controlled representations such as directed know-
ledge graphs. However, the existing event detection methods are not
satisfactory in performance because most of them are constrained in
the trigger-based approach which relies on the lexical and syntactic
features extracted from dependency parsing. The quality of manual
trigger annotation and the error propagation from trigger detection to
the event detection have limited our progress for years.

In this study, we proposed a bottom-up event detection frame-
work using deep learning techniques. We built an LSTM-based
model VecEntNet to construct argument embeddings for each recog-
nized entity. We further utilized the compositional attributes of the
argument vectors to train a directed event classifier VeComNet.

LSTM and context embedding have shown its applicability in
several NLP tasks. Our main contribution is the proposed frame-
work for argument embedding using BILSTM and the downstream
directed event detection using multioutput neural network. This
strategy for event detection is proposed for the first time. It over-
comes the error propagation as well as the extra annotations of
trigger-based approaches. Besides, the continuous space of argument
embedding significantly lessen the sensitivity of event detection. In
addition, we developed our own loss functions for training the argu-
ment embedding with unbalanced data and training the multioutput
neural network for directed event detection. These are the key rea-
sons why our method can achieve outstanding performance.
Broadly speaking, the proposed method is suitable for general event
extraction by using the pretrained word embedding in the specific
area. Assumed the entities are correctly recognized, all the possible
pairs of entities within a predefined scope (i.e. sentence or abstract)
will be considered for the events. Besides the ones that could be eas-
ily filtered by the constraints (i.e. possible entity types that can be
marked as a specific argument type within each kind of event)
defined in the tasks, the remaining candidate entity pairs still con-
tain numerous negative samples. Balancing the training samples and
improving the performance of event prediction are the inherent diffi-
culties for biomedical event extraction. The experimental results
show that our method works well on the two datasets BioNLPST-
BGI and BioNLPST-BB which are given in sentence level and

abstract level, respectively. However, we have not evaluated it on
the full-text level, which may be the main limitation.

Our method is not sensitive to the hyperparameters and it works
well for a wide range of instances. The results indicate that the pro-
posed method is competent in the biomedical event extraction. In
the future, we envision that it can fundamentally benefit the related
downstream tasks in biomedical text mining with broad impacts.
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