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Abstract

Motivation: Deoxyribonucleic acid (DNA) methylation plays a crucial role in human health. Studies have demon-
strated associations between DNA methylation and environmental factors with evidence also supporting the idea
that DNA methylation may modify the risk of environmental factors on health outcomes. However, due to high
dimensionality and low study power, current studies usually focus on finding differential methylation on health out-
comes at CpG level or gene level combining multiple CpGs and/or finding environmental effects on health outcomes
but ignoring their interactions on health outcomes. Here we introduce the idea of a pseudo-data matrix constructed
with cross-product terms between CpGs and environmental factors that are able to capture their interactions.
We then develop a powerful and flexible weighted distance-based method with the pseudo-data matrix where asso-
ciation strength was used as weights on CpGs, environmental factors and their interactions to up-weight signals and
down-weight noises in distance calculations.

Results: We compared the power of this novel approach and several comparison methods in simulated datasets
and the Mothers and Newborns birth cohort of the Columbia Center for Children’s Environmental Health to deter-
mine whether prenatal polycyclic aromatic hydrocarbons interacts with DNA methylation in association with
Attention Deficit Hyperactivity Disorder and Mental Development Index at age 3.

Availability and implementation: An R code for the proposed method Dw�M�E�int together with a tutorial and a sam-
ple dataset is available for downloading from http://www.columbia.edu/�sw2206/softwares.htm.

Contact: sw2206@columbia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Deoxyribonucleic acid (DNA) methylation has been associated with
cancers (Das and Singal, 2004; Ehrlich, 2002; Esteller and Herman,
2002; Kulis and Esteller, 2010) and a wide range of human diseases
(Feinberg, 2007; Jager et al., 2014; Mill and Petronis, 2007, 2008;
Mill et al., 2008; Nestler, 2014; Schanen, 2006). Studies have also
demonstrated associations between DNA methylation and environ-
mental factors (Bakulski et al., 2015; Cardenas et al., 2017; Faulk
et al., 2015; Herbstman et al., 2012; Janssen et al., 2013; Nahar
et al., 2015; Nye et al., 2016; Perera et al., 2009; Saenen et al.,
2017; Sen et al., 2015) such as prenatal exposure to polycyclic

aromatic hydrocarbons (PAH) (Herbstman et al., 2012; Perera
et al., 2009), Bisphenol A (Faulk et al., 2015; Nahar et al., 2015). In
addition, there is evidence supporting the idea that DNA methyla-
tion may modify the risk of environmental factors on health out-
comes. For example, Fu et al. (2012) found that DNA methylation
modifies the effect of NO2 on the progression from mild to severe
asthma; White et al. (2015) found that DNA methylation modifies
the risk of PAH–DNA adducts on breast cancer. Despite these
findings, due to high dimensionality and low study power, current
studies usually focus on finding differential methylation on
health outcomes at CpG level or gene level combining multiple
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CpGs and/or finding environmental effects on health outcomes but
ignoring their interactions.

Here, we developed a weighted epigenetic distance-based
method with a pseudo-data matrix constructed with cross-product
terms between DNA methylation and environmental factors that are
able to capture their interactions on health outcomes. The distances
between pairs of subjects can then be calculated combining the ori-
ginal data matrix with DNA methylation measures and environmen-
tal factors together with the pseudo-data matrix with interactions.
Using this approach, we can identify both main and interaction
effects. We focused on interactions between DNA methylation of
CpGs in a gene and an environmental factor on health outcomes,
but the proposed method can be readily adapted to interactions
among CpGs in a gene on health outcomes. We conducted simula-
tion studies and showed that, when there are both main and inter-
action effects between DNA methylation and environmental factors,
the proposed novel approach that incorporates interactions through
a pseudo-data matrix has much better power than comparison meth-
ods that consider either main effects or interaction effects. Most im-
portantly, the power of the proposed method is not affected by the
source of the signals, i.e. if the signals are main or interaction effects.
This makes this approach very attractive due to the known low
power of interaction detection.

We applied the proposed method to the data from the Mothers
and Newborns (MN) birth cohort of the Columbia Center for
Children’s Environmental Health (CCCEH) to identify effects of
gene-level DNA methylation, prenatal PAH and their interactions on
Attention Deficit Hyperactivity Disorder (ADHD) at age 3. We iden-
tified some main effects of DNA methylation and some interactions
with prenatal PAH which were missed by comparison methods. Some
of these findings were further replicated in the CCCEH Sibling co-
hort. We similarly applied the proposed method to the Mental
Development Index (MDI) at age 3 and observed a similar pattern in
results in both discovery and replication analyses.

2 Materials and methods

2.1 The proposed method
The proposed weighted distance-based method incorporating DNA
methylation by environment interactions has three steps: (1) intro-
ducing a pseudo-data matrix constructed with cross-product terms
between DNA methylation of CpGs in a gene and environmental
factors that captures their interactions, on which a gene-level
weighted distance matrix incorporating interactions is defined;
(2) calculating the pseudo-F statistic; and (3) assessing the statistical
significance empirically using permutations. We focus on binary
outcomes and illustrate the method at the gene-level while it can be
readily adapted to other types of outcomes and to genetic region or
pathway-level.

Step 1: a pseudo-data matrix and a weighted distance matrix

incorporating interactions

Here we focus on binary outcomes with equal number of cases and
controls and consider one gene with n CpGs. Denote XM as a 2N �
n matrix with DNA methylation measures for N cases (Y¼1) and
N controls (Y¼0) of n CpGs. Denote E as a 2N � 1 vector with
measures of an environment factor. Define XM�E ¼ ½XM;E�, a 2N �
ðnþ 1Þ matrix for main signals of n CpGs and one environmental
factor. We normalize each column of XM�E to have mean zero and
unit standard deviation (SD). The element xM�E

ij harbors the normal-
ized methylation measure of CpG j for subject i, j ¼ 1; . . . ;n, and
normalized environmental factor Ei of subject i, j ¼ nþ 1;
i ¼ 1; . . . ; 2N. We then define Xint, a 2N � n pseudo-data matrix
with element xint

ij ¼ xM
ij � Ei harbors the interaction between CpG j

and the environmental factor of subject i, j ¼ 1; . . . ; n and i ¼ 1;
. . . ;2N. By using XM�E�int ¼ ½XM�E;Xint�, a 2N � ð2nþ 1Þ pseudo-
data matrix, we capture main signals of n CpGs, one environmental
factor and n pairwise CpG�E interactions. Here, the proposed
method Dw�M�E�int that tests the null hypothesis that there is

no joint effect of methylation, the environmental factor and their
interactions on the outcome. The proposed method is very flexible
and can be easily adapted to test other hypotheses based on different
pseudo-data matrices. Specifically, we are able to test (i) the associ-
ation between methylation and the outcome by constructing the
distance matrix based on the pseudo-data matrix XM, (ii) the associ-
ation between interactions and the outcome based on Xint, (iii) the
association between the environmental factor and the outcome
based on XE, (iv) the joint effect of methylation and the environmen-
tal factor based on XM�E and (v) the joint effect of methylation and
interaction based on XM�int.

With XM�E�int, we first define a non-weighted 2N � 2N distance
matrix DM�E�int with element dM�E�int

st capturing Euclidean distance
between individuals s and t, s; t ¼ 1; . . . ; 2N on DNA methylation,
the environmental factor and their interactions as

dM�E�int
st ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

E þ
Xn

j¼1

ðD2
M; j þ D2

int; jÞ

vuut (1)

where D2
E ¼ ðEs � EtÞ2; D2

M; j ¼ ðXM
sj �XM

tj Þ
2 and D2

int; j ¼
ðXint

sj �Xint
tj Þ

2.

We then incorporate association strength at CpG site-level as
weights to up-weight signals (both main and interaction signals) and
down-weight noises in calculating distances. We define weights for
main and interaction signals at CpG j and the main signal of the en-
vironmental factor as follows:

wM
j ¼

� log 10ðpM
j Þ

� log 10ðpEÞ þ
Pn

j¼1� log 10ðpM
j Þ þ

Pn
j¼1� log 10ðpint

j Þ

wint
j ¼

� log 10ðpint
j Þ

� log 10ðpEÞ þ
Pn

j¼1� log 10ðpM
j Þ þ

Pn
j¼1� log 10ðpint

j Þ

wE ¼
� log 10ðpEÞ

� log 10ðpEÞ þ
Pn

j¼1� log 10ðpM
j Þ þ

Pn
j¼1� log 10ðpint

j Þ

(2)

where pM
j is the P-value testing b1Mj ¼ 0 in the logistic model

logitPðYi ¼ 1Þ ¼ b0Mj þ b1Mjxij, pint
j is the P-value testing b3j ¼ 0 in

the logistic model logitPðYi ¼ 1Þ ¼ b0j þ b1jxij þ b2jEi þ b3jxij � Ei

and pE is the P-value testing b1E ¼ 0 in the logistic model
logitPðYi ¼ 1Þ ¼ b0E þ b1EEi.

The corresponding weighted distance matrix Dw�M�E�int with
element dw�M�E�int

st is defined as

dw�M�E�int
st ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wED2

E þ
Xn

j¼1

ðwM
j D2

M; j þwint
j D2

int; jÞ

vuut : (3)

Step 2: the pseudo-F statistic

To test the association between case/control status and DNA methy-
lation distances within a gene and an environmental factor together
with their interactions, we calculate a pseudo-F statistic based on
the weighted distance matrix Dw�M�E�int introduced in Equation (3)

F ¼ trðHGHÞ
tr½ðI�HÞGðI�HÞ� (4)

where H ¼ YðYTYÞ�1YT is a 2N � 2N projection matrix, Y is a
2N � 1 vector with case (Y¼1) and control (Y¼0) status, G ¼
ðI� 1

2N 11TÞAðI� 1
2N 11TÞ is the Gower’s centered matrix, A ¼

ðastÞ ¼ ð� 1
2 ðdw�M�E�int

st Þ2Þ; 1 is a 2N-dimensional column vector

with elements 1, and I is a 2N � 2N identity matrix. In the uni-
variate analysis (e.g. only one CpG without E and their interaction),
when the distance matrix is calculated using the standard Euclidean
distance, the pseudo-F statistic becomes the standard F-statistic in
ANOVA (Zapala and Schork, 2006).
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Step 3: the statistical significance

Permutation procedures are used to assess statistical significance,
where we randomly shuffle the outcome and repeat Steps 1–2 on the
permuted data. When we test G genes (G>1) in a study, we pool G
pseudo-F statistics from observed and permuted data to compute
empirical P-values in order to have more granular P-values
(Friedman et al., 2001). We repeat the permutations 999 times, and
calculate the empirical P-value for gene g, g ¼ 1; . . . ;G as:

Pg ¼
PG

g0¼1fIðFg0;obs � Fg;obsÞ þ
P999

perm¼1 IðFg0 ;perm � Fg;obsÞg
G� ð1þ 999Þ : (5)

In the real data applications, we have G¼18 633 genes, which
helps to have high-resolution gene-level empirical P-values.

To investigate if genes with different sizes, i.e. number of CpGs,
will have different distributions for pseudo-F statistics under the null
hypothesis, we conducted simulation studies to compare the Type I
error rates when the P-value for each gene is calculated based on
pooled pseudo-F statistics of all G genes across all permutations
(Supplementary Section 1.1 and Table S1).

2.2 Comparison methods
We compare the performance of the proposed method Dw�M�E�int

that considers both main (M and E) and interaction signals with
weights to that of several comparison methods, including the
weighted distance-based methods considering (i) methylation signals
only Dw�M, (ii) interaction signals only Dw�int, (iii) the distance-
based methods without weights considering both main (M and E)

and interaction signals DM�E�int, (iv) methylation signals only DM,

(v) interaction signals only Dint and (vi) the site-level EWAS
methods via logistic regressions on each CpG considering methyla-
tion signals only LS or (vii) both main (M and E) and interaction
signals LM. For LS, a simple logistic model is fitted for each CpG in
the gene one by one and a significant methylation effect of the
gene is claimed if any simple logistic model is significant after
Bonferroni adjustment for testing the number of CpGs in the gene.
For LM, a multiple logistic model with one CpG, the environmental
factor and their interaction is fitted for each CpG in a gene, and
the gene is considered significant if any multiple logistic model is
significant after Bonferroni adjustment for the number of CpGs in
the gene.

Note that we can also consider Dw�M�E; Dw�M�int; DM�E;
DM�int and DE models, which we included in Supplementary
Materials to show the flexibility of the proposed method.

3 Simulation studies

We conducted simulation studies to evaluate Type I error and power
of the proposed method Dw�M�E�int and the comparison methods
where we only considered one gene with multiple CpGs for illustra-
tion purpose. Type I error is defined as the proportion of simulations
the gene is significant when the data are generated under the null
hypothesis of no association. Power is defined as the proportion of
simulations the gene is significant when the data are generated with
a gene with multiple CpGs of different types of signals. We con-
ducted 1000 simulations in each simulation setting.

3.1 Simulation setup
We simulated methylation M-values X, which are logit2 transform-
ation of b-values (Du et al., 2010), for samples at multiple CpGs in
a gene using multivariate normal distributions. We only considered
one gene but with different number of correlated CpGs. The methy-
lation M-values of n CpGs of subject i are generated by

Xi � Nnðl;DTRDÞ

where l ¼ ðl1; . . . ; lnÞT determines means, D ¼ diagð ffiffiffiffiffir1
p

; . . . ;
ffiffiffiffiffi
rn
p Þ

determines variances and R determines correlations among n CpGs
in a gene, where we assume an AR(1) correlation with q ¼ 0:5, i.e.
Ruv ¼ qju�vj. The environmental factor of subject i is generated from

Ei � BernoulliðpÞ with P the probability of being exposed. We set
P¼0.5. After normalizing each column of X and E, we calculated
pairwise interactions between CpGs and the environmental factor
for subject i as Zi ¼ Xi � Ei.

Finally, based on the generated Xi, Ei and Zi, Yi is generated
from the following Bernoulli distribution

Yi � BernoulliðpðXi;Ei;ZiÞÞ

pðXi;Ei;ZiÞ ¼
expðbT

XXi þ bEEi þ bT
ZZiÞ

1þ expðbT
XXi þ bEEi þ bT

ZZiÞ
(6)

where bT
X, bE and bT

Z are the effects of n CpGs, one environmental
factor and n pairwise CpG�E interactions on outcome Y.

In each simulation, we set lj � Nð�0:47; 3:56Þ; j ¼ 1; . . . ;n, for
n CpGs, where �0.47 and 3.56 are the mean and SD of DNA
methylation means of all CpGs with gene information from the 432
samples in the CCCEH MN cohort. We set rj � Nð0:62; 0:21Þ;
j ¼ 1; . . . ; n, where 0.62 and 0.21 are the mean and SD of methyla-
tion SDs. We generated 100 cases and 100 controls. We set all b’s to
be 0 to evaluate Type I error rates and considered multiple scenarios
when signal CpGs have main signals only, interaction signals only
and both main and interaction signals to evaluate power with null
CpGs having b¼0.

3.1.1 Simulation settings with different types of signals

We set a gene with 30 CpGs with 1�4 CpGs having (i) methylation
main signals only, (ii) interaction signals only and (iii) both methyla-
tion main and interaction signals. Detailed simulation setups are in
Table 1.

3.1.2 Simulation settings with fixed number of signal items from

different number of signal CpGs

A signal item represents a methylation signal in the data matrix
XM�E�int regardless it is a main/interaction signal. Because we con-
sider interaction signals as another type of signal compared to main
signals, we investigated power when the same signal composition is
from different number of signal CpGs. Detailed simulation setups
are in Supplementary Table S2.

3.2 Simulation results
3.2.1 Type I error rate

Type I error rates are well controlled at the 0.05 significance level in
all simulation settings for all methods (Table 2).

3.2.2 Simulation settings with different types of signals

As summarized in Figure 1, when there are only main signals, Dw�int

and Dint that only consider interaction signals have no power, as
expected. Dw�M�E�int is slightly less powerful than Dw�M and similar
to LS. This is because the overall main signals are diluted by the inclu-
sion of pseudo-data for interactions when there are no interaction sig-
nals. DM�E�int performs similarly as LM, while both of them perform
inferior to Dw�M�E�int with weights. In general, the weighted versions
Dw�M�E�int and Dw�M outperform the corresponding non-weighted
versions, suggesting that incorporating association strength weights in
calculating distances indeed helps up-weight signals and down-weight
noises thus improves the overall power.

When there are only interaction signals, Dw�M; DM and LS that only
consider main signals have no power, as expected. Dw�M�E�int is slightly
less powerful than Dw�int when both of them outperform the corre-
sponding non-weighted versions. DM�E�int performs similarly as LM.

When there are both main and interaction signals, we fixed the
number of signal items and the number of signal CpGs to be 4 but
varying the main-to-interaction signal ratio, i.e. the ratio between
the number of main signal CpGs and the number of interaction sig-
nal CpGs. As the main-to-interaction signal ratio increases, the
power of Dw�M; DM and LS that only consider main signals
increases, while that of Dw�int and Dint that only consider inter-
action signals decreases, and that of Dw�M�E�int; DM�E�int and LM
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that consider both main and interaction signals remains the same.
Importantly, Dw�M�E�int consistently has the largest power, which
implies that the performance of Dw�M�E�int is not affected by signal
types. Again, the weighted versions outperform the non-weighted
versions.

The power of other possible comparison methods as well as
those of the simulation with 20 or 40 CpGs in a gene was summar-
ized in Supplementary Figure S1. We found that when we fix the
number of signal CpGs but increase the number of noise CpGs in a
gene, power of non-weighted methods decreases, while power of
weighted versions is well maintained. This suggests that adding
weights is effective, especially when a smaller percent of CpGs in a
gene are signals. This is consistent with that was observed in our
previous work (Wang et al., 2019).

3.2.3 Simulation settings with fixed number of signal items from

different number of signal CpGs

Power results for simulation settings with fixed number of signal
items from different number of signal CpGs are summarized in
Supplementary Material Section 1.3 and Figure S2. Overall, the
power of distance-based methods increases as the number of signal
CpGs increases.

4 Real data applications

4.1 CCCEH birth cohorts
Between 1998 and 2006, 727 pregnant women residing in
Washington Heights, Harlem and the South Bronx were recruited in
prenatal clinics to participate in the CCCEH MN prospective cohort
study. During the third trimester of pregnancy, women were asked
to wear a small backpack containing a personal monitor during the
daytime for 48 h. The collected samples were then analyzed for eight
carcinogenic PAHs (Perera et al., 2003). The PAH metric used in the
analysis is the sum of eight carcinogenic PAHs and was dichotom-
ized at the median in the parent population (2.26 ng/m3). In-person
postnatal questionnaires were given when the child was 6 months
and annually thereafter with developmental questionnaires and
assessments were administered every 1–2 years. We have also meas-
ured DNA methylation in the white blood cells of umbilical cord
blood.

Beginning in March 2008, pregnant women enrolled in the
CCCEH MN Study were invited to participate in the CCCEH
Sibling Study. Similar to the parent study, women were enrolled if
they had a prenatal visit by the 20th week of pregnancy, and were
not active smokers or illicit drug users. The same protocol was fol-
lowed as in the MN cohort. Children were followed until age 7,
with assessments of early childhood developmental and behavioral
outcomes and cord blood DNA methylation.

4.2 Neurodevelopment outcomes
We investigated the associations between prenatal PAH and DNA
methylation on neurodevelopmental outcomes when their interac-
tions are considered. We assessed two neurodevelopment outcomes
at age of 3: (i) Child Behavior Checklist DSM-IV-oriented ADHD
(American Psychiatric Association, 2013) and (ii) the Bayley Scales
of Infant Development MDI (Bayley, 1993).

Table 2. Type I error rates

Methods 20 CpGsa 30 CpGs 40 CpGs

Dw�M�E�int 0.037 0.051 0.055

Dw�M 0.051 0.053 0.052

Dw�int 0.044 0.045 0.047

DM�E�int 0.048 0.048 0.045

DM 0.036 0.053 0.047

Dint 0.047 0.048 0.049

LS 0.036 0.041 0.029

LM 0.037 0.039 0.035

aNumber of CpGs in a gene.

Fig. 1. Power results for simulation settings with methylation signals only, inter-

action signals only and both methylation and interaction signals when there are 30

CpGs in a gene

Table 1. Simulation settings with different types of signals

Scenario Number of signal itemsa Simulation setupb,c

Main signals only 1 signal CpG bX1
¼ 0:35

2 signal CpGs bX1
¼ bX3

¼ 0:35

3 signal CpGs bX1
¼ bX3

¼ bX5
¼ 0:35

4 signal CpGs bX1
¼ bX3

¼ bX5
¼ bX7

¼ 0:35

Interaction signals only 1 signal CpG bZ1
¼ 0:35

2 signal CpGs bZ1
¼ bZ3

¼ 0:35

3 signal CpGs bZ1
¼ bZ3

¼ bZ5
¼ 0:35

4 signal CpGs bZ1
¼ bZ3

¼ bZ5
¼ bZ7

¼ 0:35

Both main and interaction signals with fixed

number of signal CpGs

3 signal CpGs with interaction signals

1 signal CpG with main signals bX1
¼ bZ3

¼ bZ5
¼ bZ7

¼ 0:35

(main-to-interaction signal ratio¼ 1:3)

2 signal CpGs with interaction signals

2 signal CpGs with main signals bX1
¼ bX3

¼ bZ5
¼ bZ7

¼ 0:35

(main-to-interaction signal ratio¼ 2:2)

1 signal CpG with interaction signals

3 signal CpGs with main signals bX1
¼ bX3

¼ bX5
¼ bZ7

¼ 0:35

(main-to-interaction signal ratio¼ 3:1)

aA signal item represents a methylation signal in the data matrix XM�E�int no matter it is a main signal or an interaction signal.
bX represents DNA methylation main effects, Z represents DNA methylation by environment interaction effects.
cIn each model, we also set bE ¼ 0:1.
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Since ADHD diagnosis at age 3 may not be clinically reliable and
the main purpose is to demonstrate the superior performance of the
proposed method over comparison methods, we dichotomized
ADHD at T-score of 50 (high ADHD group T-score >50 and low
with T-score �50), which is the median of the normed population
derived from the raw scores (Achenbach and Rescorla, 2000). Note
that a T-score of 50 was assigned to those with raw scores below the
population median, i.e. no differentiation for those below the popu-
lation median, while a percentile-type T-score was assigned to those
above the population median. We performed the discovery analysis
using the MN cohort and the replication analysis using the Sibling
cohort.

For the MDI outcome, children are dichotomized as normal
(MDI�85) or moderately to severely delayed (MDI<85) (Perera
et al., 2006). Since there is only one case of moderately to severely
delayed child in the Sibling cohort, to conduct discovery and replica-
tion analyses, we randomly split the MN cohort using 2/3 samples
for the discovery analysis and 1/3 for the replication analysis.

4.3 DNA methylation data processing
We conducted standard data processing steps for DNA methylation
with details in Supplementary Material Section 2.1.

4.4 Risk of PAH, DNA methylation and their interactions

on ADHD
There are 328 samples with complete data of DNA methylation,
prenatal PAH and ADHD in the discovery MN cohort, and 43 sam-
ples with complete data in the replication Sibling cohort.

4.4.1 Discovery analysis in the MN cohort

Since the main purpose is to demonstrate the power of the proposed
method Dw�M�E�int over comparison methods, instead of using the
Bonferroni adjustment for 18 633 genes, we used a subjective threshold
of 0.005 on the empirical gene-level P-values obtained from the permu-
tation procedure. At the 0.005 threshold, Dw�M�E�int identified 17
genes in the discovery analysis, with 11 due to main signals only and 6
due to interaction signals only (Table 3).

4.4.2 Replication analysis in the Sibling cohort

Due to the small sample size of the Sibling cohort, we used a gene-
level P-value threshold of 0.1 in the replication analysis. Among the

17 genes identified in the discovery MN cohort, 4 (LOC84931,
CYP2E1, HIST1H2BJ and WASH2P) were replicated in the replica-
tion Sibling cohort. In both discovery and replication analyses, genes
CYP2E1 and WASH2P were identified due to interaction signals,
and genes LOC84931 and HIST1H2BJ were identified due to main
signals.

Figure 2 plots boxplots of methylation measures of the 13 CpGs
in gene CYP2E1, identified and replicated due to interaction signals,
stratifying by PAH and ADHD. Eight out of the 13 CpGs have clear
interaction signals in the discovery data, when all 8 showed inter-
action signals in the same direction in the replication data. It was
reported that prenatal exposure to serotonin reuptake inhibitor anti-
depressants modifies the association between DNA methylation at
regulatory region of CYP2E1 and third trimester maternal depressed
mood symptoms (Gurnot et al., 2015). Elevated DNA methylation
in the promoter-regulatory region of the gene CYP2E1 was also
reported to be associated with severe psychosocial deprivation in
early childhood and socio-cognitive impairment (Kumsta et al.,
2016). We similarly plotted for genes LOC84931, HIST1H2BJ and
WASH2P (Supplementary Figs S3–S5).

4.4.3 Results of the comparison methods

At the same 0.005 P-value threshold, the comparison methods iden-
tified different number of genes (Supplementary Tables S3–S9),
when all these genes rank within top 4% of the proposed method
results. The comparison methods have replication rates 0–33% with
an average 12% (Supplementary Table S10). Detailed results are in
Supplementary Material Section 2.2.

4.5 Risk of PAH, DNA methylation and their interactions

on MDI
Two-third MN samples (n¼216) were used for the discovery ana-
lysis and 1/3 (n¼94) for the replication analysis.

4.5.1 Discovery analysis in the discovery data

At the same 0.005 P-value threshold, the proposed method
Dw�M�E�int identified seven genes in the discovery analysis, with five
due to main signals only and two due to both main and interaction
signals (Table 4).

4.5.2 Replication analysis in the replication data

At the same 0.1 gene-level P-value threshold for replication, three
genes, FAM35A, DIRC1 and THSD1P, were replicated in the repli-
cation analysis due to main signals out of the five genes identified in
the discovery analysis due to main signals only. Gene C8orf80 was
replicated due to interaction signals, out of the two genes identified
in the discovery analysis due to both main and interaction signals.
That is, the replication rate is 57% with four out of seven genes
replicated. Figure 3 plots boxplots of DNA methylation measures of
the four CpGs in gene C8orf80 stratified by PAH and MDI status
that was identified due to both main and interaction signals and

Table 3. Application examining prenatal PAH, DNA methylation and

their interactions on child ADHD at age 3 identified 17 genes by the

proposed method Dw�M�E�int at the 0.005 gene-level P-value threshold

Rank in

Dw�M�E�int

Gene # CpG Rank in Dw�M Rank in Dw�int

1 LOC84931a 9 1 1513

2 SERPINB3 1 2 18 316

3 CYP2E1a 13 6013 1

4 KIR3DP1 1 18 535 3

5 MIR518E 1 13 908 2

6 KRTAP20-1 1 8 18 472

7 IGJ 1 4 18 286

8 ADAM32 11 5 15 841

9 OR8G1 1 17 560 8

10 CXCL9 1 9 16 665

11 HIST1H2BJa 4 3 14 178

12 SPACA1 6 17 17 866

13 LYRM1 3 22 12 866

14 WASH2Pa 1 15 711 9

15 MAS1 2 4067 5

16 BICD1 14 10 3485

17 NDUFA5 9 7 9318

aGenes replicated in the replication analysis.

A

B

Fig. 2. Boxplot of DNA methylation measures of the 13 CpGs in gene CYP2E1

stratified by PAH and ADHD status in the (A) discovery analysis using the MN co-

hort, and the (B) replication analysis using the Sibling cohort. Here p(m) and p(i)

are Bonferroni-adjusted (for number of CpGs in gene CYP2E1) P-values testing

bM1 ¼ 0 in the logistic model logitPðY ¼ 1Þ ¼ bM0 þ bM1CpG and b3 ¼ 0 in the

multiple logistic model logitPðY ¼ 1Þ ¼ b0 þ b1CpGþ b2Eþ b3CpG� E,

respectively
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replicated due to interaction signals. We similarly plotted genes
FAM35A, DIRC1 and THSD1P (Supplementary Figs S6–S8).

4.5.3 Results of the comparison methods

All genes identified by the comparison methods rank within top 3%
of the proposed method results. The comparison methods have repli-
cation rates 0–25% with an average 16% (Supplementary Table S11
and details in Supplementary Material Section 2.3).

5 Discussion

We developed a novel weighted distance-based method Dw�M�E�int

that considered interactions between CpGs in a gene and an environ-
mental factor through constructing a pseudo-data matrix with their
cross-product terms. The proposed approach is powerful and flex-
ible with several advantages. First, the weighted distance matrix
Dw�M�E�int always has a dimension N�N with N being the sample
size regardless the added dimensionality from pairwise interactions.
Second, by calculating distances between pairs of individuals across
CpGs and their interactions with an environmental factor, weak
main/interaction signals are accumulated, boosting the study power.
Third, incorporating association strength weights in calculating dis-
tances helps up-weight signals and down-weight noises thus further
improves the overall power, especially when a small percent of
CpGs in a gene are signals. Most importantly, simulation results
suggest that when the main-to-interaction signal ratio decreases, i.e.
when the number of main signals decreases or the number of inter-
action signals increases but fixing the total number of signal items,

the proposed method Dw�M�E�int maintains similar power and al-
most achieves the highest power among all comparison methods,
while the comparison methods have power drop. This makes the
proposed approach especially attractive due to the known low
power in detecting interactions.

In the application to the CCCEH MN and Sibling cohorts exam-
ining prenatal PAH, DNA methylation and their interactions on child
ADHD at age 3, Dw�M�E�int identified 17 genes in the discovery data
with 4 replicated in the replication data, while the comparison meth-
ods have an average replication rate 12%. In another application on
child MDI at age 3, Dw�M�E�int identified seven genes in the discov-
ery data with four replicated in the replication data, while the com-
parison methods have an average replication rate 16%.

In general, the proposed method that considers both main and
interaction signals has a superior performance than methods that con-
sider only one type of signals when there are both. The weighted ver-
sions are always more powerful than non-weighted versions,
especially when a small percentage of CpGs in a gene have weak sig-
nals. The proposed method was developed for DNA methylation by
environment interactions but can be readily extended to CpG by CpG
interactions similarly using a pseudo-data matrix constructed with
cross-product terms between CpGs. However, the dimension of this
pseudo-data matrix capturing pairwise CpG by CpG interactions
goes up exponentially, which could easily out-number the dimension
of CpGs in the gene. We need to take extra caution to balance be-
tween main or interaction signals, especially when assigning weights.
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