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Abstract

Motivation: Annotating a given genomic locus or a set of genomic loci is an important yet challenging task. This is
especially true for the non-coding part of the genome which is enormous yet poorly understood. Since gene set en-
richment analyses have demonstrated to be effective approach to annotate a set of genes, the same idea can be
extended to explore the enrichment of functional elements or features in a set of genomic intervals to reveal poten-
tial functional connections.

Results: In this study, we describe a novel computational strategy named loci2path that takes advantage of the
newly emerged, genome-wide and tissue-specific expression quantitative trait loci (eQTL) information to help anno-
tate a set of genomic intervals in terms of transcription regulation. By checking the presence or the absence of mil-
lions of eQTLs in a set of input genomic intervals, combined with grouping eQTLs by the pathways or gene sets that
their target genes belong to, loci2path build a bridge connecting genomic intervals to functional pathways and pre-
defined biological-meaningful gene sets, revealing potential for regulatory connection. Our method enjoys two key
advantages over existing methods: first, we no longer rely on proximity to link a locus to a gene which has shown to
be unreliable; second, eQTL allows us to provide the regulatory annotation under the context of specific tissue types.
To demonstrate its utilities, we apply loci2path on sets of genomic intervals harboring disease-associated variants
as query. Using 1 702 612 eQTLs discovered by the Genotype-Tissue Expression (GTEx) project across 44 tissues
and 6320 pathways or gene sets cataloged in MSigDB as annotation resource, our method successfully identifies
highly relevant biological pathways and revealed disease mechanisms for psoriasis and other immune-related dis-
eases. Tissue specificity analysis of associated eQTLs provide additional evidence of the distinct roles of different tis-
sues played in the disease mechanisms.

Availability and implementation: loci2path is published as an open source Bioconductor package, and it is available
at http://bioconductor.org/packages/release/bioc/html/loci2path.html.

Contact: zhaohui.qin@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A large number of high throughput experiments have been produc-
ing results that can be summarized as a list of genomic intervals. For
example, peaks from ChIP-seq (Barski et al., 2007; Johnson et al.,
2007; Robertson et al., 2007), humps from ATAC-seq (Buenrostro
et al., 2013, 2015), DNase-seq (Song and Crawford, 2010), differen-
tial methylated regions (DMRs) from WGBS (Jaffe et al., 2012;
Lister et al., 2008), or linkage disequilibrium (LD)-spanned neigh-
borhood around significant disease-associated single nucleotide
polymorphisms (SNPs) identified from Genome Wide Association

Studies (GWASs) (Welter et al., 2014). Typically, thousands or tens
of thousands of such intervals are in the list, hence it is impossible to
explore them one by one. How to effectively and efficiently discover
biological properties and reveal biological insights from these large
number of genomic intervals is an important yet challenging task.

A common practice for interpreting such findings is a two-step pro-
cess. First, link each of the genomic interval to its nearest gene, then
study the properties of the list of genes derived from all the intervals,
typically using methods such as gene ontology (GO) (Ashburner et al.,
2000) term enrichment analysis (Huang et al., 2009) and gene set en-
richment analysis (GSEA) (Subramanian et al., 2005). Examples of
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such approach are GREAT (McLean et al., 2010) and Enrichr
(Kuleshov et al., 2016). The rationale behind such a method is because
most of the biological knowledge we have collected so far focus on
genes. A drawback of this approach is that many of the genomic inter-
vals are tens or even hundreds of kilobase pairs away from their nearest
gene hence the assignment will be difficult to justify. Recent findings
from chromosomal conformation capture-based technologies have
showed that a distant regulatory element may be put in touch with its
target gene by chromosomal looping (Smemo et al., 2014). Conversely,
in gene-dense genomic regions, typically multiple genes can be found
within the 10 kb radius of a variant, making assigning the target gene
by proximity comparable to random guessing. More importantly, since
many genes exert their functions in a context-specific and tissue-
specific manner, their property may not always be transferable to its
nearby genomic interval. Both gene expression and epigenetic regula-
tion are dynamic across different cell and tissue types (Torres et al.,
2014; Wang et al., 2016), and such information is not considered in
distance-based methods. Therefore, it is of great interest to explore the
function of genomic intervals beyond inferring their functions simply
from its closest gene.

Rather than using nearby genes as surrogates, an alternative
strategy is to explore the enrichment of functional elements inside
these genomic intervals. Examples include DNA sequence motifs,
DNA conservation and CpG Islands. More recently, thanks to large
consortium efforts such as ENCODE (Bernstein et al., 2012),
REMC (Bernstein et al., 2010) and IHEC (Stunnenberg et al., 2016),
increasing number of functional elements such as in vivo transcrip-
tion factor binding sites detected by ChIP-seq experiments have been
systematically cataloged. One can check whether their genomic
intervals of interest are enriched with any type of functional ele-
ments (Griffon et al., 2015). The same idea can be extended to other
types of biological meaningful genomic entities. For example, check-
ing the enrichment of trait-associated SNPs (taSNPs) identified by
GWAS can help link the set of genomic intervals to diseases or traits
(Chen and Qin, 2016).

Similar to GWAS-identified taSNPs, another important type of
functional variants is the expression quantitative trait loci (eQTL),
which are variants that show evidence of association with the ex-
pression level of their target gene(s)—referred to as eGene(s) from
now on. Transcription regulation is one of the most important types
of functional annotation in the non-coding part of the genome, and
eQTLs provide direct evidence of such connection. The existing
eQTL catalogs (Dimas et al., 2009; Montgomery et al., 2010;
Pickrell et al., 2010; Stranger et al., 2007) have seen significant
boost in recent years thanks to the Herculean effort of the
Genotype-Tissue Expression (GTEx) consortium (Aguet et al.,
2017). GTEx provides a comprehensive eQTL catalog with high
quality and sufficient power given the large sample sizes and exten-
sive collection of tissue types. We felt that GTEx eQTLs provide a
remarkably valuable resource to include in enrichment analysis for
genomic intervals, given it provides a bona fide link to the genes
these loci potentially regulate. Two aspects of the eQTL data can
greatly improve the discovery of functional links between genomic
loci and genes. First, the association between loci and genes does not
depend on genomic distance, which has been shown to be unreliable
(see Section 3). Second, unlike proximity-based gene assignment,
which is static, eQTL information is tissue-specific, in that an eQTL
may regulate its eGene, only in one or two specific cell or tissue
types. Which make the biological interpretation much more specific
and informative.

We believe that studying the enrichment of eQTLs at the path-
way or gene set level, instead of at the individual gene level, is neces-
sary. In any given tissue, only �20�30 eQTLs are found for each
eGene in GTEx on average, and most of them are located near their
eGene—since GTEx primarily focused on cis-eQTL. Therefore,
eQTLs for a single gene do not spread out of the neighborhood of
their eGenes, and not suitable to test the enrichment of eQTLs for
each gene individually. On the other hand, most pathways or gene
sets contain tens to hundreds of genes that are functionally related
and spread across multiple chromosomes. Hence, checking the en-
richment of eQTLs whose eGenes belong to the same pathway or

gene set can help us to potentially build connections between the gen-
omic intervals and pathways or functional gene sets that may lead to
hypothesis of possible underlying biological mechanisms. Some recent
works (Ahmed et al., 2017; Li et al., 2016) show potential to perform
functional enrichment analysis using eQTL data. However, a systemat-
ic evaluation of tissue-specificity is still lacking. In this work, we de-
scribe loci2path, a computational tool as an R Bioconductor package
to enables straightforward enrichment analysis of eQTLs in pathways/
gene sets for a set of genomic intervals. The current version of loci2-
path utilizes the entire eQTL catalog from the GTEx v6p data release,
which contains 1 702 612 unique eQTLs associated with 16 562
unique eGenes identified from 44 tissue types (Supplementary Table
S1). As of pathways and gene sets, the current version of loci2path con-
tains 6320 pathways from MSigDB (Liberzon et al., 2011) belonging
to the BioCarta, KEGG and GO categories. To illustrate the utilities of
loci2path, we test various trait-/disease-related genomic regions con-
structed from immune-related disease database immunoBase (www.
immunobase.org) as query regions.

2 Materials and methods

2.1 Enrichment measurement
For one eQTL set ESk and one gene set GSj, we use the P-value
from enrichment test (Fisher’s exact test) to evaluate the significance
of the enrichment. The default enrichment test is carried out with
gene-based mode, in which loci2path will firstly identify eGenes g
associated with eQTLs from ESk covered by the query regions, then
evaluate the significance of enrichment of these eGenes g within a
given gene set GSj. In loci2path, the default enrichment testing pro-
cedure is to test the enrichment of eGens, not eQTLs. This is because
multiple eQTLs may be linked to the same eGene due to LD. As a
result, many of the eQTLs may be redundant and should not
be counted. The details of the enrichment testing procedure can be
found in Supplementary File S1.

2.2 Assessment of tissue specificity
Once the eQTL set list is ready, the tissue specificity for an eGene gi

is evaluated by the number of tissues gi is detected as eGene, divided
by the total number of tissues. For example, the degree of tissue spe-
cificity (DTS) for gene gi is defined as:

DTS gið Þ ¼
X

k

I gi 2 ESkð Þ
m

where I is the identity function, I gi 2 ESkð Þ ¼ 1 if gi is an eGene in
tissue k, and I gi 2 ESkð Þ ¼ 0 otherwise; m is the number of tissues
(44 in this study).

2.3 Tissue specificity measured by average tissue

number
Due to the fact that gene expression pattern is cell-type specific, we
are interested in knowing if the genomic region-pathway/gene set
link (through eQTL) is only significant in one tissue, or it is globally
enriched across multiple different tissue types. Previously, we have
defined DTS for each eGene, here we extended the DTS definition to
a given set of query regions and a specific gene set GSj, which is
equal to the average DTS:

avgDTSj
¼ 1

lG

X

gi2GSj

DTS gið Þ

where lG are the total number of eGenes from g that are members of
gene set GSj.

2.4 Output
All the enrichment scores, counts used in the calculation and tissue/
gene set identifiers are organized in a table as output. Each row of
this result table contains data of a pair of eQTL set ESk and gene set
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GSj. All the rows are ranked by P-values calculated from the Fisher
exact test by default.

2.5 Multiple-test correction using adjusted P-value
Adjusted P-value is calculated using ‘BH’ method (Benjamini and
Hochberg, 1995) from function p.adjust() in R. We use 0.01 as the
default threshold, which corresponds to nominal P-value threshold
of 1e�4. We choose this P-value threshold based on experience.
From our observation, we found this P-value threshold is a reason-
able choice to select roughly the top 1% of the pathways on average
within each tissue.

2.6 Rank-based permutation test
The number and composition of eGenes vary substantially across
different tissues. Therefore, results of parametric tests such as
Fisher’s exact test are sensitive to such variations when applied
across tissues types. In order to adjust for multiple testing under
such a scenario, we propose to apply a non-parametric, rank-based
permutation test to evaluate the significance of enrichment. The en-
richment test method we devised is similar to the one used in
Enrichr (Kuleshov et al., 2016). Details of the rank-based permuta-
tion test is described in Supplementary File S1.

2.7 Datasets
GTEx eQTL. In this study, we collected the full set of eQTLs from
the GTEx project, which are composed of eQTL studies from 44
tissue types. GTEx eQTL data were downloaded from GTEx via the
link: http://www.gtexportal.org/static/datasets/gtex_analysis_v6p/
single_tissue_eqtl_data/GTEx_Analysis_v6p_all-associations.tar.
Entrez ID is used as the default gene identifier. If the gene identifier
is different between eQTL study and the gene set, they are all con-
verted to Entrez ID. Unmapped genes are not included.

MSigDB pathways. Pathway and gene sets for this study were
downloaded from the MsigDB website: http://software.broadinsti
tute.org/gsea/downloads.jsp. Entrez ID was used as the identifier of
genes across all the gene sets.

Gene annotation. Genome coordinates of all the entrez genes on
reference genome hg19 were obtained using UCSC Known gene
table, retrieved with Bioconductor/GenomicFeatures package. This
is the most updated version (downloaded 24 October 2016). There
are in total 23 056 genes, only 21 063 of the MSigDB Entrez ID can
be matched onto this set (�65%). By manually checking the missing
genes, a majority of these records were withdrawn pseudo genes,
therefore they are excluded in the downstream analysis.

Gene expression. Tissue-specific gene expression level was
obtained from GTEx data portal. The median RPKM table
(GTEx_Analysis_v6p_RNA-seq_RNA-SeQCv1.1.8_gene_median_
rpkm.gct) is used to quantify gene expression. Gene expression data
for the 44 tissues were downloaded from GTEx portal from the file
named ‘GTEx_Analysis_v6p_RNA-seq_RNA-SeQCv1.1.8_gene_
median_rpkm.gct.gz’. This file contains median gene expression val-
ues (measured in RPKM) by tissue.

3 Results

3.1 Overview of loci2path
The components and workflow of loci2path are shown in Figure 1.
We utilize eQTL data from the GTEx project, and pathway infor-
mation from MSigDB for this study. In the beginning, loci2path
takes in a set of genomic regions as input. We next count the total
number of eQTLs that fall in these intervals for each pathway (or
gene set) and tissue-type combination. This is then followed by en-
richment test and tissue-specificity evaluation. In order to evaluate
tissue specificity, we calculate the frequency that an enriched path-
way is detected across all tissues. The result contains two pieces of
information: (i) enriched pathways connected to the queried loci,
ranked by enrichment; (ii) the tissue type in which this enrichment is
detected. Users can customize the query result by sorting pathways
based either on enrichment test P-values or DTS (see Section 2).

Additional summary data, such as the numbers of eGenes or eQTLs,
the size of the pathway, are also presented which may be used to fil-
ter the results. A list of output fields can be found in Supplementary
Table S2, and a sample of query output for can be found in
Supplementary File S2.

In order to visualize both the pathway enrichment and the tissue
specificity, loci2path presents the main query result as a heatmap.
The rows of the heatmap are enriched pathways; the columns are
tissues. Rows and columns are arranged by hierarchical clustering.
The color for each cell indicates the degree of enrichment, rendered
from red to blue as negative log P-values vary from high to low. We
show in the following analysis that this visualization method helps
to reveal interesting enrichment patterns and offer clues on potential
links between genetic variations and disease pathogenesis.

Examining the relationships among eQTLs, eGenes and tissue
types composition in GTEx data reveals that only about 25% of the
times that the closest gene of an eQTL turned out to be its eGene
(Fig. 2A). This result highlights the danger of simply assigning the
target genes by genome proximity. On the other hand, around 10%
of the eQTLs are located in loci where multiple genes are located
within a 10-kb neighborhood (Supplementary Fig. S1), in which
case assigning the target gene by proximity is very unreliable. Next,
we explore the tissue-specificity of eQTLs and eGenes. The DTS for
a gene is decided by the number of tissues in which this gene is
detected as eGene (see Section 2). We find that around 30% of
eQTLs are detected in only one tissue (i.e. tissue specific), while
more than half of all eQTLs are detected in one or two tissues
(Fig. 2B). However, the proportion of tissue specific eQTLs vary
drastically among different tissues (Fig. 2C).

3.2 GTEx eQTL data from 44 tissues
We downloaded all significant eQTLs from the GTEx data portal.
The number of eQTLs and eGenes are summarized in
Supplementary Table S1. This dataset contains eQTLs identified
from 7051 samples representing 44 different tissue types collected
from 449 donors (Aguet et al., 2017). From Supplementary Table
S1, we noted that the numbers of eQTLs and eGenes vary among tis-
sues. The number of eQTLs ranges from 34 898 (Uterus) to 577 857
(Thyroid) and the number of associated eGenes ranges from 542
(Vagina) to 6990 (Tibial Nerve). The sample size is a major factor of
the wide range of eQTL/eGene numbers (Supplementary Table S1),
though other factors such as tissue-specific gene expression (Aguet
et al., 2017) and postmortem interval (Ferreira et al., 2018) might
also contribute to such differences. The 44 tissue types contain

Fig 1. Overview of loci2path. (A) Illustration of the loci2path software. We use

shapes to mark tissue or cell types, and colors to differentiate pathways. In the

eQTL box, eQTL locations from different tissues are shown in different shapes. In

the pathway box, genes from different pathways are shown in different colors. Dash

lines represent the association between eQTL and eGenes. (B) illustration of loci2-

path workflow. (Color version of this figure is available at Bioinformatics online.)
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clusters of homogeneous tissues, such as multiple types of brain,
skin, muscle and artery cells.

3.3 MSigDB pathways
We collected pre-defined gene pathways (or gene sets) from the
MSigDB (Liberzon et al., 2011; Subramanian et al., 2005). In this
study, we query loci2path for enrichment of three categories of
MSigDB pathways: GO term gene sets, KEGG pathways and
BioCarta pathways. GO terms offer a comprehensive resource for
functional annotation of genes. In this study, we collected all three
GO gene set categories from MSigDB’s class C5 gene sets including
BP-biological process, 4436 gene sets; CC-cellular component, 580
gene sets; MF-molecular function, 901 gene sets. In addition, we
included BioCarta pathways to accommodate more details of inter-
actions among gene members regardless the hierarchical relation-
ships among gene sets that are comprehensively defined in GO. In
total, 217 BioCarta gene sets from MSigDB’s C2: curated gene sets
were downloaded. We also collected 186 KEGG pathways to detect
metabolism-related functions. Details of the pathway resources are
listed in Section 2.

3.4 Query regions from immunoBase
To illustrate the utility of loci2path, we first test it on genomic
regions containing genetic variants that are known to be associated
with immune-related diseases. For each disease, we use risk regions
defined by immunoBase (https://www.immunobase.org/) as the in-
put. ImmunoBase provides a curated data source for immunological-
ly related human diseases. This collection of findings from GWASs
and fine mapping studies using the immunoChip serves as a valuable
resource to study immunological disorders (Cortes and Brown,
2011; Polychronakos, 2011). Then the neighborhood around each
GWAS variant based on local LD is added and overlapping neigh-
borhoods are merged to form disease risk regions. For example, the
input regions for psoriasis are constructed by merging regions within
the 60.1centimorgan genetic linkage ranges around disease-related

variants (https://www.immunobase.org/region/table/PSO/). Using
these data, Chun et al. identified autoimmune-disease-related risk
signal enriched in gene regulatory regions in a tissue-specific manner
(Chun et al., 2017). In our study, we conduct a pathway enrichment
analysis leveraging eQTL information which allows us to study
the tissue-specificity of functional enrichment within pathways.
We choose to investigate all the 12 core immune diseases originally
targeted by the immunoChip consortium. The genomic range of
query regions are summarized in Supplementary File S3.

3.5 Tissue specificity captures distinct modules of

pathogenesis in psoriasis
Psoriasis (OMIM ID: 177900) is a common, chronic skin disorder
with a complex genetic and environmental etiology characterized by
epidermal hyper-proliferation, vascular remodeling and inflamma-
tion (Nestle et al., 2009). Many genetic studies (Greb et al., 2016;
Gudjonsson and Elder, 2007; Hwang et al., 2017) including GWAS
studies (Strange et al., 2010) and meta-analyses (Tsoi et al., 2015)
have been conducted and tens of genomic loci have been identified
as psoriasis associated. In ImmunoBase, 45 loci are included in 35
regions covering a total of 10.69 million base pairs (MB). A heat-
map of highly enriched pathways is shown in Figure 3 (�0.01 FDR
based on rank-based permutation test, see Section 2; equivalent
P-value threshold on Fisher’s exact test is 1e�4). A complete query
result table after filtering is presented in Supplementary File S4.

From the heatmap shown in Figure 3, we notice that among all
the GO pathways that have been identified to show significant en-
richment of eQTLs inside these 35 regions, three different groups of
GO pathways are present with substantial difference in their enrich-
ment patterns across tissue types. Pathway group 1 are enriched
only in epidermis tissue types, including two skin tissues and mu-
cosa. Pathway group 2 show enrichments in several tissue types that
harbor dendritic cells with fuzzy block edge but are absent from the
majority of brain tissues. It is interesting to see that the main func-
tion of these pathways is down regulating immune-response; and
dysfunction of such pathways have been linked to autoimmune dis-
eases such as psoriasis. Pathway group 3 are all major histocompati-
bility complex (MHC) I peptide presentation pathways, and they
are enriched across all tissue types. The pathways from these three
group are listed in Table 1.

In Figure 4A, we use LCE cluster 3 genes as an example to show
the spatial relationships among query region, eQTLs, eGenes and
additional GWAS evidence in the genome. Figure 4B shows that
DTS analysis yield the same three categories, in accordance with the
patterns shown in the heatmap. When extracting member genes
from each category we discover distinct composition of gene mem-
bers, and we also notice distinct clusters of gene functions within
each group. Figure 4C shows the most frequent genes from each
pathway group. Group 1 are dominated by late cornified envelope
(LCE) family genes. Multiple LCE genes are co-localized in the
1q21.3 region and was defined as the LCE cluster 3 genes. The dele-
tion of the gene LCE3B and LCE3C has been previously identified
as a risk factor for psoriasis (De Cid et al., 2009). However, within

Fig 2. Summary of eQTLs and tissue specificity. (A) The percentage of eQTLs whose

eGene is its nearest gene. The three bars represent three different ways to define

the nearest gene. For an eQTL-eGene pair, three types of distance are considered:

(1) distance to the gene promoter (defined as �2000 � þ200 bp of the transcription

start site (TSS); (2) distance to the gene body [from TSS to the transcription end site

(TES)]; (3) distance to promoter and gene body (from 2000 bp upstream of TSS to

the TES). (B) The breakdown of all eQTLs according to the number of tissue(s)

in which the eQTL is found to be significant. The percentages are: 1: 38.7%;

2: 14.5%; 3: 8.4%; 4: 5.7%; 5: 4.0%; 6: 3.3%; 7: 2.6%; 8: 2.3%; 9: 1.9%;

10: 1.7%; >10: 16.8%. (C) Distribution of degree of tissue specificity (DTS) of

eQTLs within each tissue. Each bar shows the composition of eQTLs with different

DTS. Tissues are ordered with an increasing average DTS

Fig 3. Query result of psoriasis risk regions. Heatmap of eQTL enrichment in differ-

ent tissue-pathway combinations for psoriasis. Each row of the heatmap represents

a pathway; each column represents a tissue type. Each cell shows the significance of

enrichment indicated by –log(P-value). Red color indicates strong enrichment, while

blue indicates no enrichment. Three groups of nine pathways with distinct DTS are

selected to generate the heatmap and highlighted with red boxes and numbered as

groups 1�3. (Color version of this figure is available at Bioinformatics online.)
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this gene-dense region, assigning the closest gene to an eQTL as its
target is rather unreliable. Group 2 includes genes involved in innate
immune response. For example, MICA is the gene coding NK cell
attracting peptide (Menier et al., 2002); NOS2 encodes the cytokine
inducible enzyme (Stuart et al., 2010); and LGALS9, a versatile
factor in immune homeostasis, is reported to be down-regulated and
dysregulate helper T-cell signaling in psoriasis patients (De La
Fuente et al., 2012; Golden-Mason and Rosen, 2017). Group 3
have some distinct members involved in antigen processing and
presentation, such as ERAP1 and ERAP2, together with Class 1
MHC encoding gene HLA-B and HLA-C. The non-tissue-specific
feature among these genes is not surprising, since peptide presenta-
tion is a global event across all cells. Variations of these genes

will result in the altered antigenic MHC complex that triggered
the downstream T-cell activation associated with autoimmunity
(Goris and Liston, 2012).

After a systematic review of psoriasis pathogenesis, we noticed
that these three pathway categories are in concordance with the
three major modules of the tentative pathogenesis model of psoria-
sis, as described by Bergboer et al. (Bergboer et al., 2012). Group 1
pathways are related to skin barrier and keratization module. Group
2 pathways relate to innate immune systems. Group 3 pathways are
general immune response pathways of adaptive immune system. It is
interesting to note that a well-studied epistasis between HLA and
ERAP1 is captured in group 3 pathways (Bergboer et al., 2012;
Goris and Liston, 2012). HLA encode individual specific MHC, and
ERAP1 code the enzyme involved in trimming HLA class I-binding
peptide. Variation in this ERAP1 would affect whether the peptide
can be presented to MHC1, thus revealing the mechanism of psoria-
sis risk within certain population of a specific HLA subtype.

We compared with the query result from GREAT (McLean
et al., 2010), using the same set of query regions, and GO terms as
pathway gene sets. We found that more than 50% of the top
enriched pathways (with P-value <1e�5) from GREAT also appear
in loci2path query result. However, we noticed that GREAT fail to
detect the skin tissue-specific pathways. Furthermore, loci2path
adds tissue specificity information from eQTL data. A complete list
of shared pathways, together with unique pathways from both tools
are listed in Supplementary File S4.

3.6 Shared risk pathways among 12 core immune

disease
Next, we extend our query to all 12 core immune diseases collected
by immunoBase. A full list of the names for these diseases and
their abbreviations used in this study are listed in Supplementary
Table S3. A full list of the disease risk regions (obtained from
immunoBase) as input are listed in Supplementary File S3.

We again organize and present the results in heatmaps with rows
represent pathways, and columns represent the 12 immune diseases,
in order to examine the inter-relationships among the 12 complex
immune diseases. We generate three such heatmaps from three
immune-related tissues: blood, thyroid and spleen. And we query
against two collections of gene sets: BioCarta pathways and GO
term gene sets from MSigDB (see Section 2).

From the heatmaps, we observe interesting patterns. First, en-
richment patterns across 12 diseases show significant differences
across the three tissue types, suggesting that tissue information is im-
portant in eQTL studies. Among the three tissues, pathways in the
blood show the highest level of enrichment, suggesting the rich po-
tential of repository of immune cells (leukocytes and lymphocytes),
in spite of a relatively smaller repository of eQTLs in the blood com-
pared with the thyroid. One surprising example is for autoimmune
thyroid disease; no pathway shows enrichment in the thyroid.
Additionally, we found that Ankylosing spondylitis and auto-
immune thyroid disease show distinct patterns from the other 10
diseases. Further examination of the query regions for these two dis-
eases shows that these regions does not include the region contains
the HLA gene complex, which resides on a 3 MB stretch within
chromosome 6p21, while all other immune diseases have risk
regions overlapping the HLA complex region. Thus, it explains that
the different patterns shown in the heatmap.

Within the BioCarta pathways (Fig. 5A), we observe that the
Crohn’s disease (CRO) and Ulcerative colitis (UC) share very similar
enrichment patterns. This is expected since these are two subtypes of
inflammatory bowel disease (IBD) thus sharing numerous enriched
pathways. Among the shared enriched pathways, Salmonella path-
way is related to bacteria entering membrane of salmonella infected
cells, which plays an important role in the onset of IBD (Henderson
and Stevens, 2012; Schultz et al., 2017). In addition, several path-
ways contain members of the Rho genes family: RhoA, Rac and
Cdc42 are commonly enriched as well. this is consistent with previ-
ous findings that the Rho kinase signal pathway is involved in the
three essential beginning stages in the chronic pathogenic procedure

Fig 4. Psoriasis-related functional groups revealed by tissue specificity. (A) Genome

browser view of the LCE cluster 3 gene locus as an example to illustrate the spatial

relationships among query regions, eQTLs, eGenes in the genome. Arrows located

toward the bottom indicate genes, with arrows showing the direction of its tran-

scription. Double-arrow line indicates an input query region. Diamond dots at the

top represent GWAS loci associated with psoriasis, according to the immunoBase.

Gray dots are GTEx eQTLs, with height denotes the P-value in negative log scale.

Different shapes and shades represent different tissue origin. Numbers next to the

tissue name abbreviation indicate the number of eQTLs associated with the eGene.

(B) Distribution of DTS for enriched pathways using psoriasis risk regions as query.

The x-axis is the DTS values for an enriched pathway. The y-axis is the average

number of pathways with the corresponding DTS score. For the same pathway

enriched in different tissues, the DTS are averaged. We observe three clusters of

DTS, which are in concordance with the pathway clusters found in the eQTL en-

richment heatmap in Figure 3. (C) Most frequent eGenes from the three groups of

enriched pathways using psoriasis risk regions as query. Top five most frequent

eGenes from each pathway group are shown. The y-axis is the percentage of path-

ways within each group that has the corresponding gene as their member gene. For

example, in Group 1, six tissue-pathway enrichment records (including two unique

pathways; three tissues) were detected by loci2path; LCE3C is a member gene of all

the pathways in these six records; LCE3E appears in four out of the six records

Table 1. Enriched pathway groups of psoriasis risk regions

Group Pathways Shared eGenes

1 Keratinization (50)a LCE3C, LCE3D, LCE3E

LCE1E, LCE3APeptide cross linking (56)

2 Negative regulation of cell killing (18) HLA-B, MICA, LGALS9

Regulation of cell killing (63)

Negative regulation of innate immune

response (38)

Regulation of leukocyte-mediated

immunity (53)

Negative regulation of natural killer cell

mediated immunity (12)

3 Antigen processing and presentation of

endogenous peptide antigen (14)

HLA-B, ERAP2, HLA-C,

ERAP1

Antigen processing and presentation of

endogenous antigen (17)

aThe numbers of genes within each pathway is shown in the parenthesis.
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of IBD (Huang et al., 2015). Also, pathway Actin Filament Y, one
component of cytoskeleton, plays vital role in the disruption of epi-
thelial barriers under inflammatory conditions (Ivanov et al., 2010).

As shown in Figure 5B, in addition to the similar enrichment pat-
terns we found in BioCarta pathways, we also found two unique
GO gene sets that are shared by both CRO and PSO but not others.
These two gene sets are labeled ‘defense response’ and ‘response to
stress’, respectively. When mapping them onto the GO hierarchy,
we found that the GO term ‘defense response’ is a leaf node of the
GO term ‘response to stress’. Therefore, all the member genes in the
‘defense response’ gene set also belong to its parent node, the ‘re-
sponse to stress’ gene set. We extracted all the member genes from
the larger and upper level gene set with GO term ‘response to stress’
and show them in the Venn diagram (Fig. 5C). We found that in this
gene set, 50% of eGenes derived from CRO-related query regions
and 70% of the eGenes derived from PSO-related query regions are
the same. Further literature research reveals that several genes
among them have been identified as common risk genes between
CRO and PSO. For example, variants located in the TRAF3IP2 gene
contribute to the susceptibility to immune diseases involving the
skin or the gut (Ciccacci et al., 2013). JAK family kinase TYK2 func-
tions as mediator of IL-12 and IL-23, which are key factors in the
pathogenesis of PSO and IBD. Effective inhibitor of TYK2 provides
an attractive therapeutic strategy for such diseases (Miao et al.,
2016). ICAM-3 plays an important role in neutrophils to amplify
NK cells by producing Interferon-gamma, with supporting evidence
from both PSO and CRO patient samples (Costantini et al., 2011).
The tissue location of neutrophils also suggests the reason that the
enrichment within blood is the most significant among the three tis-
sue types in the heatmap. For the rest of MHC-peptide antigen pre-
senting genes, these shared genes function in defense response
pathways, and variants associated with these genes will affect the
normal immune defense mechanism by altered antigenicity and im-
mune-regulatory pathways.

3.7 Reduce the impact of imbalanced tissue sample size
Owing to the availability of different tissue types, the sample sizes
across the 44 tissue types in GTEx varies considerably, from as low
as 70 (Uterus) to as high as 361 (Muscle Skeletal); see
Supplementary Table S1. The imbalanced sample size among

different tissue types has a significant impact on the number of
eQTLs and eGenes identified (Pearson’s correlation between the
number of eGenes, eQTLs and the number of sample sizes across 44
tissues is 0.93 and 0.91, respectively; see Supplementary Fig. S2A
and B for scatter plots). On the other hand, we found the impact of
the sample size on the number of significant pathways identified is
less strong. Using psoriasis as an example (Results in Supplementary
File S4), the Person correlation between the number of significant
pathways identified and the sample sizes is 0.75 (scatter plot in
Supplementary Fig. S2C). We believe that the rank-based permuta-
tion test can further reduce the impact of the imbalanced sample
sizes on the detection of enriched pathways across tissues. To dem-
onstrate this, we again using the psoriasis as an example (Results in
Supplementary File S5), we found the Person correlation between
the number of significant pathways identified and the sample sizes is
only 0.06 (scatter plot in Supplementary Fig. S2D). We again sum-
marized the enriched pathways in a heatmap. A portion of it is pre-
sented in Supplementary Figure S3. The rows and the columns in
Supplementary Figure S3 are arranged exactly as in Figure 3. From
Supplementary Figure S3, we can see similar enrichment patterns in
three distinct groups as in Figure 3, indicating that using the alterna-
tive permutation test, we will make similar findings as using the de-
fault Fisher’s exact test for enrichment evaluation.

3.8 Software availability
R package loci2path is freely available from github.com/StanleyXu/
loci2path and Bioconductor with package name ‘loci2path’. User
can provide arbitrary query regions in R using the GenomicRanges
data type in R. For query regions of 600 kb in total, using the com-
plete 44 tissues GTEx eQTL set, query against the complete
BioCarta pathway collection (217 gene sets) takes <1.5 min to finish
on a MacBook Pro laptop computer with 2.9 GHz i5 CPU and 8 G
RAM. Parallel query mode would further increase the speed on a
multi-core computing platform, on which the performance varies
due to the working load and availability of resource.

4 Discussion

We developed loci2path, a novel computational tool to annotate
genomic regions using comprehensive tissue-specific eQTL informa-
tion. Functional annotation of genomic regions focuses on gathering
various types of functional events happened at these loci and priori-
tize the annotations. Considering that eQTLs provide valuable in-
formation to connect genomic intervals of interest to the potential
target genes, we are able to conduct rigorous statistical tests to find
pre-defined pathways in which these genes are enriched. Compared
with analysis based on single gene that harbor risk of false associa-
tions, enrichment analysis provides robust assessment of function by
integrating multiple genes with pre-defined pathways and brings in-
sight to biologically meaningful results. We believe that loci2path
would help researchers to identify accurate functionality annotation
and specific tissue enrichment for query regions of interest.

We perform enrichment analysis using eQTL data to link genes
to genomic loci. In this study, eQTL data from GTEx and pathways
from MSigDB were collected to study functional enrichment of
pathways/gene sets for risk regions harboring variants associated
with immune diseases. We discovered that DTS from loci2path
query result reveals three different but corroborating underlying
pathogenesis modules in the query of psoriasis risk regions. We also
discover that pathways that show distinct enrichment patterns in
CRO and UC compared with other immune diseases are involved in
different ways of pathogenesis of IBD. In addition, we identified
common disease risk factors from shared enriched pathways among
the three tissue types: population HLA type, variation in antigen-
presentation and variation in innate immune response. This pattern
shows more significant enrichment in blood, rather than the other
two immune-related tissues, perhaps due to the large proportion of
leukocytes participating in the immune-related diseases. Similarly,
users can define arbitrary genomic regions of interest as query input.
The potential applications of loci2path for arbitrary query regions

Fig 5. Query results for immune-related diseases. (A) eQTL enrichment heatmaps of

BioCarta pathways from three tissue types and 12 immune-related diseases. All 12

sets of immune diseases risk regions were queried against the BioCarta pathway col-

lection in blood, thyroid and spleen tissue types, resulting in three heatmaps. In the

heatmaps, each row represents a pathway, and each column represent a disease.

IBD-specific pathways are marked with a red box. (B) eQTL enrichment heatmap of

GO pathways. Queries were performed in the same way as in (A). Two enriched

Biological Process GO terms are specific to psoriasis and CRO, which are high-

lighted with a red box. (C) Venn’s diagram of gene members of the two distinctly

enriched pathways. Twenty-seven genes and 18 genes are targets of eQTLs found in-

side CRO and PSO disease risk regions, respectively. Among them, 14 genes are in

common. Among these 14 shared genes, the ones have been reported in the litera-

ture as risk genes of both diseases are highlighted in red
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include, but not limited to: regions containing trait-associated SNPs
identified by GWAS; regions showing differential methylation levels
between two groups; regions harbor different groups of transcrip-
tion factor occupancy that plays different regulatory roles on target
genes in certain diseases; or in general regions showing different pat-
terns of epigenetic modifications captured by diverse experimental
techniques, such as ChIP-seq and ATAC-seq.

Loci2path is related to GREAT (McLean et al., 2010) since both
tools seek to assign biological meaning to a set of genomic regions
by linking them to a set of genes. However, GREAT mainly rely on
genomic proximity to make the connection, whereas loci2path use
eQTL information to bridge loci and genes. Since eQTLs are tissue-
specific, loci2path is able to provide functional annotation in a
tissue-specific manner that is highly attractive. Given the difference
between these two methods, we recommend using both GREAT and
loci2path in real analyses to obtain a more comprehensive result.

The utilities of eQTLs for making biological interpretation have
long been recognized in genetics and genomics research fields (He
et al., 2013; Li et al., 2016; Watanabe et al., 2017). Compared with
existing methods, a unique feature of loci2path is that the purpose is
not to provide annotation to individual variants, but rather to pro-
vide annotation to the nearby neighborhood of the eSNP, through
LD, as a locus having the potential of affecting the regulation of the
eGene in specific tissue types. Therefore, although the examples we
used in this study come from GWAS-identified trait-associated var-
iants, loci2path can be used to annotate any collection of genomic
regions such as called peaks in ChIP-seq studies (Heinz et al., 2010;
Qin et al., 2010; Zhang et al., 2008) studies or DMRs from com-
parative WGBS studies (Feng et al., 2014; Hansen et al., 2012; Wu
et al., 2015).

In the future, we plan to continue adding latest eQTL informa-
tion to loci2pth. It is expected that consortia like GTEx will add
more tissue types with increased sample size. Another feature we
plan to add is alternative enrichment evaluation measures.
Currently, we use a P-value cutoff to determine if an SNP is an
eQTL when performing a parametric test or a permutation test.
Hence some useful information is lost when we replace the actual P-
value by a binary label. It would be highly attractive if we can direct-
ly utilize the P-values of these eQTLs when calculating the enrich-
ment. However, there are several challenges lies ahead. First and
foremost, P-values measure the significance of association between
eQTLs and eGenes. Typically, an eGene is associated with multiple
eQTLs, with different P-values. Owing to LD, it is difficult to iden-
tify which SNP is the true functional eQTL. In loci2path, we evalu-
ate the significance of a pathway by checking the enrichment of
significant eGenes (regardless of how many eQTLs the eGene has) in
it. Therefore, without knowing which eQTL is real, it is difficult to
come up with a quantitative measure for each eGene based on all
the P-values from its eQTLs. Second, caution is needed when com-
paring P-values across tissue types due to different sample sizes.
Third, working with P-values takes space and time, and makes the
computation task much more challenging. We plan to further inves-
tigate proper ways to utilize P-values in enrichment analysis in the
future. Same thought also applies to the order information of the
query regions when available.

The loci2path software is written in R and published in
Bioconductor. Vectored statistical tests and parallel processing makes it
run ultra-fast to perform enrichment tests across eQTL data from mul-
tiple tissues. A standard S4 class data structure enable users to custom-
ize annotation resources. For example, one might extend the loci-gene
connection from eQTL data to any arbitrary mapping relationships,
such as known regulatory genomic loci and target genes. We believe
that the accumulating eQTL data become increasingly useful as a rich
information resource. Thanks to the increasing diverse tissue and cell
types and enhanced statistical power due to larger sample sizes, the
growing eQTL resource would greatly improve query quality of loci2-
path. Availability and user-friendly data portals are making research to
explore these public resources with loci2path more and more conveni-
ent. Together with more refined pathways, there are more enrichment
patterns for traits, diseases and health to be uncovered, and loci2path
is a powerful tool in this task.
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