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Abstract

Motivation: Gram-positive bacteria have developed secretion systems to transport proteins across their cell wall, a
process that plays an important role during host infection. These secretion mechanisms have also been harnessed
for therapeutic purposes in many biotechnology applications. Accordingly, the identification of features that select a
protein for efficient secretion from these microorganisms has become an important task. Among all the secreted
proteins, ‘non-classical’ secreted proteins are difficult to identify as they lack discernable signal peptide sequences
and can make use of diverse secretion pathways. Currently, several computational methods have been developed to
facilitate the discovery of such non-classical secreted proteins; however, the existing methods are based on either
simulated or limited experimental datasets. In addition, they often employ basic features to train the models in a
simple and coarse-grained manner. The availability of more experimentally validated datasets, advanced feature en-
gineering techniques and novel machine learning approaches creates new opportunities for the development of
improved predictors of ‘non-classical’ secreted proteins from sequence data.

Results: In this work, we first constructed a high-quality dataset of experimentally verified ‘non-classical’ secreted pro-
teins, which we then used to create benchmark datasets. Using these benchmark datasets, we comprehensively ana-
lyzed a wide range of features and assessed their individual performance. Subsequently, we developed a two-layer
Light Gradient Boosting Machine (LightGBM) ensemble model that integrates several single feature-based models into
an overall prediction framework. At this stage, LightGBM, a gradient boosting machine, was used as a machine learn-
ing approach and the necessary parameter optimization was performed by a particle swarm optimization strategy. All
single feature-based LightGBM models were then integrated into a unified ensemble model to further improve the pre-
dictive performance. Consequently, the final ensemble model achieved a superior performance with an accuracy of
0.900, an F-value of 0.903, Matthew’s correlation coefficient of 0.803 and an area under the curve value of 0.963, and
outperforming previous state-of-the-art predictors on the independent test. Based on our proposed optimal ensemble
model, we further developed an accessible online predictor, PeNGaRoo, to serve users’ demands. We believe this on-
line web server, together with our proposed methodology, will expedite the discovery of non-classically secreted ef-
fector proteins in Gram-positive bacteria and further inspire the development of next-generation predictors.

Availability and implementation: http://pengaroo.erc.monash.edu/.
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1 Introduction

Bacterial species are commonly classified based on Gram staining.
This method differentiates bacteria into Gram-negative and Gram-
positive according to chemical composition and physical structure
of their cell walls. Notably, unlike Gram-negative bacteria, Gram-
positive bacteria are bounded by a single cytoplasmic lipid mem-
brane, and in general surrounded by a cell wall that is composed of
a very thick peptidoglycan layer. This type of bacteria has raised
great interest, not only because it includes some pathogenic species
that can cause serious infections in humans (Arias and Murray,
2012; Kline and Lewis, 2016; Smits et al., 2016), but also because
the single-membrane (monoderm) property of Gram-positive bac-
teria makes them a useful tool in biotechnology applications. For in-
stance, for the production of recombinant proteins for industrial
and therapeutic use, secretion across a single membrane has proven
to be a winning strategy (Anne et al., 2017; Bottai et al., 2017;
Hamed et al., 2018; Lee and Kim, 2018; Tjalsma et al., 2000).
Gram-positive bacteria can secrete proteins across their membrane
and cell wall using the ‘classical’ secretion systems, which employ
the Sec translocon or the Tat transporter. In contrast, any protein
secreted by a pathway other than Sec/Tat has been historically con-
sidered a ‘non-classical’.

In eukaryotic cells there is a distinct, mechanistically defined
non-classical secretion pathway that delivers a small subset of
growth factors and cytokines across the plasma membrane without
recourse to the endoplasmic reticulum and Golgi apparatus (Carta
et al., 2013; Daniels and Brough, 2017; Prudovsky et al., 2008). In
earlier work on non-classical protein secretion in Gram-positive bac-
teria, bioinformatics methods developed for predicting non-
classically secreted proteins (Bendtsen et al., 2005; Restrepo-
Montoya et al., 2011; Yu et al., 2010), made use of concepts and
methods developed on mammalian secretory proteins (Bendtsen
et al., 2004). For instance, using SecretomeP, Bendtsen et al. (2005)
developed the first computational method to predict non-classically
secreted proteins in Gram-positive bacteria based on a simulated
dataset using theoretical considerations from eukaryotic systems.
The study used neural networks based on six input features includ-
ing threonine contents, transmembrane helices, gravy, protein dis-
order, secondary structure and a specially designed feature based on
amino acid composition. They also conducted a literature search to
curate known non-classical bacterial secreted proteins. In another
recent work, Yu et al. (2010) trained a support vector machines
(SVM)-based ternary classifier, SecretP, to predict bacterial secreted
proteins using AAC, auto-covariance and other features. Their
model was trained based on a smaller dataset of proteins annotated
in the SwissProt database with ‘secreted’ and without ‘signal’, which
they associate with non-classical secreted proteins. Their prediction
results were dissatisfactory due to deficiency of non-classically
secreted Gram-positive bacterial proteins. In a more-recent study,
Restrepo-Montoya et al. (2011) developed an SVM-based classifier,
termed NClassGþ, to predict non-classically secreted Gram-positive
bacterial proteins based on different sequence transformation vec-
tors, such as frequencies, dipeptides, physicochemical factors and
the position-specific scoring matrix (PSSM). It achieved a reasonable
performance when tested on an independent set. While previous
studies successfully stimulated the discovery of potential non-
classical secreted proteins, the existing methods remain in need of
improvement due to limited benchmark datasets, the lack of more
informative features and use of single machine learning algorithms.

With the benefit of hindsight, and given the additional know-
ledge gained from numerous studies on the mechanistic details of
how proteins are secreted by Gram-positive bacteria, it is important
to re-evaluate previous prediction methodologies. Consequently, we
started by summarizing the current knowledge about the various

protein secretion pathways that can be considered ‘non-classical’,
such as the flagella-export apparatus, fimbrilin/prepilin-protein
exporter, ABC-transporter systems, holin system, the type VII secre-
tion system, the WXG100 secretion system and membrane vesicle-
based delivery (Anne et al., 2017; Desvaux and Hébraud, 2006;
Forster and Marquis, 2012; Hamed et al., 2018; Lee and Kim, 2018;
Tjalsma et al., 2000; Tsirigotaki et al., 2017; Unnikrishnan et al.,
2017; Wang et al., 2016). Subsequently, we constructed the bench-
mark datasets by collecting all experimentally verified, non-
classically secreted Gram-positive bacterial proteins. Accordingly,
we assessed a number of more comprehensive features to accurately
characterize protein sequences. Such features included a wide range
of sequence-derived features as well as those based on evolutionary
information or physicochemical properties. Next we trained predict-
ive models based on a recently proposed machine learning algo-
rithm, Light Gradient Boosting Machine (LightGBM) (Ke et al.,
2017), with demonstrated high efficiency, scalability and accuracy.
In addition, we developed a novel particle swarm optimization
(PSO)-based parameter optimization strategy to further increase the
performance of our models. Moreover, we investigated the integra-
tion of single machine learning-based models into a single ensemble
model to enhance the prediction performance further. Based on
previously well-optimized models, we constructed a two-layer
LightGBM-based ensemble model to take advantage of the different
feature groups. When assessed based on the independent test, the
two-layer ensemble model demonstrated its superior predictive per-
formance, and outperformed currently available toolkits. Finally,
we developed an online server named PeNGaRoo as a preliminary
screening of potential non-classically Gram-positive secreted bacter-
ial proteins, which is accessible at http://pengaroo.erc.monash.edu/.
We believe the proposed toolkit, together with the summary of
‘non-classical’ secreted protein, will facilitate future computational
work in this field.

2 Materials and methods

The overall workflow of the PeNGaRoo methodology is illustrated
in Figure 1. There exist several major stages in the development of
PeNGaRoo, which are described in the following subsections.

2.1 Data collection and preprocessing
The construction of a high-quality benchmark dataset for training
and validating the prediction model is a prerequisite of successful
machine learning approaches. In this study, we used experimentally
validated non-classically secreted proteins of Gram-positive bac-
teria, which were obtained from a recent work (Wang et al., 2016).
Specifically, 253 non-classically secreted protein sequences were
extracted from the literature, which have been identified by at least
three different research groups in at least three different bacterial
species (Wang et al., 2016) (Supplementary Table S1). For the nega-
tive training set, we chose the entire set of 1084 proteins
(Firmicutes, annotated to be localized in the cytoplasm) in the work
of Bendtsen et al. (2005). Subsequently, CD-HIT (Huang et al.,
2010) was applied to the initial dataset to remove any redundancy
at the cutoff threshold of 80% sequence identity to avoid any poten-
tial bias. We obtained 157 positive samples (Supplementary Table
S1) and 446 negative samples. In view of the scarcity of the positive
samples, we partitioned the dataset into training and independent
test datasets by adopting the following procedure: nine-tenths of the
above positive samples were used as the training dataset, while the
remaining one-tenth were used as the independent dataset. As a re-
sult, the training dataset included 141 positive and 446 negative
sequences.
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In order to objectively evaluate the predictive performance of the
proposed method, we further constructed an independent test data-
set. For the positive samples, we included experimentally validated
non-classical secreted proteins collected by previous studies and
ours. For the negative samples, we collected proteins from UniProt
Consortium (2015) by extracting those entries whose annotations
contained the key words ‘cytoplasm’ or ‘cytoplasmic’ but did not
have any annotations of ‘secreted’. After removing the overlapping
sequences in the training dataset, we finally obtained 34 positive
samples and 34 negative samples as the independent test dataset.

2.2 Feature extraction
Feature extraction plays a predominant role in developing reliable
and accurate machine learning-based models (Wang et al., 2017a).
This step has a direct impact on the efficiency and accuracy of bio-
metric analysis and information extraction. In our effort to better
characterize non-classically secreted proteins, we categorized the
extracted features into three main groups, i.e. sequence-derived fea-
tures, evolutionary information-based features and physicochemical
property-based features.

2.2.1 Group 1: sequence-derived features

Previous works have indicated that the percentage, mode of combin-
ation and order of amino acids contain valuable information for pre-
dicting the protein properties (Wang et al., 2018). Accordingly, we
extracted two types of sequence-derived features to encode such in-
formation, including pseudo-amino acid composition (PAAC) (Shen
and Chou, 2008) and quasi-sequence-order descriptors (QSO)
(Chou, 2000).

The PAAC feature has proved useful and has been widely applied
in a number of biological sequence analyses (Jia et al., 2018; Marini
et al., 2017; Perovic et al., 2017). Compared with the classical
amino acid composition descriptors, PAAC introduces a discrete
model derived from the amino acid sequence to represent its
sequence-order or pattern information (Shen and Chou, 2008). The
PAAC descriptors can be defined as follows:

H1 ið Þ ¼
H0

1 ið Þ � 1
20

P20
i¼1 H0

1 ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20

i¼1
H0

1
ið Þ� 1

20

P20

i¼1
H0

1
ið Þ

� �2

20

r i ¼ 1; 2; 3; . . . 20

H2 ið Þ ¼
H0

2 ið Þ � 1
20

P20
i¼1 H0

2 ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20

i¼1
H0

2
ið Þ� 1

20
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i¼1
H0

2
ið Þ

� �2

20

r i ¼ 1; 2; 3; . . . 20

M ið Þ ¼
M0 ið Þ � 1

20

P20
i¼1 M0 ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20

i¼1
M0 ið Þ� 1

20

P20

i¼1
M0 ið Þ

� �2

20

r i ¼ 1; 2; 3; . . . 20

hk ¼
1

N � k

XN�k

i¼1

H Ri;Riþkð Þ

Xc ¼
fcP20
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j¼1 hj

1 � c � 20ð Þ
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whc�20P20
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j¼1 hj

21 � c � 20þ kð Þ

where H0
1 ið Þ, H0

2 ið Þ and M0 ið Þ denote the original hydrophobicity val-
ues, the original hydrophilicity values and the original side chain
masses of the 20 natural amino acids, respectively. Hk Rið Þ denotes the
kth property in the amino acid property set for the amino acid Ri, N is
the number of the amino acids of the sequence, k is the parameter to be
chosen, while fc is the normalized occurrence frequency of the 20
amino acids in the protein sequence. The 50-dimensional feature vector
of PAAC was generated by setting k¼30 and w¼0.05, respectively.

QSO measures the occurrence of amino acids based on the
Schneider–Wrede physicochemical distance matrix and the
Grantham chemical distance matrix (Chou, 2000). It characterizes
the sequence order effect and can be calculated as:

Xr ¼
frP20

r¼1 fr þw
Pmaxlag

d¼1 sd

r ¼ 1; 2; . . . ; 20

Xs ¼
wsd�20P20

r¼1 fr þw
Pmaxlog

d¼1 sd

d ¼ 21; 22; . . . ; 20þmaxlag

sd ¼
PN�d

i¼1 ðdisti; iþdÞ2 d ¼ 1; 2; . . . ;maxlag

8>>>>>>>><
>>>>>>>>:

where fr is the normalized occurrence of the amino acid type r,
disti; iþd represents the distance between the ith amino acid and the

Fig. 1. Overall framework of PeNGaRoo. The development of PeNGaRoo involved five major steps, including: (1) data collection and preprocessing, (2) feature extraction,

(3) parameterization and ensemble model construction, (4) performance assessment and (5) web server development. Specially, fi xð Þ (i¼ 1, 2, 3) denotes the prediction output

of the one-layer ensemble model (i.e. group1, group2, group 3), while f xð Þ denotes the prediction output of the final two-layer ensemble model. The final output ‘Yes’ or ‘No’

indicates whether or not the inquiry protein is predicted as a non-classically secreted protein with the prediction threshold set to 0.5
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ðiþ dÞth amino acid of the sequence, N is the number of the amino
acids of the sequence, maxlag is the maximum lag that cannot ex-
ceed the length of the protein sequence, while w refers to the weight-
ing factor. Here, we set parameters w¼0.1 and maxlag¼30 as
previously suggested (Wang et al., 2018) to generate the 100-dimen-
sional feature vector.

2.2.2 Group 2: evolutionary information-based features

An increasing number of studies have indicated that the evolution-
ary information in the form of PSSM can provide more information
than the sequence alone in many biological classification problems
(Liu et al., 2010; Muthukrishnan and Puri, 2018; Pu et al., 2007;
Wang et al., 2018). In this study, we generated the PSSM profiles by
performing PSI-BLAST search against the NCBI uniref50 database
with the parameters j¼3 and h¼0.001. For a protein sequence
with the length¼L, the corresponding matrix of the PSSM profile
has a size of L�20. The (i, j)th element of the PSSM matrix denotes
the score of the amino acid type j (j¼1, 2, . . ., 20) at the ith position
of the protein sequence. We generated the PSSM-based features
using the POSSUM software package (Wang et al., 2017b). In view
of the effectiveness of different types of PSSM features, we chose
and extracted the TPC, Pse-PSSM and AATP features to encode the
evolutionary information.

Based on the idea of transition probability matrix and its appli-
cation to the original PSSM, the TPC descriptors were designed to
calculate the correlation between two any adjacent residues in the
sequence (Zhang et al., 2012). Consequently, TPC can be repre-
sented as a 400-dimensional vector, which reflects the evolutionary
and sequence-order information. The detailed description of TPC
with a set of equations is given as follows:

TPC ¼ ðy1; 1; . . . ; y1;20; . . . ; yi;1; . . . ; yi;20; . . . ; y20;1; . . . ; y20;20ÞT

yi;j ¼
PL�1

k¼1 Pk;i � Pkþ1;jP20
j¼1

PL�1
k¼1 Pk;i � Pkþ1;j

1 � i; j � 20

8>>><
>>>:

where L denotes the row counts of the PSSM, Pi; j represents the (i, j)th
element in the original PSSM profile.

Pse-PSSM (Chou and Shen, 2007) has been widely applied for
protein sequence analysis (Li et al., 2018; Wang et al., 2018). It can
be used to encode a protein sequence based on a discrete model and
the PSSM transformation and avoid the complete loss of the
sequence-order information. Pse-PSSM can be calculated using the
following equations:

Ti;j ¼
Ei;j �

P20

k¼1
Ei;k

20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20

u¼1
Ei;u�

P20

k¼1
Ei;k

20

� �2

20

s i ¼ 1; 2 . . . . . . L; j ¼ 1; 2; . . . . . . 20

Ga
j ¼

1

L� a

XL�a

i¼1

Ti;j � Tiþa;j
� �2

j ¼ 1; 2; . . . . . . ; 20; a < L

Tj ¼
1

L

XL

i¼1

Ti;j

T 0 ¼ T1; . . . . . . ;T20

� �

G0 ¼ Ga
1; . . . . . . ;Ga

20

� �

Pa
Pse�PSSM ¼ ½T 0;G0�

where Ei;j denotes the original scores directly generated by PSI-
BLAST and L denotes the length of the protein sequence. In this
study, we used the default value a ¼ 1. As a result, Pse-PSSM

transformed the amino acid sequence into a 40-dimensional feature
vector.

By integrating AAC-PSSM and TPC, the AATP encoding (Zhang
et al., 2012) was designed to extract the sequence and evolutionary
information based on the matrix transformation of the original
PSSM. AAC-PSSM is defined as a 20-dimensinal vector:

AAC� PSSM ¼ ðx1; x2; x3; . . . ;x20ÞT

xj ¼
1

L

XL

i¼1

Pi;j j ¼ 1; 2; 3; . . . ; 20

8>><
>>:

where L denotes the row count of the PSSM, Pi;j represents the (i, i)th
element in the original PSSM profile. While for TPC, its detailed
description can be found in the previous section. Finally, AATP is
represented as a 420-dimensional vector by combining AAC-PSSM
and TPC.

2.2.3 Group 3: physicochemical property-based features

Incorporating additional information based on physicochemical
properties has been shown to enhance the sequence representation
and lead to improve the performance in previous studies (Dubchak
et al., 1995). We thus included two types of physicochemical
property-based features, i.e. Conjoint Triad (CTriad) and transition
among CTD (CTDT).

The CTriad descriptors (Shen et al., 2007) extracted the features
of proteins pairs based on the classification of amino acid. In this
method, the 20 amino acids are categorized into seven classes based
on dipoles and volumes of the side chains (Supplementary Table S2).
CTriad regarded any three continuous amino acids as a unit (name-
ly, the one amino acid and its ortho-position acids) as a better
encoding method to describe its properties. Accordingly, CTriad is a
343-dimentional feature vector and can be defined as follows:

di ¼
fi �min f1; f2; f3; . . . ; f343f g

max f1; f2; f3; . . . ; f343f g i ¼ 1; 2; 3; . . . ; 343

where each feature i is a triad composed of three consecutive amino
acids and fi denotes the frequency at which the ith triad appeared in
the protein sequence.

According to seven types of physicochemical properties, the 20
primary amino acids can be divided into three major groups for each
property (Supplementary Table S3). The CTDT descriptors
extracted the percent frequency with which a Type A residue was
followed by a Type B residue or vice versa (Wang et al., 2018).
Consequently, CTDT is represented as a 21-dimentional feature vec-
tor and can be calculated as:

TAB ¼
nAB þ nBA

N � 1

TAC ¼
nAC þ nCA

N � 1

TBC ¼
nBC þ nCB

N � 1

8>>>>>>>><
>>>>>>>>:

where N is the length of the protein sequence and nAB describes the
number of dipeptides encoded as ‘AB’ in the sequence.

2.3 Model training and optimization
2.3.1 LightGBM

LightGBM is a high performance, distributed gradient boosting de-
cision tree machine learning implementation with two engineering
optimization novelties: Gradient-based One-Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB), which has been recently
developed by Microsoft Research (Ke et al., 2017). The GOSS algo-
rithm uses instances with large gradients that contribute more to the
information gain and randomly drops sample instances with small
gradients. It leads to a more accurate gain estimation and massively
reduces the number of data instances without losing much training
accuracy. EFB employs a greedy algorithm to bundle many mutually
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exclusive features into a much denser form, which can effectively re-
duce the sparse feature space to avoid needless computation for zero
feature values. Therefore, LightGBM has an outstanding computa-
tional efficiency and scalability when dealing with large datasets or
high-dimensional features (Ke et al., 2017; Zhang et al., 2018). In
this work, we trained the LightGBM models using the LightGBM
package (https://github.com/Microsoft/LightGBM) implemented in
the R language.

2.3.2 Parameter optimization

Different from conventional machine learning algorithms such as
SVM (Cortes and Vapnik, 1995) that typically need to adjust only
two or fewer parameters, LightGBM requires users to adjust a larger
number of parameters to improve the predictive performance of the
models and avoid potential over-fitting. In this work, we needed to
tune up to 11 parameters (Supplementary Table S4), but it is diffi-
cult to use the grid-search parameter adjustment to accurately ob-
tain the optimal solutions. Zhang et al. (2018) put forward the idea
of parameter optimization and adopted the one-by-one parameter
tuning strategy, which considerably reduced the computational time
of parameter adjustment. Wang et al. (2019) adopted a Genetic
Algorithm (GA)-based two-step parameter tuning strategy: they
applied a GA algorithm to seek an approximate optimal solution in
a region previously determined by the one-by-one parameter tuning
strategy. While the solution has reported promising results, it will
likely be only a locally optimal solution. Here, we proposed a novel
parameter tuning strategy (Algorithm 1) based on PSO to seek a
quasi-optimal solution in a global manner within acceptable compu-
tational time.

PSO was originally proposed by Eberhart and Kennedy (1995)
as a population-based search algorithm inspired by the social behav-
ior of bird flocking or fish schooling. Compared with the GA algo-
rithm, a significant advantage of PSO is that it can adjust the
maximum step size at each iteration, making it possible to find an
approximate optimal solution in a wide range of possible parame-
ters (when time permits). Therefore, we applied PSO to directly find
11 approximately optimal parameter values from the high-
dimensional search space (Algorithm 1). During this process, the 11
parameters with the corresponding upper bound (ub) and lower
bound (lb) (Supplementary Table S4) were used as the input and
assigned as upper and lower, respectively. The value of v.max was
set to (ub� lb) * a (a¼0.2) for the purpose of balancing the calcula-
tion time and accuracy. Moreover, we constructed a function named
modelEvaluation, whose return value was set as the fn value and
determined as the area under the ROC curve (AUC) value of the
LightGBM model based on 10-fold cross validation. The PSO pack-
age in R language was used for this purpose.

2.4 Data imbalance problem solving
The problem of imbalanced data classification may result in predic-
tion bias that favors the prediction of the majority class, i.e. the class
with most samples, potentially leading to an adverse impact on the
overall predictive performance. To address this data imbalance
problem, we generated N (N¼10 in our setting) balanced datasets,
each of which was constructed by selecting all the positive samples
and the equal number of negative samples randomly selected from
the original unbalanced training dataset. We then built an ensemble
model (termed as single feature-based LightGBM model) (Chen and
Jeong, 2009; Wang et al., 2019) from N LightGBM classifiers by an
equal-weight averaging their predictive scores. By this means, the
problem of the imbalance dataset was converted into the multiple
balanced data classification problem and solved thereafter.

2.5 Integrative model construction
Effectively leveraging multiple features that have been extracted
from a set of data considerably influences the performance of a pre-
dictor. In this regard, the ensemble learning strategy has proved
useful for improving the predictive performance and model general-
ization, as opposed to those that only use a combined set of features
for a single model training (Wang et al., 2018; Wang et al., 2019;
Zou et al., 2013). Therefore, instead of merging all the features into
a higher-dimensional feature set prior to model training, we trained
base models with each feature set, in order to learn different useful
patterns from various feature sets, and also avoid the potential over-
fitting problem, as each feature set has a lower dimension than the
feature set that merges all features. Rather than using a direct inte-
gration of the base models (such as through majority voting and
equal weight averaging), which might suffer from information re-
dundancy within the same feature group, we adopted a two-layer
ensemble model strategy, which has been successfully applied in pre-
vious studies (Wang et al., 2019).

Specifically, we employed LightGBM to train the model for each
feature set first, and then constructed the one-layer ensemble models
by an equal-weight averaging of the prediction outputs of different
feature encodings within the same group (shown in Fig. 1 in differ-
ent color blocks). Finally, the prediction scores of one-layer ensem-
ble models were further integrated to generate an overall score of
the final two-layer LightGBM-based ensemble model using same
weights (group 1:group 2:group 3¼1:1:1). In this way, we effective-
ly utilized the information of each feature group without being
affected by the number of features in each group.

2.6 Performance measurement
In order to assess the performance of the model prior to its applica-
tion, we applied a validation test. Three commonly used validation
methods, including k-fold cross-validation (CV) test, leave-one-out
CV test and independent test, were employed to comprehensively
and rigorously assess the prediction performance of the constructed
models.

k-Fold CV is a statistical analysis method which has been widely
utilized by researchers to evaluate the performance of a machine
learning classifier (Kumar et al., 2015). Here, we performed a 5-fold
CV test to evaluate the model performance. In such a test, the bench-
mark dataset is randomly split into five exclusive subsets of approxi-
mately equal size. At each validation step, a single subset is retained
as the validation dataset for testing the model performance, whereas
the remaining four subsets are used as the training dataset. This pro-
cedure is then repeated five times until each subset has been used.
The model performances on the five test subsets are then averaged
and the result is the overall performance of the models on a 5-fold
CV test. In this study, we conducted randomized 5-fold CV tests for
each of the N LightGBM classifiers, averaged their performance
results and used the average performance as the final performance
of the trained classifiers.

Leave-one-out CV test, also known as jackknife test (Chen et al.,
2018; Sharma et al., 2015), can be regarded as an extreme case of
k-fold CV, with k¼n, where n denotes the total number of samples
in the dataset. Similarly, each sample in the dataset is used as the

Algorithm 1: PSO-based parameter optimization

Input: ub: upper bound of 11 parameters

Input: lb: lower bound of 11 parameters

function modelEvaluation(11 parameters):

lightgbm.parameters  11 parameters

lgb_tr_mod  lgb.cv(lightgbm.parameters, nfold ¼ 10 . . .)

return (lgb_tr_mod.AUC)

PSO  PSOInitialization()

fn: modelEvaluation()

maxStepLen: (ub� lb)*a
PSO  psoptim(rep(NA, 11), fn, upper ¼ ub, lower ¼ lb,

control ¼ list(v.max ¼ maxStepLen, . . .))

finally adjusted parameters  PSO.par

Output: 11 finally adjusted and optimized parameters
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test data, while the remaining n�1 instances form the training set
and are used to train the classifier. This procedure is repeated n
times, until each of the samples has been used as the test data.

The independent test was conducted using the independent
dataset separately from the training dataset to avoid any overlap
between the training dataset and the independent test dataset (see
Section 2.1 for the detailed construction procedure), thereby
representing a more rigorous validation of the proposed models and
providing a fair comparison with other existing toolkits.

2.7 Performance assessment
To comprehensively and quantitatively evaluate the performance of
the proposed method, a set of five measures is commonly used in the
field of bioinformatics and computational biology. They include
Sensitivity (SN), Specificity (SP), Accuracy (ACC), F-value and
Matthew’s correlation coefficient (MCC). They are defined as
follows:

SN ¼ TP

TPþ FN

SP ¼ TN

TNþ FP

ACC ¼ TPþ TN

TPþ FPþ TNþ FN

F � value ¼ 2� TP

2TPþ FPþ FN

MCC ¼ TP� TNð Þ � ðFN� FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ � TNþ FPð Þ � TPþ FPð Þ � ðTNþ FNÞ

p
where TP, TN, FP and FN represent the numbers of true positive,
true negative, false positive and false negative, respectively.

Moreover, the receiver-operating characteristic (ROC) curves
are employed to provide an intuitive performance comparison. The
AUC is also calculated and provided in the ROC plot, as a primary
quantitative indicator of the overall performance of the model.

3 Experimental results

3.1 Performance evaluation on the 5-fold CV test
In this section, we conducted the 5-fold CV tests of our N (N¼10)
LightGBM classifiers based on N balanced training datasets, and
averaged the performances to generate the performance metrics for
each single feature-based model as well as their ensemble models
(i.e. one-layer ensemble models and final two-layer ensemble
LightGBM model). In addition, the original LightGBM models were
trained with the optimized parameters based on the PSO-based par-
ameter tuning strategy, if not specified.

3.1.1 Effect of parameter optimization strategies

To investigate the effectiveness of the proposed PSO-based param-
eter optimization strategy, we compared the performance of the
models trained using different feature encoding methods based on
the PSO-based parameter optimization, the initial parameter setting,
one-by-one parameter optimization and GA-based two-step param-
eter optimization. As can be seen from Figure 2 and Supplementary
Table S5, the models trained based on the one-by-one and GA-based
two-step parameter optimization strategies achieved a better per-
formance than those based on the initial parameter setting except
for the AATP and CTDT feature encoding methods. The results
highlight the importance and value of developing an effective par-
ameter optimization strategy for improving the predictive perform-
ance of LightGBM models, and also indicate the necessity to
develop parameter adjustment algorithms. In addition, the PSO-

based parameter optimization strategy achieved a robust and super-
ior performance when compared with the one-by-one parameter
tuning strategy and the GA-based two-step parameter tuning strat-
egy. Overall, this proposed PSO-based parameter optimization strat-
egy resulted in an improved model performance, while consuming
longer but acceptable parameter tuning time.

3.1.2 Performance comparison between different feature encoding

methods

For each feature encoding, we trained a single feature-based
LightGBM model with the optimally tuned parameters and vali-
dated its performance by performing randomized 5-fold CV tests.
As shown in Table 1, Supplementary Figure S1 and Figure 3, the
models trained using PSSM-based feature descriptors (i.e. TPC, Pse-
PSSM and AATP) achieved overall best performances compared to
those trained using sequence-based and physicochemical property-
based feature descriptors in term of five performance measures, SN
(>0.913), ACC (>0.862), F-value (>0.868), MCC (>0.728) and
AUC (>0.926). These results are consistent with previous studies
that indicate PSSM-based features are critical and essential for pre-
diction of protein attributes (Wang et al., 2017a; Wang et al., 2019;
Zou et al., 2013). Among the different types of PSSM-based fea-
tures, AATP appeared to be the most powerful feature encoding.
The associated model achieved the highest values of SN (0.933),
ACC (0.871), F-value (0.877) and MCC (0.747), respectively. This
suggests that AATP captures the most informative patterns for iden-
tifying the non-classical secreted effector proteins from sequences.
Following the PSSM-based features, the CTriad features outper-
formed the other remaining features in term of SN, ACC, F-value,
MCC and AUC, possibly because CTriad describes well the inform-
ative composition of amino acid properties in protein sequence. The
PAAC and QSO encodings achieved a comparatively lower perform-
ance, presumably because they only extracted limited patterns from
protein sequences.

3.1.3 Effect of feature selection on various features

To validate whether the prediction performance could be further
improved by training models based on the selected features, for each
type of feature, we selected different sizes of feature sets using
GainRatio (refer to the Supplementary Section SI1), including the
top 50, 100, 150, 200, 250, 300, 350 and 400 features. We then
compared the models trained with the selected features and original
features. As a result, we found that the performance of the models
trained using the original features was relatively better
(Supplementary Table S6), indicating that LightGBM-based models
could learn more informative patterns from the original features.

Fig. 2. Performance comparison of LightGBM models trained using different feature

encoding methods based on the PSO-based parameter optimization and those based

on the initial parameter setting, one-by-one parameter optimization and GA-based

two-step parameter optimization
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Therefore, we used the original feature sets to construct the base
models afterwards.

3.1.4 Performance of group-based ensemble models

To examine whether the ensemble learning strategy could signifi-
cantly improve the model performance, we further assessed the per-
formance of different classifiers, including single feature-based
models, one-layer ensemble models and final two-layer ensemble
model.

As can be seen from Table 1 and Supplementary Figures S2 and
S3, all one-layer ensemble models achieved a better and more stable
performance compared with the corresponding single feature-based
models. In particular, all three ensemble methods consistently
achieved the overall best performance in terms of the five metrics
(i.e. SN, SP, ACC, F-value and MCC) with the only exception being
sensitivity for physicochemical property-based features. Here,
CTriad showed a slightly better performance than the ensemble
method. The final two-layer ensemble model achieved a remarkably
improved performance with an SP of 0.861, an ACC of 0.900, an F-
value of 0.903, an MCC of 0.803 and an AUC of 0.963, respective-
ly. The results indicate that although the PSSM-based ensemble
model provided superior performance than the other two groups,
the latter two groups contributed to the performance improvement
of the final ensemble model by providing additional and comple-
mentary features.

3.2 Performance evaluation on the leave-one-out CV

test
To further validate the robustness and scalability of the model, we
also conducted a leave-one-out CV test to evaluate the model

performance based on the same setting as the 5-fold CV tests.
As expected, the obtained performance is highly consistent with
the performance obtained from the 5-fold CV test (shown in
Supplementary Table S7 and Fig. S4). This reinforces the need and
value of leveraging different types of characteristic features from dif-
ferent aspects and integrating them into a unified computational
framework to achieve a robust and improved performance.

3.3 Performance evaluation on the independent test
To further examine the performance and robustness of the classi-
fiers, we performed the independent test on the independent test set
and the corresponding results are discussed below.

3.3.1 Performance of group-based ensemble models

Using the independent test, we further assessed the predictive per-
formance of single feature-based models and ensemble models.
On one hand, as expected, the sequence-derived one-layer ensemble
models achieved a better performance than the single feature-based
models; on the other hand, both the physicochemical property-
based and evolutionary information-based one-layer ensemble mod-
els achieved a lower performance than that of the best single
feature-based model (Supplementary Table S8). We then compared
the performance of the one-layer ensemble models and the final
two-layer ensemble model that integrated all seven single feature-
based models. The latter achieved the best performance in terms of
SP, ACC, F-value and MCC. Again, these results are consistent with
those obtained on the 5-fold CV test and leave-one-out CV test.
Although one-layer ensemble models did not achieve an obvious
performance improvement, the group-based models were not
affected by the poor performance within the groups. These results
demonstrate the usefulness and robustness of the model based on
the ensemble learning strategy. To summarize, the results on the in-
dependent test highlight the importance and need to employ more
comprehensive and discriminative feature encodings and integrate
them into a consolidated framework to enhance the model design
and performance.

3.3.2 Comparison with commonly used machine learning

algorithms

Using the same model training and ensemble strategy, we repeated
the model construction procedures to generate two-layer ensemble
models based on four representative, commonly-used machine learn-
ing algorithms (i.e. K-nearest neighbor, SVM, random forest and
multi-layer perceptron) (refer to the Supplementary Section SI2 for a
detailed description). We evaluated the performance of the gener-
ated two-layer ensemble models on the independent dataset.
The results in Supplementary Tables S9 and S10 show that the
LightGBM-based two-layer ensemble model outperformed the
equivalent models trained using the other four machine learning
algorithms, suggesting that LightGBM is the most suitable choice

Fig. 3. ROC curves of the models trained using different sequence encoding methods

evaluated on the 5-fold CV tests. The AUC values were calculated and shown in the inset

Table 1. Performance comparison of different LightGBM classifiers on the 5-fold cross-validation test

Encoding SN SP ACC F-value MCC

Sequence-derived features PAAC 0.870 6 0.016 0.819 6 0.033 0.842 6 0.020 0.844 6 0.017 0.688 6 0.036

QSO 0.862 6 0.018 0.808 6 0.030 0.836 6 0.019 0.838 6 0.017 0.673 6 0.035

Group 1 0.879 6 0.022 0.828 6 0.022 0.852 6 0.013 0.854 6 0.012 0.707 6 0.024

Evolutionary information-based features TPC 0.927 6 0.017 0.813 6 0.026 0.870 6 0.015 0.875 6 0.013 0.744 6 0.027

Pse-PSSM 0.913 6 0.030 0.811 6 0.020 0.862 6 0.020 0.868 6 0.020 0.728 6 0.039

AATP 0.933 6 0.021 0.808 6 0.022 0.871 6 0.017 0.877 6 0.017 0.747 6 0.033

Group 2 0.945 6 0.016 0.814 6 0.030 0.880 6 0.021 0.885 6 0.019 0.766 6 0.040

Physicochemical property-based features CTriad 0.884 6 0.022 0.815 6 0.028 0.848 6 0.016 0.852 6 0.014 0.700 6 0.030

CTDT 0.838 6 0.021 0.827 6 0.033 0.833 6 0.017 0.831 6 0.016 0.666 6 0.034

Group 3 0.880 6 0.025 0.840 6 0.025 0.860 6 0.015 0.861 6 0.015 0.721 6 0.029

All features 0.940 6 0.008 0.861 6 0.029 0.900 6 0.016 0.903 6 0.014 0.803 6 0.029

Note: Performance was expressed as mean 6 standard deviation. The best performance value within each groups of feature-based models is highlighted in bold.
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for constructing the predictor for identifying non-classical secreted
proteins in this study.

3.3.3 Comparison with existing methods

In this section, we benchmarked the performance of the proposed
PeNGaRoo method (i.e. the final two-layer ensemble LightGBM
model) against other state-of-the-art predictors. Although there exist
three methods that have been developed for predicting non-classical
secreted proteins in Gram-positive bacteria, only the SecretomeP
web-server (Bendtsen et al., 2005) could be used to make a valid pre-
diction. Therefore, we illustrate the key differences between
PeNGaRoo and SecretomeP (Supplementary Table S11) and also
compare their performance on the independent dataset. As can be
seen from Figure 4 and Supplementary Table S12, PeNGaRoo clear-
ly outperforms SecretomeP in terms of SN, ACC, F-value, MCC and
AUC on the independent test. The reasons why PeNGaRoo achieves
a better performance than SecretomeP includes: (i) all entries in the
benchmark training dataset used by PeNGaRoo were experimentally
validated, while SecretomeP only utilized limited numbers of experi-
mentally validated non-classical secreted proteins available for con-
structing their models. As such, the accuracy of these methods was
limited; (ii) PeNGaRoo explored different types of feature encodings
in a more comprehensive and systematic way, while the feature
extraction methods used by SecretomeP are relatively simple and
(iii) the effective and robust LightGBM algorithm, coupled with our
proposed parameter tuning strategy and the ensemble learning strat-
egy contributed to the significant performance improvement of
PeNGaRoo.

Furthermore, a previous study compiled a list of non-classically
secreted proteins, and provided the detailed performance between
SecretP and SecretomeP (Yu et al., 2010). Therefore, we compared
the performance of PeNGaRoo with SecretP and SecretomeP by
counting the correctly predicted numbers of positive samples in this
list by each of the three methods. As can be seen from
Supplementary Table S13, PeNGaRoo achieved the best perform-
ance and predicted 26 out of 32 positive samples. As a comparison,
SecretomeP achieved the second-best performance and correctly pre-
dicted 10 positive samples. These results further validated the effect-
iveness and robustness of PeNGaRoo.

3.4 Web server implementation
To maximize user convenience, a user-friendly and publicly access-
ible web service has been established based on the final two-layer en-
semble model for the wider research community to perform
predictions of novel putative non-classical secreted proteins in
Gram-positive bacteria. PeNGaRoo is hosted by the Monash
University cloud computing facility, freely accessible at http://penga
roo.erc.monash.edu/. Upon submitting their protein sequences, users
will easily retrieve their prediction results from the online result web

page. To facilitate users’ follow-up analysis, the predicted proteins
will be labeled as ‘Exp’ with a score of 1 if the query protein is a
known, experimentally validated non-classical secreted protein; and
otherwise, labeled as ‘Pred’ with a predicted score.

4 Discussion

Gram-positive bacteria secrete proteins across their membrane and cell
wall either through mechanistically defined ‘classical’ pathways (the
Sec translocon or Tat transporter), or by less well-defined
‘non-classical’ pathways. Identifying non-classical secreted proteins is
important biomedically, e.g. for better understanding the host–patho-
gen interactions and pathogenesis mechanisms of Gram-positive bac-
teria, and biotechnologically, e.g. for optimizing features in
heterologous proteins that will promote their secretion by Gram-
positive host bacteria. In this study, we developed a new method
termed PeNGaRoo for this purpose. First, we curated a reliable and
high-quality benchmark dataset that contained experimentally verified
entries. Based on this curated dataset, we systematically extracted and
explored a wide range of features including sequence-derived features,
evolutionary information-based features and physicochemical
property-based features. Next, we employed the LightGBM algorithm
in combination with a novel PSO multi-parameter optimization algo-
rithm. We also integrated single feature-based LightGBM models into
a unified ensemble framework to further improve the predictive per-
formance of PeNGaRoo. Extensive benchmarking tests suggested that
the two-layer ensemble predictor was significantly more effective in
identifying non-classical secreted proteins compared to other existing
methods. A publicly accessible web server based on the optimal ensem-
ble models has been made available to maximize user convenience.
PeNGaRoo is anticipated to be a useful tool for predicting non-
classical secreted Gram-positive bacteria proteins and facilitating their
functional elucidation.

In the future, PeNGaRoo will be continually maintained
and updated in accordance with updates of newly discovered
non-classical secreted proteins. Several studies indicate that the non-
classical pathways are mechanistically diverse (Flieger et al., 2003;
Nickel, 2003). As such, it would be of particular interest to examine if
it is possible that certain common features possessed by a protein sub-
strate might enable its secretion through one and/or more alternate se-
cretion systems. Accordingly, the future updated version of PeNGaRoo
will need to take into account the advances in the characterization of
non-classical secretion systems in Gram-positive bacteria.
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