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Abstract

Motivation: Microbes are the most diverse organisms on the planet. Deep sequencing of ribosomal DNA (rDNA)
suggests thousands of different microbes may be present in a single sample. However, errors in sequencing have
made any estimate of within-sample (alpha) diversity uncertain.

Results: We developed a tool to estimate alpha diversity of rDNA sequences from microbes (and other sequences).
Our tool, Distanced, calculates how different (distant) sequences would be without sequencing errors. It does this
using a Bayesian approach. Using this approach, Distanced accurately estimated alpha diversity of rDNA sequences
from bacteria and fungi. It had lower root mean square prediction error (RMSPE) than when using no tool (leaving
sequencing errors uncorrected). It was also accurate with non-microbial sequences (antibody mRNA). State-of-the-
art tools (DADA2 and Deblur) were far less accurate. They often had higher RMSPE than when using no tool.
Distanced thus represents an improvement over existing tools. Distanced will be useful to several disciplines, given
microbial diversity affects everything from human health to ecosystem function.

Availability and implementation: Distanced is freely available at https://github.com/thackmann/Distanced.

Contact: tjhackmann@ucdavis.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbes are found nearly everywhere and form communities more
diverse than any other group of organisms. Though this diversity
has been long recognized, it has become more apparent with deep
sequencing their DNA. Recent work suggests there are hundreds or
thousands of different ribosomal DNA (rDNA) sequences in most
microbial communities (Thompson et al., 2017). This diversity is
not only fascinating, but it is also likely important for human health
and the planet’s ecosystems. In the human gut, low diversity of bac-
terial rDNA sequences is associated with obesity (Turnbaugh et al.,
2009). In soil, low diversity is associated with low plant productiv-
ity, nutrient cycling and other measures of ecosystem function
(Philippot et al., 2013; Soliveres et al., 2016).

Though rDNA sequences from microbes are no doubt diverse, it
has been challenging to determine exactly how diverse they are.
Initial reports of a ‘rare biosphere’ of seawater claimed unprecedent-
ed levels of alpha (within-sample) diversity. Most samples were esti-
mated to have over 10 000 different sequences (Sogin et al., 2006).
Later analysis showed sequencing errors created false sequences,
and the actual diversity was likely much lower (Kunin et al., 2010).

Sequencing errors pose a problem for estimating alpha diversity,
but computational tools have been developed to tackle this problem.
These tools aim to correct sequencing errors and output the original
(error-free) rDNA sequences. DADA2 (Callahan et al., 2016) and
Deblur (Amir et al., 2017) belong to the latest generation of these

tools, which claim accuracy to single nucleotide letters. Evaluations
with artificial microbial communities would seem to support their
accuracy and use for estimating alpha diversity. In these evaluations,
the number of rDNA sequences outputted by the tools closely
matched the number of sequences (or organisms) known in the com-
munity (Amir et al., 2017; Callahan et al., 2016; Nearing et al.,
2018). When expressing alpha diversity as the number of sequences,
DADA2 and Deblur appear to have solved the problem posed by
sequencing error.

Though DADA2 and Deblur estimate it accurately, the number
of sequences (richness) is a very simple measure of alpha diversity.
Richness ignores how abundant or related sequences are, though
these are important aspects of diversity (Lozupone and Knight,
2008). If they use richness, investigators may miss ecologically im-
portant relationships in their data. For example, investigators found
a relationship (positive correlation) between bacterial diversity and
pH in a hot spring (Stout et al., 2009). The relationship was weak
when using richness as a measure of alpha diversity. The relation-
ship was strong, however, when using a more complex measure
[mean pairwise distance (MPD)]. This more complex measure
accounts for both sequence abundance and relatedness (distance).
Thus, evaluations of DADA2 and Deblur should consider not only
richness, but also more complex ways of measuring alpha diversity.

Our objective was to determine if computational tools accurately
estimate alpha diversity of DNA sequences from microbes and other
sources. Unlike previous evaluations, we considered a measure of
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alpha diversity that accounts for both abundance and relatedness.
We found that DADA2 and Deblur are not accurate. Indeed, they
produced estimates worse than when the tools were not used (errors
were left uncorrected). These tools corrected or removed most erro-
neous sequences, but they distorted sequence abundance in the pro-
cess. We propose a tool, Distanced, that does not remove erroneous
sequences. Instead, it corrects alpha diversity for the expected in-
crease after sequencing, doing so directly with Bayes’s theorem.

2 Materials and methods

2.1 Approach used by Distanced
Our tool, Distanced, estimates MPD, a measure of alpha diversity
(Martin, 2002; Tucker et al., 2017). Because it relies on sequence
distances, it accounts for the relatedness of sequences (organisms)
(Fig. 1A). It also accounts for sequence abundance and evenness
(Fig. 1A) (Lozupone and Knight, 2008).

This complexity makes MPD more useful than richness and
other measures of alpha diversity. As mentioned, it revealed that
bacterial diversity was related to pH in a hot spring (Stout et al.,
2009). By contrast, richness was not strongly related to pH, and nei-
ther were the Simpson and Shannon indices. Additionally, it
revealed alpha diversity of cecal and fecal bacteria differed across
human subjects, whereas Shannon and Simpson indices could not
(Eckburg et al., 2005).

MPD is calculated by averaging the distance between all pairs of
sequences in a sample (Fig. 1A). Distance is defined here as the frac-
tion of different nucleotide letters, but it can also be defined as the
total number of different letters. MPD is also known as h, and it is
1/2 the Rao Diversity Coefficient (Lozupone and Knight, 2008).

Distanced estimates MPD before introduction of sequencing
errors (Fig. 1B). The only inputs required by the tool are (i) the
observed distances (after introduction of sequencing errors) and (ii)
error rates. Sequencing errors inflate distances between sequences by
changing their letters and making them more different on average
(though some individual letters may become more similar). Our tool
uses Bayes’s theorem to estimate the original distances (before intro-
duction of sequencing errors). The average of those estimated dis-
tances is the estimated MPD.

Our tool estimates distances with the equation

PðDorigÞ ¼
Xn

k¼1

9PðDobs½k�Þ � 9px½k� � 9py½k� þ 12px½k� � py½k�
�12px½k� � 12py½k� þ 16px½k� � py½k� þ 9

" #
1

n

(1)

where PðDorigÞ is the estimated original distance, PðDobs½k�Þ is the
observed distance at nucleotide position k, px½k� is the sequencing error
rate for the first sequence at k, py½k� is the error rate for the second se-
quence at k and n is the number of nucleotides in the aligned sequen-
ces. Derivation of the equation is shown in Supplementary Text S1.

At present, Distanced uses estimated distances to calculate only
one measure of alpha diversity (MPD). However, other measures of
diversity can be calculated from sequence distances (Lozupone and
Knight, 2008; Tucker et al., 2017), and these measures are targets of
future work.

2.2 Simulated reads
We first evaluated our tool with simulated reads. Twenty-five thousand
pairs of reads were simulated with n¼300 positions. Letters (A, T, C,
G) were chosen randomly for one member of the pair. Letters for the
other member were chosen to match at a specified distance (e.g. 0.05).
Errors were introduced at a rate of 0.0025, which is a typical value for
real reads (data not shown). Errors were introduced under the assump-
tions they (i) occur independently and (ii) are substitutions.

2.3 Real reads from artificial microbial communities
We next evaluated our tool with real (biological) reads from artifi-
cial microbial communities. Reads were processed according to
steps in Fig. 2 and as described below.

Reads corresponded to three different types of sequences: 16S
rDNA of 21 bacterial strains (Kozich et al., 2013), internal tran-
scribed spacer (ITS) rDNA of nine fungal strains (Bakker, 2018) and
synthetic mRNA of 16 different antibodies (Khan et al., 2016). The
antibody sequences were based on the immunoglobulin G heavy
chain of the mouse. Samples are fully described in Supplementary
Table S1. Reference sequences (the actual sequences) were obtained
from the publications or, in the case of 16S rDNA, downloaded
from https://www.mothur.org/MiSeqDevelopmentData.html.

Primers were removed using a custom R script. This script
enabled removal of primers at both 50 and 30 ends. Primers were pre-
sent at the 30 end of many ITS1 reads because the original sequences
(amplicons) were short, and the read could extend to the very end.
The script was not applied to 16S rDNA because primers had al-
ready been removed by the authors (Kozich et al., 2013).

The paired ends of forward and reverse reads were joined with
VSEARCH (v. 2.8.5) (Rognes et al., 2016). The fastq_mergepairs
command was used with parameters in Supplementary Table S1 and
a custom script. For 16S rDNA of bacteria, this step served to separ-
ate the different regions analyzed.

Reads were annotated as polymerase chain reaction chimeras
(concatenations of two parent sequences) using VSEARCH and the
uchime_ref command. This command requires databases of refer-
ence sequences. For 16S rDNA, the database was from SILVA
(Quast et al., 2013). It was the SSU Ref release 132 (https://www.
arb-silva.de/download/arb-files/). For ITS rDNA, the database was
from UNITE (K~oljalg et al., 2013). It was the QIIME release, ver-
sion 7.2, and with a dynamic threshold value (https://doi.org/10.
15156/BIO/587481). For antibody mRNA, we made a reference
database containing the original 16 synthetic mRNA sequences
(Khan et al., 2016).

Using the output from the usearch_global command of
VSEARCH, we annotated contaminants as reads with �25 differen-
ces from reference sequences. Contaminants may originate from la-
boratory reagents (de Goffau et al., 2018), or they may originate
from other samples (due to faulty demultiplexing) (Kircher et al.,
2012). The threshold of 25 differences was set to a high value to
avoid removing too many good reads (non-contaminants). The high
value was needed because the number of errors follows a distribu-
tion with a long tail (see Supplementary Fig. S2). In total, 0.63% of
16S rDNA, 0% of ITS rDNA and 0.02% of antibody mRNA reads
were annotated as contaminants.

After their annotation, chimeras and contaminants were
removed. This gave joined and filtered reads.

For DADA2, joined reads were split into individual forward and
reverse reads. The splitting was done by matching the sequence
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Fig. 1. Alpha diversity and the unique approach used by Distanced to estimate it.

(A) Comparison of richness and MPD, which are two measures of alpha diversity. A

non-microbial community is used for illustration. Distances are arbitrary. (B)

Approach used by Distanced to estimate MPD
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identifier of the joined and filtered reads with the IDs of the original
forward and reverse reads. This step was needed because DADA2
corrects (denoises) sequences prior to joining them. DADA2 (v. 1.8)
was subsequently run using these reads, parameters in
Supplementary Table S2 and a custom script. The number of reads
inputted, outputted and remaining at different steps in DADA2 is
reported in Supplementary Table S2.

For Deblur, joined reads were truncated (trimmed) at the 30 end
to the length of the shortest reference sequence. This step was
needed because Deblur requires reads to be the same length. Deblur
was run within QIIME2 (Bolyen et al., 2018) using these reads,
parameters in Supplementary Table S3 and a custom script. The
number of reads inputted, outputted and remaining at different steps
in Deblur is reported in Supplementary Table S3.

Deblur includes a positive filtering step, which removes sequence
reads that do not match a reference database. For 16S rDNA, the data-
base was 88% operational taxonomic units from GreengeneS13_8 (the
default). For ITS rDNA and antibody mRNA, the databases were the
same as used for chimera removal with VSEARCH.

Distanced was run using a custom R script. For each sample,
1000 reads were randomly subsampled (out of the total number of
reads reported in Supplementary Table S1). If present in a read, am-
biguous letters (N) were replaced with an A, T, C, or G (chosen ran-
domly). Reads were aligned against reference sequences with
CLUSTAL OMEGA (Bodenhofer et al., 2015; Sievers et al., 2011).
A matrix of estimated distances was constructed by calculating
distances between each pair of sequence reads. Distances were calcu-
lated according to Eq. (1), observed distances and instrument-
reported error rates. The observed distance was 0 if letters of the
nucleotide pair matched and 1 if they did not. For indels, estimated
and observed distances were both set to 1.

Estimated MPD was the mean of distances in the matrix. The di-
agonal elements in the matrix were not included.

Values of MPD were also calculated for sequences outputted by
DADA2, sequences outputted by Deblur, and for sequences with
errors left uncorrected (joined and filtered reads). This was done
using a custom R script, which aligned reads and calculated a matrix
of distances.

This subsampling of 1000 reads and calculation of MPD
was iterated 100 times per sample. Reported values of MPD

and other variables are means of these 100 iterations. With this
number of iterations, values of MPD had small standard errors
(<0.6% of the mean).

Distanced was run with both truncated and non-truncated (full-
length) sequences. This enabled separate comparison to Deblur and
DADA2. For the V3–V4 region of 16S rDNA, DADA2 outputted
fewer than 1000 reads for some samples (see Supplementary Table
S2). For the full-length sequences for this region, 900 reads were
thus subsampled.

A matrix of actual distances was determined by (i) finding a
matching reference sequence for each read and (ii) calculating the
distance between these matches. The matching reference sequence
was that with highest identity with the read. Actual MPD was calcu-
lated from this matrix.

Instrument-reported error rates were calculated from quality
scores (Q) as 10�

Q
10. These quality scores were calculated for the

merged reads according to Edgar and Flyvbjerg (2015) by the fastq_
mergepairs command of VSEARCH. The actual number of errors
was calculated by comparing uncorrected sequences with matching
reference sequences.

2.4 Real reads from real microbial communities
We applied our tool to real reads from real bacterial communities.
Bacterial communities were from human feces, mouse feces or soil
(Kozich et al., 2013) (Supplementary Table S1). The V4 region of
16S rDNA was analyzed throughout.

Estimated MPD was calculated in the same way as for artificial
microbial communities. Because no reference sequences were avail-
able, contaminants were not identified or removed. Additionally,
reads were aligned against only themselves, rather than against ref-
erence sequences.

2.5 Computational resources
Computational resources for analyzing samples were determined using
the time package in Ubuntu 18.04 LTS. The resources were maximum
memory and run time. Analyses were completed with one thread of a
Xeon Platinum 8175 processor and with 16 GiB of RAM.

Forward and reverse 

reads, primer-free

Joined reads

Joined reads, filtered

Forward and reverse 

reads, filtered

-Remove primers with R script

-Join paired ends with VSEARCH (fastq_mergepairs)

-Annotate chimeras with VSEARCH (uchime_ref)

-Identify contaminants with R script
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Fig. 2. Sequence reads were analyzed with Distanced, DADA2 and Deblur following outlined steps. VSEARCH and custom R scripts were also used as indicated
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2.6 Statistical analysis
To quantify how accurately tools estimated MPD, we calculated
root mean square prediction error (RMSPE). It is defined as

RMSPE ¼
Xm
l¼1

½Ol � Pl�2
1

m
(2)

where Ol is the observed value (actual MPD), Pl is the predicted
value (estimated MPD) and m is the number of observations.

3 Results

3.1 Distanced accurately estimated alpha diversity of

simulated sequence reads
We developed a tool to estimate alpha diversity of rDNA sequences
from microbial communities. We evaluated this tool, Distanced,
against DADA2 and Deblur, which represent the state-of-the-art for
analyzing these sequences (Knight et al., 2018). We focused on how
well these tools estimate MPD, a measure of alpha diversity more
complex and useful than richness (see above).
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Fig. 3. Distanced accurately estimates alpha diversity (MPD) of artificial microbial communities. Estimates from Distanced are shown alongside those from (A) DADA2 and (B)

Deblur. Sequences analyzed are for different regions (V4, V3–V4, V4–V5, ITS1, ITS2) of rDNA from artificial microbial communities. mRNA from antibodies is included for com-

parison. Distances between sequences were estimated by Distanced. Errors in sequence letters were corrected by DADA2 or Deblur. MPD was calculated using Distanced or a custom

R script. This calculation was iterated 100 times per sample. Estimates of MPD when using no correction are shown for comparison. Each observation represents one sample
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We began our evaluation by using simulated sequence reads,
where the sequences and sequencing error rates are known. For
these reads, Distanced corrects distances exactly (without bias) and
estimates MPD without error (Supplementary Fig. S1).

3.2 Distanced accurately estimated alpha diversity of

artificial communities
We continued our evaluation by using artificial microbial commun-
ities, in which the organisms and rDNA sequences are known.
Unlike with simulated reads, error rates are not known, but they can
be estimated with Phred quality scores reported by sequencing
instruments (Ewing and Green, 1998).

For these artificial communities, we found that Distanced pro-
duced estimates of MPD that were close to the actual values (Fig. 3).
However, estimates from DADA2 were generally worse (Fig. 3A).
Indeed, using no correction for sequencing errors generally produced
better estimates than DADA2.

Similar results were found when comparing Distanced and
Deblur (Fig. 3B). This comparison was made separate from the pre-
vious one because Deblur requires sequence reads that are truncated
(trimmed to a fixed length).

We quantified performance of these tools by calculating RMSPE.
We found that Distanced always reduced error in MPD (Fig. 4).
DADA2 and Deblur, in contrast, usually increased it.

To determine why DADA2 and Deblur performed poorly, we
first determined how many errors remained in the sequences they
outputted. We found that almost no errors remained (Fig. 5A and
Supplementary Fig. S2). When we manually corrected all remaining
errors, we found that estimates of MPD did not improve
(Supplementary Fig. S3). Thus, uncorrected errors do not explain
why DADA2 and Deblur estimate MPD poorly.

Though they had few errors, the sequences outputted by DADA2
and Deblur had abundances different from the sequences in the original
sample. Most often, DADA2 and Deblur (i) underestimated rare
sequences and (ii) overestimated sequences at medium or high abun-
dance (Fig. 5B and Supplementary Fig. S4). Some rare sequences were
missing entirely. For DADA2 and the V3-V4 region of 16S rDNA,
missing sequences had abundance as high as 0.04 (Supplementary Fig.
S4). Thus, DADA2 and Deblur distorted abundances of sequences.
This distortion, rather than uncorrected errors, explains why the tools
estimated MPD poorly (see Supplementary Fig. S3).

Past evaluations examined how well DADA2 and Deblur
estimated richness (Amir et al., 2017; Callahan et al., 2016;
Nearing et al., 2018). In our evaluation, DADA2 and Deblur gener-
ally underestimated this measure of alpha diversity (Supplementary
Fig. S5). This was expected because some rare sequences were miss-
ing from their output. However, the estimates were good compared
to leaving sequencing errors uncorrected.

3.3 Distanced can be applied to many different types of

sequences
Our evaluation has focused on rDNA sequences from microbial
communities. In principle, however, Distanced can be applied to any

type of sequence. DADA2 and Deblur use parameters calibrated
with data from artificial microbial communities (Amir et al., 2017;
Callahan et al., 2016). Their use may be restricted to these data. In
contrast, Distanced has no such parameters (see Section 2).

To test this idea, we evaluated Distanced with antibody sequen-
ces, which are highly diverse (Georgiou et al., 2014). Distance’s per-
formance was similar for antibodies as for microbes (Figs 3 and 4),
confirming that it can be applied to a wide range of data. The per-
formance of DADA2 and Deblur was poor. These results show that
Distanced can be applied to many types of sequences, whereas appli-
cation of DADA2 and Deblur is more restricted.

3.4 Distanced, DADA2 and Deblur produce different

estimates of alpha diversity of real communities
We continued our evaluation by using real microbial communities.
Our evaluation included bacterial communities from human feces,
mouse feces and soil. For each community, Distanced produced esti-
mates of MPD very different from those produced by DADA2 and
Deblur (Fig. 6).

522%934% 603%309% 244% 21%

646%1458% 427%110% 250% 69%

30%70% 58%35% 8% 26%

26%71% 60%36% 9% 26%

Ig

Distanced (truncated sequences)

Deblur (truncated sequences)

Distanced (full sequences)

DADA2 (full sequences)

FungiBacteria Ig

0%

50%

100%

150%

200%

RMSPE,
% of uncorrectedV3−V4 V4 V4−V5 ITS1 ITS2

Fig. 4. Calculating error confirms that Distanced accurately estimates alpha diversity (MPD). RMSPE was calculated from observations in Fig. 3 and expressed as a percentage
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Fig. 5. Sequences outputted by DADA2 and Deblur have few errors, but their abun-

dance is distorted. (A) Frequency of errors. Values when using no correction for

sequencing errors are shown for comparison. (B) Abundance of sequences outputted

by DADA2 and Deblur versus actual abundance. Sequences analyzed are for the V4

region of 16S rDNA of an artificial bacterial community. Other regions and se-

quence types are shown in Supplementary Figs S2 and S4
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The organisms in real communities are not known, and there is
no direct way to determine if Distanced is more accurate than
DADA2 or Deblur. However, there is indirect evidence that DADA2
and Deblur are inaccurate. Specifically, DADA2 and Deblur pro-
duced very high estimates of MPD for some samples. In fact, they
could produce estimates higher than when using no correction for
sequencing errors. This behavior was most apparent for Deblur and
bacterial communities from soil (Fig. 6B). An accurate tool should
not display this behavior; statistically, estimates of MPD are
expected to be lower, not higher, after correcting errors (see Fig. 1B
and Supplementary Fig. S1). This behavior suggests that DADA2
and Deblur are not accurate for real bacterial communities.

3.5 Distanced requires modest amounts of memory

but has a long run time
We ended our evaluation of Distanced by determining what compu-
tational resources it requires. To analyze the real bacterial commun-
ities described above, Distanced required �1.2 GiB of memory
(Supplementary Fig. S6). For the same set of samples, Deblur
required the same or less memory. DADA2 required more (up to
�4.7 GiB).

Though it required a modest amount of memory, Distanced had
a long run time. It required �17 h to analyze all 12 samples per com-
munity (Supplementary Fig. S6). DADA2 required �8 h or less, and
Deblur required �2 h or less.

Work is underway to improve Distance’s run time. The slowest steps
are aligning reads (accounting for �55% of run time) and estimating
distances (�20% of run time). These steps are targets for improvement.

4 Discussion

Though introduced in medicine, the principle of primum non nocere
(do not harm) should apply to all arenas of science. Towards this
end, tools for correcting rDNA sequences from microbial

communities should improve, not worsen, estimates of microbial di-
versity. We show, unfortunately, that this principle is broken with
two popular tools (DADA2 and Deblur). The original sequencing
data (with sequencing errors) generally produced better estimates of
alpha diversity than did the output of the tools.

The problem has been overlooked by evaluating these tools with a
simple measure of alpha diversity (richness) (Amir et al., 2017; Callahan
et al., 2016; Nearing et al., 2018). It becomes apparent only when using
a more complex measure (MPD) that accounts for sequence abundance
and relatedness (distance). Past evaluations had shown that tools distort
abundance of sequences (Amir et al., 2017). In retrospect, it is unsurpris-
ing that the existing tools would estimate MPD poorly.

Our tool, Distanced, does not estimate alpha diversity perfectly,
but it does reduce error markedly and consistently. In a display of its
flexibility, its accuracy for antibody sequences was as high as for mi-
crobial sequences. No adjustments to the tool were required to ac-
commodate different sequences.

DADA2 and Deblur output sequences containing few errors. They
are useful tools when the goal of analyzing rDNA sequences is to correct
or remove erroneous sequences. However, they estimate alpha diversity
poorly when accounting for sequence abundance and relatedness. By
using a novel approach, Distanced estimates alpha diversity accurately.

At present, Distanced can estimate only one measure of alpha di-
versity (MPD). However, its scope can be expanded. Distanced
works by estimating sequence distances before introduction of
sequencing errors. We used those distances to calculate one measure
of alpha diversity (MPD), but other measures of diversity can be cal-
culated from sequence distances (Lozupone and Knight, 2008;
Tucker et al., 2017). We are currently generalizing Distanced in
order to estimate other measures of diversity.

Distanced represents a direct and accurate approach to estimate
microbial diversity. With accurate estimates in hand, investigators
can answer important questions about microbial diversity. In par-
ticular, they can better answer how loss in microbial diversity may
affect human health or ecosystem function. This will make
Distanced an important tool to investigators.
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Fig. 6. Distanced shows that DADA2 and Deblur are inaccurate for real bacterial communities. (A) Comparison of MPD estimated by DADA2 and Distanced.

(B) Comparison of Deblur and Distanced. Sequences analyzed are for the V4 region of rDNA for bacterial communities from human feces, mouse feces and soil. Distances be-

tween sequences were estimated by Distanced, and errors in sequence letters were corrected by DADA2 or Deblur. MPD was calculated using Distanced or a custom R script.

This calculation was iterated 100 times per sample. Estimates of MPD when using no correction are shown for comparison. Each observation represents one sample
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