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Abstract

Motivation: Understanding the mechanisms of client protein interaction with Hsp70 chaperones is essential to ana-
lyze the complex dynamics in the context of normal or dysregulated metabolism. Because Hsp70 can bind millions
of proteins, including key molecules involved in processes of stemness, tumorigenesis and survival, in silico predic-
tion of Hsp70 interactions has great value in validating possible new clients. Currently, two algorithms are available
to predict binding to DnaK—the bacterial Hsp70—but both are based on amino acid sequence and energy calcula-
tions of qualitative information—binders and non-binders.

Results: We introduce a new algorithm to identify Hsp70 binding sequences in proteins—ChaperISM—a position-
independent scoring matrix trained on either qualitative or quantitative chemiluminescence data previously pub-
lished, which were obtained from the interaction between DnaK and different ligands. Both versions of ChaperISM,
qualitative or quantitative, resulted in an improved performance in comparison to other state-of-the-art chaperone
binding predictors.

Availability and implementation: ChaperISM is implemented in Python version 3. The source code of ChaperISM is
freely available for download at https://github.com/BioinfLab/ChaperISM.

Contact: mauricio.rigo@pucrs.br

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The 70 kDa Heat Shock Proteins (Hsp70) comprise an extremely
conserved family of molecular chaperones found in prokaryotes and
eukaryotes that assists both folding and degradation of proteins.
All Hsp70 members encompass the same structural organization: an
N-terminal Nucleotide Binding Domain (NBD) connected by a
short, flexible linker to a Substrate Binding Domain (SBD), which is
followed by an intrinsically disordered C-terminal portion (Fig. 1)
(Goloubinoff, 2017). Hsp70s are highly dynamic entities, and their
folding function depends on ATPase cycles fine-tuned by proteins
called co-chaperones. Co-chaperones aid Hsp70 either delivering
substrates and catalyzing ATP hydrolysis (e.g. J-domain Proteins or
Hsp40), or releasing ADP from NBD (Nucleotide Exchange Factors,
or NEFs) (Mayer and Bukau, 2005). The NBD and SBD allosteri-
cally communicate each other to control conversion from an SBD
with low substrate affinity (when ATP is bound to NBD, also called
open conformation) to a high substrate affinity (when NBD is ADP-
bound, also called closed conformation). In both situations, the SBD

interacts with short segments of hydrophobic and positively charged
exposed residues (Mayer and Kityk, 2015). This profile of substrate
recognition has been established from early peptide library and
phage display studies. Arrays of cellulose-bound peptides screened
with Escherichia coli DnaK, a bacterial member of the Hsp70 fam-
ily, further confirmed this broad capability of substrate interaction.
In fact, most of the current understanding of how Hsp70 and sub-
strates interact came from studies on DnaK itself (Clerico et al.,
2015). Because of the pivotal role of Hsp70 chaperone—which ba-
sically regulates all aspects involving protein folding, translocation,
disassembly of oligomeric complex and aggregates—the prediction
of chaperone binding is crucial to understand both (i) how biologic-
ally relevant substrates interact and (ii) how mutations that affect
chaperone binding affect diseases (El-Kasaby et al., 2014; Goswami,
2015; Gowda et al., 2018; Halder et al., 2011; Lee et al., 2015;
Moreira et al., 2013; Panda and Suresh, 2014; Rauch et al., 2016;
Rosam et al., 2018; Solayman et al., 2017).

Rüdiger et al. built the first published DnaK binding predictor in
an elegant study screening cellulose membrane-bound peptides to
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understand the molecular basis of DnaK-substrate interaction.
Binding and non-binding sequences were exploited to build a
position-specific scoring matrix (PSSM). The algorithm computed
the statistical energy contribution from the sequence alignment of
DnaK binders and non-binders, and the relative occurrence of each
amino acid was converted in a score for each position in a 20x13
PSSM for both flanking regions and hydrophobic core (Rüdiger
et al., 1997).

Posteriorly, Van Durme et al. employed the same screening
methodology to develop a sequence-based PSSM. Additionally, this

PSSM was combined with a structure-based PSSM derived from
interaction energy calculations from a peptide-bound SBD crystallo-
graphic structure from DnaK (Van Durme et al., 2009; Zhu et al.,
1996). First, the SBD-bound peptide NRLLLTG was converted to a
polyalanine sequence and mutated in each position by the 19
remaining amino acids. The structure-based matrix was determined
by computing the DG difference from poly-alanine reference to all
possible amino acid substitutions using the FoldX force field
(Schymkowitz et al., 2005). The final PSSM was called LIMBO and
made available through a web server currently on http://limbo.
switchlab.org.

Despite similarities in the data collection step between Rüdiger
and LIMBO PSSMs, there are differences regarding their develop-
ment. Rüdiger PSSM derives from alignments involving a hydropho-
bic core of five amino acids and two flanking regions of four
residues each. LIMBO, on the other hand, results from an alignment
of heptamers. However, the most profound difference relies on the
combination of energy calculations to the sequence-based model of
LIMBO, which is an approach that usually improves the model’s
capability to predict unseen examples. In terms of predictive per-
formance, LIMBO is a superior predictor when validations are
based on the area under Receiver Operating Characteristic curves
(auROC) on the benchmark dataset (Van Durme et al., 2009). In an
independent validation set, however, LIMBO superiority is less evi-
dent, because both models dominate different regions of the ROC
space (Provost et al., 1998).

Both Rüdiger and LIMBO PSSMs are methods to predict the
binding of peptides to the bacterial DnaK chaperone. However, a
predictor called BiPPred that profiles binding to the BiP chaperone,
the endoplasmic member of the Hsp70 family, is also available.
Similarly to LIMBO and Rüdiger PSSMs, BiPPred relies on a PSSM
to perform predictions, although this matrix was built upon the ana-
lysis of BiP binding sites, energy estimations and molecular dynam-
ics simulations. This structure-based PSSM presented a good
predictive performance, showing a small improvement when fitted
to experimental data (Schneider et al., 2016).

All of these chaperone binding prediction methods have in com-
mon the use of PSSMs. However, other matrices could be used to
evaluate the prediction capacity of a classifier, such as the position-
independent scoring matrix (PISM). The PISM was already used
aiming the binding prediction of epitopes to MHC-I proteins (Antes
et al., 2006); however, results were not satisfactory, possibly be-
cause MHC-I binding properties are very stringent (e.g. different an-
chor pockets, and different auxiliary residues in different allotypes).
Hsp70 chaperones, however, are much less restrictive in binding to
its clients, suggesting a potential situation where PISMs could be
more appropriate than PSSMs.

Several applications benefit from quantitative measurements to
improve predictions, instead of considering only the frequency infor-
mation derived from a sequence alignment (Peters et al., 2003;
Peters and Sette, 2005; Tenzer et al., 2005). Both available DnaK
binding predictors are based on the sequence alignment of two
qualitatively distinct classes of sequences: binders and non-binders.
Thus, we investigated the following hypothesis: is it possible to
improve predictions by considering the quantitative DnaK binding
information? To answer this question, we collected raw DnaK detec-
tion data from the western blot chemiluminescence reaction of cellu-
lose membrane-bound peptides from Van Durme et al. Here we
present a new DnaK binding predictor—ChaperISM—based on a
position-independent scoring matrix (PISM) trained on either quali-
tative or quantitative DnaK detection data. Both versions of our
method achieved superior performance concerning chaperone bind-
ing prediction tools on two independent validation sets that bench-
mark distinct Hsp70 chaperones.

2 Materials and methods

2.1 Data collection and normalization
We obtained peptide sequences and raw information for DnaK bind-
ing detection from Van Durme et al., summarized in Supplementary

Fig. 1. DnaK domains. (A) DnaK in ribbon representation (PDB ID: 2KHO) in the

closed state with NBD, linker region, SBD, and C-terminal ‘lid’. The peptide

NRLLLTG (PDB ID: 1DKX) is complexed to SBD and represented as ball and

sticks. (B) SBD region with surface representation in complex with NRLLLTG pep-

tide, with the ‘lid’ region in the closed state. (C) SBD surface forms a pocket that

accommodates the peptide
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Table S1. Value distribution is demonstrated in Supplementary
Figures S1–S5. Our final dataset of peptides consisted of experi-
ments from Membrane A (Group 1 and Group 2) and Membrane B
(Group 1 and Group 2), totalized 268 peptides (7-mer to 20-mer).
We log 10 converted raw values after being normalized while pre-
serving the original ratio (Equation 1). Each membrane was proc-
essed independently as:

NewValue ¼ logðNewMin

þ ðOldValue�OldMinÞ � ðNewMax�NewMinÞ
OldMax�OldMin

Þ

(1)

OldValue is the quantitative raw information of DnaK binding,
NewValue is the transformed value, OldMin and OldMax are the
minima and maxima values from the old distribution, and NewMax
and NewMin are 10 000 and 1, respectively. This assures that
NewValue distribution was comprised inside the range of 0 and 4.

2.2 FoldX calculations
First, the 268 peptides were split into all possible heptamers, gener-
ating a total of 1488 sequences. In the case of true binders, longer
peptides could bear subsequences that differently contribute to its
detection. For that reason, we performed energy calculations using a
0.5 kcal mol�1 cut-off, as previously described (Van Durme et al.,
2009), to find different frames from the same peptide with the high-
est binding affinity among the true positives. Because the original
training and validation sets from LIMBO PSSM development are
not available, we took the effort to follow the same preprocessing
procedures to minimize possible discrepancies in the datasets. Thus,
a NewValue cutoff � 3.0 was arbitrarily chosen to separate peptides
as binders, to assure the same dataset as (Van Durme et al., 2009).
Energy calculations with FoldX force field were employed to select
the lowest interaction energy heptamer to DnaK SBD. To do so, we
used the crystal structure of a DnaK SBD in complex to a peptide
substrate, the heptamer NRLLLTG (PDB ID: 1DKX) (Zhu et al.,
1996). We mutated this peptide to each desired heptamer using
FoldX command ‘build model’ and calculated its energy using ‘ana-
lyse complex’ command. For each true binder source peptide, we
kept only the heptamer with the lowest FoldX interaction energy
value. Other heptamers were maintained if their energy binding val-
ues were inside the range of 0.5 kcal mol�1 compared to the best
scored one. Defining this interaction energy range allows more than
one heptamer from the same high affinity source peptide to be
included in the final dataset (as in Van Durme et al., 2009). Finally,
we represented heptamers with the same sequence as the average of
their detection scores (Fluxogram in Supplementary Fig. S6).

2.3 Training and validation sets
After preprocessing of quantitative data, FoldX based energy filter
returned a total of 892 non-redundant heptamers, each one associ-
ated to a value that represents the logarithm of the detection of
chemiluminescent reaction. This dataset was divided as positive
(binders) and negative (non-binders) examples, and then used to val-
idate the predictors’ performance through auROC (area under
Receiver Operator Characteristic curves) and auPR (area under
Precision-Recall curves) validation metrics. We sorted the heptamers
according to their respective detection score, and 60 examples from
each extremity (60 binders among the 100 best-scored and 60 non-
binders among the 100 worst-scored) were randomly selected to
compose a balanced validation set of 120 examples. This set was
referred as ‘internal evaluation set’. Another independent validation
set was collected from a previous study in which it was employed to
validate predictions of binding to BiP, a Hsp70 found in endoplas-
mic reticulum, structurally similar to DnaK. This set was referred to
as Collected Dataset (CD) (Schneider et al., 2016).

2.4 Algorithm rationale
We employed a modified version of the Stabilized Matrix Method
(SMM) to build a model to predict binding to DnaK (Peters and

Sette, 2005). Because overfitting was not diagnosed, regularization
was not considered. So, for a seven-length vector of amino acids res,
predictions in a 20x7 matrix Mat occur by summing the score of
residue res for position i. A constant offset was added to this prod-
uct, as described in Equation 2:

PredictionPSSM ¼
X7

i¼1

Matðres; iÞ þOffset (2)

Training was achieved from minimization of Equation 3 (/) that
computes the sum of squared errors of matrix predictions for each
heptamer j in training set:

/ ¼
Xn

j¼1

ðObserved � PredictedÞ2 (3)

This program and all scripts were implemented in Python 2.7,
and minimization was accomplished using Nelder-Mead algorithm
from ‘minimize’ function in scipy.optim python’s library. To evalu-
ate the effect of removing the quantitative information from the
training, instead of considering the observed value for each peptide,
we set to 0 the heptamers with threshold equal or lower than 3.0,
while those with threshold above 3.0 were set to 1. Finally, we eval-
uated the effect of a Position-independent Scoring Matrix (PISM)
Mat, which was achieved by minimizing Equation 3 with predic-
tions from Equation 4:

PredictionPISM ¼
X7

i¼1

MatðresÞ þOffset (4)

In the end, we constructed six models: a 20x7 PSSM, a 20x1
PISM and a 20x7 PISM—each one based on either quantitative or
simulated qualitative values. The 20x7 PISM is an explicitly defined
20x7 matrix that is converted to a 20x1 matrix by summing column
values.

2.5 Performance evaluation
We obtained the PSSMs from LIMBO and Rüdiger (modified to ac-
cept heptamers) from literature (Van Durme et al., 2009). BiPPred
predictions were achieved using BiPPred web server (Schneider
et al., 2016). BiPPred analyses were performed using either max-
imum or minimum predicted score. We performed Receiver
Operating Characteristic (ROC) and Precision-Recall (PR) analyses
to compare predictive performance, where all possibilities of thresh-
old to discriminate positives from negatives are explored to graphic-
ally visualize validation set predictions. In ROC-space, False
Positive Rate (FPR, also known as 1—specificity) is plotted in the
x-axis and True Positive Rate (TPR, also known as sensitivity or re-
call) is plotted in the y-axis. Both are calculated as follows:

TPR ¼ TP=TPþ FN (5)

FPR ¼ FP

TN þ FP
(6)

where TP, FP, TN and FN stand for true positives, false
positives, true negatives and false negatives, respectively. For
PR-analysis, recall is plotted in the x-axis, while Precision is plotted
in the y-axis:

Precision ¼ TP

TPþ FP
(7)

Either ROC-analysis as PR-analysis use outline ‘metrics’ from
Sklearn library to calculate the area under the curve.

We performed the sequential training of classifiers with a
randomly selected fraction of the training set to evaluate if
overfitting was occurring. More data was added each iteration
until the total training set was used, with increments of 25 heptamers.
Bias, or mean squared error (MSE) of the training set, and the MSE of
the validation set were plotted for every iteration. All plots in this
work were performed using python’s library matplotlib.
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3 Results

3.1 In silico energy predictions of heptamers binding to

DnaK correlates with in vitro data
Supplementary Table S1 presents the interaction values obtained
from Van Durme peptides. Despite the wide range, the value distri-
bution was essentially the same, with most peptides having a very
low detection score that decays to very few good binders
(Supplementary Figs S1–S4). Because of the difference between val-
ues even in the same membrane we normalized and log converted
each experiment, keeping the original ratio. We split the 268 pepti-
des into all 1488 heptamers, where each sub-heptamer inherited its
peptide source detection value. To work on the same data distribu-
tion as Van Durme et al., we set a cutoff of 3.0 to separate binders
(736 heptamers) from non-binders (752 heptamers). Next, we
mutated the NRLLLTG peptide in silico from a DnaK SBD crystal
structure (PDB ID: 1DKX) to correspond to each heptamer of the
set of binders using the FoldX force field. We kept only heptamers
with the lowest interaction energy from each peptide source (see
Section 2). We also allowed more heptamers if their interaction
energies were within the limit of 0.5 kcal mol-1 to the best interactor
of that source peptide. This resulted in the removal of 574 hep-
tamers. We merged the repeated heptamers and DnaK interaction
values were averaged. In the end, considering binders and non-
binders, there was a total of 892 non-redundant heptamers, each
one associated with their respective log-transformed normalized de-
tection value. Although some non-binders were predicted to interact
well with DnaK, the true binders were primarily enriched with hep-
tamers with lower interaction energies (the lower the energies, the
better the interaction). Interestingly, in silico energy predictions
based on the FoldX force field were inversely correlated to in vitro
data obtained from DnaK binding scores (Supplementary Fig. S7).

3.2 Use of a PISM outperforms previously published

DnaK binding prediction methods
We ranked the 892 non-redundant heptamers according to their
DnaK binding score (0–4) and extracted two independent sets (with
120 peptides) from both extremities for the algorithm’s performance
validation (see Section 2). The remaining 772 heptamers were sepa-
rated into a training set. We built two types of matrices: a set of
20x7 PSSMs, similar to Rüdiger and Van Durme prediction meth-
ods, and a 20x1 PISM that assign the same score for a given residue,
independent of its position. Because the conversion of Van Durme
and Rüdiger PSSMs to PISMs did not impair the performance evalu-
ation metrics of auROC and auPR, and also showed a very similar
composition (Supplementary Fig. S8), we decided to use a third vari-
ation of scoring matrix: a 20x7 PISM, trained as an explicitly
defined 20x7 matrix where predictions were obtained from the sum
of columns. We presented the results for five independent replicates
of each algorithm. Training PSSMs produced predictors with rea-
sonable performance (mean auROC of 0.769 and mean auPR of
0.770).

The performance was strikingly improved using a 20x1 PISM
(mean auROC of 0.874 and mean auPR of 0.872). However, train-
ing 20x7 PISM generated even more robust models (mean auROC
of 0.982 and mean auPR of 0.969). These data are represented in
Table 1 and Figure 2A. We also evaluated the influence of removing
quantitative information from training by setting a simulated quali-
tative label. We observed a small improvement in PSSMs predictions
(mean auROC of 0.802 and auPR of 0.816). Both 20x1 PISMs and
20x7 PISMs were superior to PSSMs, but the removal of quantita-
tive information did not affect the quality of the generated models;
thus, models derived from either quantitative as well the qualitative
information can be considered as equivalents (Table 1). Both quanti-
tative and qualitative 20x7 PISMs presented better performance if
compared to previously published chaperone binding predictors.
These models achieved the auROC values of 0.972 (qualitative) or
0.983 (quantitative) and auPR values of 0.974 (qualitative) or 0.970
(quantitative). Because the highest possible value for performance
score is 1, we considered the auROC value of 0.983 obtained from

the quantitative 20x7 PISM as an outstanding result, showing an im-
provement of 5.9% compared to the PSSM from Rüdiger and of
9.8% compared to LIMBO.

3.3 DnaK-trained PISM outperforms a BiP binding

predictor in BiP binding validation set
Because ROC curves can be misleading and provide an over-
optimistic scenario in balanced datasets, we also validated the per-
formance of the classifiers in an imbalanced set (Saito and
Rehmsmeier, 2015). For that, we chosen the best predictors—20x7
PISM, qualitative and quantitative—and selected a previously pub-
lished dataset (CD, Collected Data from Schneider et al.). This set is
composed of BiP-related peptides, an endoplasmic chaperone struc-
turally similar do DnaK that belongs to the Hsp70 family (Pobre
et al., 2018). In this CD set, 44 peptides are examples of true BiP
binders, while other 88 are examples of non-binders. This set of hep-
tamers was originally employed to validate BiPPred, a BiP binding
predictor (Schneider et al., 2016). The good performance of BiPPred
(maximum and minimum predicted score) in our validation set of
DnaK binders and non-binders evidences that the binding profile of
both proteins, BiP and DnaK, is highly superimposed (Table 1).
Interestingly, the BiPPred performance in the CD decreased in terms
of auROC and auPR (Table 2 and Fig. 2B).

Both LIMBO and Rüdiger PSSMs also presented a poorer
auROC and auPR performance. Our 20x7 PISM classifier, with
qualitative- or quantitative-based information, outperformed all
tested predictors in terms of auROC and auPR in both balanced (in-
ternal evaluation set) and imbalanced datasets (CD set). The only
exception was quantitative-based 20x7 PISM auROC (0.838),
which performed equivalently to BiPPred Max (0.839). Surprisingly,
with an auROC of 0.859 and auPR of 0.786, qualitative-based 20x7
PISM trained on information derived from DnaK shows an improve-
ment of, respectively, 2 and 15% in comparison with BiPPred Max
on a benchmark set for chaperone BiP.

3.4 ChaperISM predicts true positive peptides with

better accuracy
In practice, researchers interested in predicting in silico client bind-
ing to Hsp70 to guide their experiments focus on predictions above
the threshold determining positives. Thus, we decided to compare
how many correct predictions Rüdiger PSSM, LIMBO and
ChaperISM (final 20x7 PISM qualitative or quantitative) obtained
when discriminating positives using the recommended threshold for
each predictor. From a total of 60 true positives peptides in the
DnaK validation set, Rüdiger PSSM and LIMBO correctly predict
36 and 29 peptides, respectively. ChaperISM, on the other hand,
correctly predicts 51 (quantitative mode) and 56 (qualitative mode).
The same applies to CD set, where only 4 and 3 true positives pepti-
des were correctly predicted by Rüdiger and LIMBO, respectively,
in a total of 44 peptides. Meanwhile, ChaperISM was able to iden-
tify 17 (quantitative mode) and 31 (qualitative mode) true positive
peptides (Table 3).

4 Discussion

Herein, we present a new DnaK binding predictor—ChaperISM—
based on information derived from a previously published screening
of cellulose membrane-bound peptides. It possesses two prediction
modes: (i) qualitative and (ii) quantitative. In qualitative mode,
models are trained to inform 1.0 or 0.0 for binders and non-binders,
respectively. Quantitative mode predictions are directly based on the
normalized DnaK chemiluminescence detection.

We employed the SMM without the regularization parameter as
learning algorithm. We implemented this modification after the ini-
tial tests revealed that having L2 or L1 regularization did not pro-
duce models with superior performance than having no
regularization parameter at all. The original method possesses L2
regularization to penalize model complexity and avoid overfitting
(Peters and Sette, 2005). The analysis of the learning curves for
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quantitative PSSM, 20x1 PISM and 20x7 PISM reveals overfitting does
not occur in any of three cases, confirming the regularization parameter
was not necessary for this situation (Supplementary Fig. S9). The per-
formance of PSSMs or 20x1 PISMs considerably fluctuates as more
data is added to the training set, indicating underfitting. However,
20x7 PISMs regularly show a better performance each time more data
is added to the training set. Thus neither under- or overfitting are diag-
nosed. This reveals that training a 20x1 PISM is not equivalent to train-
ing a 20x7 PISM converted to a 20x1 matrix by summing up columns.

A unique feature of ChaperISM is the use of PISMs rather than
PSSMs, which means that an amino acid is scored independently of
its position. Converting PSSM from Rüdiger or LIMBO to a PISM
does not impact its performance; therefore, this simplification is ac-
ceptable (Supplementary Fig. S7). The best predictive performance
obtained with PISM, which is more straightforward than a PSSM,
may be counterintuitive at first. To investigate that, we performed
two in silico experiments using a true binder (NRLLLTG) and a true
non-binder (EKIDNEE). We computed the interaction energy for all
possible permutations of both heptamers. If the amino acids compo-
sitions were sufficient to predict DnaK binding (a PISM could cap-
ture that), we would expect the interaction energies for all
permutations to be either the same or quite similar. However, this
was not the case, as the energy variation was high (Supplementary
Figs S16 and S17). Thus, we further analyzed sub-permutations, fix-
ing pairs of adjacent residues (e.g. NR-LLLTG, NR-LLTGL, NR-
TGLLL, . . .), spanning all heptamer positions. This analysis revealed
that the energy variation is greatly reduced when the fixed residues
are on pockets 4 and 5 (Supplementary Figs S18 and S19). The
neighboring pockets (positions 1, 2, 3, 6 and 7) show a ‘position-
independent’ behavior, which reflects the superior performance of a
PISM. In summary, our results indicate that a PISM can be more
suitable than a PSSM to describe promiscuous protein-protein inter-
action profiles.

To ensure performance improvement was due to modifications
in the learning algorithm, we took the effort to work on the same
data distribution as Van Durme et al. Thus, we performed a similar
step of energy filtering with FoldX force field. Even removing this
filter, though, models still show a better performance than Rüdiger
or LIMBO PSSMs when validations were performed on DnaK valid-
ation set. The same models, however, showed a worsened predictive
performance when validations were performed on CD set (see
Supplementary Data). This reveals the increased performance in CD

Fig. 2. (A) ROC and PR curves for the DnaK validation set defined in this work for LIMBO, Rüdiger, 20x7 qualitative PISM, 20x7 quantitative PISM, BiPPred_min, and

BiPPred_max. (B) ROC and PR curves for the CD set defined by Schneider et al., 2016 for LIMBO, Rüdiger, 20x7 qualitative PISM, 20x7 quantitative PISM, BiPPred_min,

and BiPPred_max. See Table 2 for area under the curves

Table 1. Performance of different chaperone binding predictors for

the internal evaluation set

Information

type

Algorithm Best model Mean value

auROC auPR auROC auPR

Quantitative PSSM (20x7) 0.818 0.825 0.769 0.770

PISM (20x1) 0.934 0.925 0.874 0.872

PISM (20x7) 0.983 0.970 0.982 0.969

Qualitative PSSM (20x7) 0.870 0.894 0.802 0.816

PISM (20x1) 0.946 0.956 0.875 0.883

PISM (20x7) 0.972 0.974 0.972 0.974

— Rüdiger 0.924 0.933 NA NA

— Limbo 0.885 0.905 NA NA

— BipPred Max

Score

0.894 0.892 NA NA

— BipPred Min

Score

0.892 0.885 NA NA

Note: Results are shown for five independent runs. Higher values are

depicted in bold.
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is a direct consequence of the energy filtering step, but since LIMBO
presents the worst predictive performance in this set, it does not
solely explain the improvement. Removing normalization from pre-
processing impacts the generated models in a negatively way
(Supplementary Figs S10 and S11). Thus, the overall performance
increase in ChaperISM results are a combination of factors such as
normalization, energy filtering and training.

DnaK is known to bind to mostly hydrophobic moieties (Clerico
et al., 2015). Thus, it could be possible that our final matrices could
simply be separating hydrophobic peptides from hydrophilic ones.
Nevertheless, when we analyzed the matrices positions, sorted by
Kyte and Doolittle hydrophobicity scale, we concluded that this was
not the case (Supplementary Figs S21–S24). However, it is import-
ant to highlight that the simpler, generalized behavior of a PISM,
might indicate heptamers with hydrophilic amino acids in positions
4 and 5 as false positives, which could disfavor or disrupt the
binding.

Considering the default threshold to discriminate true positives
of each predictor, ChaperISM is the most accurate of them.
Concerning BiP binders from CD set, peptides were collected if they
could stimulate BiP’s ATPase activity with a stimulation factor over
1.5 (Schneider et al., 2016). Many peptides that meet this criterion
are exclusively predicted by ChaperISM, such as antibody heavy
chain derived heptamers VAFDIWG (from VH domain), HTFPAVL
(from CH1 domain), SVFPLAP (from CH1 domain) and
WDFAWPW (from CH3 domain) (Knarr et al., 1995). Also, Rauch
and colleagues have found non-canonical interactions between
Hsc70 SBD and two of its co-chaperones, Bag1 and Bag3. Using the
default threshold of LIMBO, the authors were able to identify one
putative binding site in the BAG domain of Bag1 and Bag3, but only
one putative binding site outside this region for Bag3. ChaperISM,
however, indicates several client-like binding regions outside the
BAG domain, which are more likely to be the regions involved in the
non-canonical interaction (Rauch et al., 2016). These examples

highlight the biological relevance of ChaperISM in the context of
BiP and Hsc70 binding prediction.

Regarding our working hypothesis, we were able to significantly
improve DnaK binding predictions using both algorithm versions,
quantitative and qualitative information. The fact that qualitative-
based ChaperISM performs better in CD than quantitative-based
ChaperISM may appear contradictory. It is nonetheless important to
note, that the learning algorithm employed consists in minimizing the
observed error, which is quite different than a sequence alignment
derived profile from two distinct classes of sequences. Both prediction
modes are, thus, valid tools to predict DnaK binding. Still, the more
accurate predictions for BiP binding indicates that general binding
rules for the Hsp70 family are captured by SMM. As our proposed
method outperforms all tested chaperone binding predictors, includ-
ing DnaK and BiP prediction tools, we conclude it can be used to pre-
dict substrate binding other proteins of Hsp70 family.
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