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Abstract

Motivation: Recent advances in the areas of bioinformatics and chemogenomics are poised to accelerate the discov-
ery of small molecule regulators of cell development. Combining large genomics and molecular data sources with
powerful deep learning techniques has the potential to revolutionize predictive biology. In this study, we present
Deep gene COmpound Profiler (DeepCOP), a deep learning based model that can predict gene regulating effects of
low-molecular weight compounds. This model can be used for direct identification of a drug candidate causing a
desired gene expression response, without utilizing any information on its interactions with protein target(s).

Results: In this study, we successfully combined molecular fingerprint descriptors and gene descriptors (derived
from gene ontology terms) to train deep neural networks that predict differential gene regulation endpoints collected
in LINCS database. We achieved 10-fold cross-validation RAUC scores of and above 0.80, as well as enrichment fac-
tors of >5. We validated our models using an external RNA-Seq dataset generated in-house that described the effect
of three potent antiandrogens (with different modes of action) on gene expression in LNCaP prostate cancer cell
line. The results of this pilot study demonstrate that deep learning models can effectively synergize molecular and
genomic descriptors and can be used to screen for novel drug candidates with the desired effect on gene expres-
sion. We anticipate that such models can find a broad use in developing novel cancer therapeutics and can facilitate
precision oncology efforts.

Contact: acherkasov@prostatecentre.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chemogenomics studies chemicals and their effects on cellular states
(Stegmaier et al., 2004) and can serve as a very powerful tool for
drug discovery in high-throughput screening (Bredel and Jacoby,
2004). Chemical libraries are screened for drug candidates that
target-specific cell states (Stegmaier et al., 2004) and can lead to
therapies to treat disorders that can be characterized by mis-
expressed gene pathways. Mice models have shown that treatments
that restore mis-expressed genes are associated with positive physio-
logical effects in tissues (Wagner et al., 2015).

The evolution of chemogenomics has been expedited by the re-
cent emergence of large standardized genomic datasets. Many of
them characterize responses of diverse cell lines to various chemicals
and are publicly available (Lavertu et al., 2018). These progressively
larger datasets are paving the way for a big data revolution in
pharmacology (Lavertu et al., 2018). Importantly, the emergence of

publicly available pharmacogenomics data, promote the develop-
ment of novel bioinformatics and cheminformatics tools and
approaches for big data mining and machine learning (Lavertu
et al., 2018). Machine learning tools such as deep neural networks
(DNNs) can identify hidden characteristics of large datasets by gen-
eralizing information and storing them as neuron weights
(Schmidhuber, 2015). In drug discovery, recent reports have pointed
out the superiority of deep learning in the prediction of biological
properties of chemical compounds over traditional machine learning
methods (Fernandez et al., 2018; Mayr et al., 2016).

In this article, we introduce Deep gene COmpound Profiler
(DeepCOP), a deep learning computational tool to predict drug
effects on gene expression endpoints from the LINCS L1000 dataset
(Subramanian et al., 2017). A DNN in the form of a multilayer per-
ceptron (MLP) was developed for classification and prediction.
Initially, we evaluated its efficacy as a prediction model using two
binary classification models that determine genes up-regulation and
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down-regulation. Consequently, we demonstrated how the devel-
oped models can recover up-regulated and down-regulated genes
from an in-house RNA-Seq dataset on the LNCaP cell line.

We propose that the DeepCOP approach can be used to screen
for drugs that target-specific gene regulations and can be used for
applications such as reversing mis-regulated genes in diseases such
as cancer.

2 Materials and methods

2.1 LINCS CMap L1000 cancer genomic dataset
The largest and latest gene perturbation dataset published to date is
the LINCS Connectivity Map L1000 dataset (Subramanian et al.,
2017). The LINCS project has collected over 1.3 million gene ex-
pression profiles with 978 landmark genes against 19 811 com-
pounds on 77 cancer cell lines. Such a large dataset can facilitate
research into numerous hypotheses (Lavertu et al., 2018). There has
already been a variety of outcome predictions on the previous
smaller L1000 dataset such as predicting adverse side effects of
drugs (Wang et al., 2016) and predicting cell viability from drug
interactions (Szalai et al., 2018). The dataset was split into 2 phases.
Phase 1 which contains most of the gene profiles was released in
May of 2014, while Phase 2 was released in March of 2016 and con-
tinues to be updated every 6 months. They can be found on the
https://clue.io website.

From the LINCS CMap L1000 dataset (Subramanian et al.,
2017), we used the Level 5 drug–gene interaction dataset that col-
lects the gene profiles of 978 landmark genes measured by perturba-
gen experiments on specific cell lines. The direct download link can
be accessed here: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc¼GSE92742. Gene expression was measured using flow cytome-
try data and was done in replicates of 1–4 each. These values were
converted into standardized z-scores and were the values we used to
train the models. Data from each cell-line was trained separately as
its own predictive model. We kept only experiments with an expos-
ure time of 24 h, which represents about 53% of the dataset. In
order to standardize doses, we kept only those that had units of
measurements in mM, which represents 43% of the experiments. To
keep the code simple we did not use experiments measured in units
of ng/ml or ng/ml which represent less than 3% of all the experi-
ments measured in mM. Each perturbagen-cell line experiment was
mostly performed in four different dose amounts. The number of
similar drug–gene experiments with different concentrations were
not enough to adequately calculate reliable IC50 values, therefore,
we chose the concentration with the largest amount of experimental
data, which was 10mM bin and excluded other dosages from the
training set. Figure 1A shows the distribution of drug concentrations
used in experiments in the dataset that were reported in mM. After
culling the dataset, we chose the top six cell lines that had the most
drug interactions data, i.e. PC3, MCF7, VCAP, A549, A375 and
HT29. Table 1 shows a list of cell lines ordered by the number of
tested drug experiments with the top six cell lines in bold.

2.2 RNA-Seq data for in-house compounds from the

Vancouver Prostate Centre
LNCaP cells (6 � 106) were seeded in RPMI 1640 media containing
10% FBS and 1% penicillin/streptomycin. Following O/N incuba-
tion, the media was changed to RPMI 1640 containing 5% CSS and
the cells were then grown for 48 h at 37�C with 5% CO2. On the
day of treatment, CSS media was refreshed and the cells were treated
with DHT (10 nM) and either DMSO (Control) or compound
MDV3100 (Enzalutamide): 1.5mM, VPC-17005 (Dalal et al.,
2018): 6mM or VPC-14449 (Li et al., 2014): 6mM). Concentration
of the compound was selected based on the published IC90. Cells
were treated for 6 h and then total RNA was extracted using Trizol
and the Qiagen RNeasy RNA Extraction Kit. Three biological repli-
cas were collected for each condition. The concentrations and the
qualities of the RNA samples were checked by Nanodrop and tape
station. For sequencing, RNA was subjected to Poly-A selection, and
sequenced using the BGISeq500 platform. The raw reads were

pre-filtered by removing adaptor sequences, contamination and low-
quality reads. The high quality of the filtered reads was confirmed
using the FastQC (Andrews, 2014) quality control tool. The reads
were mapped and annotated using STAR Aligner (Dobin et al.,
2013) (version 2.6.1c) using the latest release reference genome and
annotations from the GENCODE (Frankish et al., 2019) project; re-
lease 29, GRCh38.p12. The reads were then counted using
featureCounts (Liao et al., 2014). Differential gene expression ana-
lysis for different treatments was then performed using the DESeq2
method (Love et al., 2014). Note that when comparing predictions
with RNA-Seq data using LNCaP cell line, we previously trained
our general LINCS-based models with both 3 and 24 h data since
they were the only exposure times available that were closest to the
6 h exposures of our RNA-Seq data.

Fig. 1. (A) Distribution of the number of experiments in the dataset that

have reported concentration measures of lM and their drug concentrations.

(B) Gene perturbation scores (z-scores) split into classes at 5% significance levels.

(C) Histogram of perturbations for the entire L1000 level 5 dataset. (D) Histogram

of a landmark gene GNAS with the greatest variance

Table 1. A list of cell lines sorted by number of compounds they

have tested with the top six cell lines used to build the DNN models

appear highlighted in bold

Cell line Primary site Subtype Compounds

VCAP Prostate Carcinoma 6730

A549 Lung Lung cancer carcinoma 6410

A375 Skin Malignant melanoma 6076

PC3 Prostate Adenocarcinoma 5517

MCF7 Breast Adenocarcinoma 5508

HT29 Large intestine Colorectal adenocarcinoma 5491

HA1E Kidney Normal kidney 4911

HEPG2 Liver Hepatocellular carcinoma 4790

HCC515 Lung Carcinoma 3751

Others <1000
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2.3 Binary classifiers
For the binary classification models, perturbation data were labeled
according to a significance level threshold. We calculated z-score
thresholds that correspond to 5% and 10% significance levels. For
the ‘up-regulation’ model, in each cell line, perturbations above the
top threshold were labeled as actively up-regulated, while the rest
were labeled as inactive up-regulation representing the genes
that were not significantly up-regulated. Similarly, for the ‘down-
regulation’ model, in each cell line, perturbations below the bottom
threshold were labeled as actively down-regulated, while the rest
were labeled as inactive down-regulation. In the case of multiple ex-
perimental replicates, we used a voting system by classifying each
replicate, and taking the label with the most replicates. In the case of
a tie, we discarded the sample, and it would not be considered ac-
tively up-regulated or down-regulated (see Fig. 1B).

2.4 Morgan (circular) fingerprints
To correlate the chemical structure to gene perturbation, Morgan
descriptors (Morgan, 1965) were calculated using the RDKIT Open-
source Python library (Open-source, 2006). This molecular repre-
sentation continues to be one of the most broadly and intensely used
fingerprints in recent studies (Rogers and Hahn, 2010; Wei et al.,
2019; Zheng et al., 2018). We calculated the descriptors on the ca-
nonical SMILES representation using a radius value of 2 to obtain a
one-hot vector of 2048 features for 19 811 compounds. In early
tests, we found Morgan descriptors to show better prediction ability
compared to other proudly utilized chemical descriptors—
Molecular Access System (MACCS) fingerprints.

2.5 Gene ontology descriptors
There are currently no broadly-accepted methods for quantifying gene
descriptors. However, the gene ontology (GO) consortium (Ashburner
et al., 2000) currently has 40 thousand GO terms with over 200 000
qualitative annotations for homo sapiens (The Gene Ontology
Consortium, 2018). We devised a novel in-house implementation to
quantify this gene information for each of the 978 landmark genes
from the L1000 dataset encoded in a one hot vector. These 978 genes
were selected by the LINCS consortium using principal component
analysis to recover 82% of information in the full transcriptome
(Subramanian et al., 2017). From the OntologyX R package (Greene
et al., 2017), we took all GO terms that were attributed to at least three
or more landmark genes. Each gene was then described in terms of that
pool of GO terms. Because GO terms are annotations of a gene’s cellu-
lar and biological processes and activities, genes that share the same
biological pathways or activities will also share the same GO terms.
Moreover, we have already previously demonstrated that GO terms
can be effectively used gene descriptors in machine learning experi-
ments (Hsing et al., 2008). By using the GO terms as input, a DNN
model should be able to differentiate genes by differences in their
related biological processes. Our proposed gene quantification method
resulted in a one-hot vector of 1107 features per gene. Each feature rep-
resents the inclusion or exclusion of each GO term. The concatenation
of drug fingerprints one-hot vectors and GO descriptors were used to
train the DNN models against the intensity of drug-gene interactions.

2.6 Deep neural networks
DNNs have the ability to generalize data iteratively over each suc-
cessive network layer and as a result exhibits better performance for
larger datasets over traditional machine learning algorithms
(Mahapatra, 2018). We trained a DNN model with an architecture
of a simple back-propagated feed-forward fully connected MLP
with four (two hidden) layers. Each of the first three layers had a
size of 3155 (2048þ1107) nodes. Each of the two hidden layers
were supplemented with a dropout layer with value of 0.2. The last
output layer had two nodes which represented the active and in-
active classes. The model was trained using a binary cross-entropy
classifier and was optimized with a Scaled Exponential Linear
Unit (SELU) input activation function as well as a Rectified Linear
Unit (ReLU) activation function in the hidden layers (Fig. 2).

Different regularization techniques did not improve validation ac-
curacy significantly. Adaptive moment estimation (ADAM) was
used as the optimizer. We hand tuned these hyperparameters using
grid search to find values that were generic enough to be used on all
cell lines. We were able to obtain more specific dropout and regular-
ization values using Bayesian optimization, however, they did not
improve validation accuracy significantly. We also compared our
results with the popular random forest classifier which was only
able to achieve area under the receiver-operating curves (AUC)
scores up to 70% (see Supplementary Table S8).

2.7 Performance evaluation
Performance was measured using AUC validated against an internal
validation split from the LINCS dataset. For each prediction score,
we also calculated an associated modified version of enrichment fac-
tor (Bender and Glen, 2005) using precision divided by the random
probability of finding an active sample (Ef).

2.7.1 LINCS training and internal validation

First, we trained our models on LINCS data and evaluated its prediction
performance using 10-fold cross-validation to calculate AUC and Ef.

2.7.2 External validation on RNA-Seq predictions

We used the trained models to obtain up-regulation and down-
regulation predictions for Enzalutamide and in-house compounds
VPC-17005, and VPC-14449 on the LNCaP cell line. We then
obtained true perturbation values from in-house RNA-Seq experiments
by using a P-adjusted value with significance level of 5% to determine
true active perturbation class. Having both predicted values and the
true RNA-Seq values, we calculated and reported AUC and Ef.

2.8 Source code and data availability
Data processing, training and validation for the LINCS dataset were
implemented in Python 3.6. R programming was used to calculate
gene_descriptors described in Section 2.5. All Python and R source
code is available at https://github.com/godwinwoo/DeepCOP. The
RNA-Seq data is available at NCBI NIH Gene Expression Omnibus
(GEO accession ID GSE127816).

3 Results

3.1 Statistical analysis
Initially, we performed basic exploratory statistical analysis of
Phase 1 of the L1000 dataset from where we only used the top six
cell lines highlighted in bold in Table 1, corresponding to 978 land-
mark genes. Statistics are listed in Table 2, while Figure 1C shows a

Fig. 2. The MLP architecture used in the binary classification model
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histogram of the perturbation z-scores for the entire level five data-
set. In order to explore the distribution of the perturbation scores
for a typical gene, we measured the variance of each landmark gene
and obtained the histogram for gene GNAS which has the highest
z-score variance depicted in Figure 1D. It can be seen, from the left-
skewed distribution, that this particular gene has a tendency to be
down-regulated by the small molecules tested in the training set.
Table 1 lists all the cell lines in the dataset that have documented
experiments with more than 1000 compounds. Figure 1A illustrates
the distribution of experiments with their drug concentrations.

3.2 Deep learning binary classifiers
We designed binary DNNs to identify ‘up-regulation’ and ‘down-regu-
lation’ activity by applying right-tailed and left-tailed significance levels
to the z-score distributions in Figure 1B as described in the Section 2.3.
Gene perturbations were labeled into corresponding classes depending
on 5% significance level thresholds. After categorizing the drug–gene
interactions according to the specific thresholds, we used 10-fold cross-
validation to optimize each DNN model. For each binary classifier, the
DNN used an output layer of two nodes with softmax activation and
‘binary cross-entropy’ loss cost function (Schmidhuber, 2015) to identify
up-regulation and down-regulation interactions. The accuracy and AUC
measures are reported in Table 3. The AUC scores for the 5% signifi-
cance level are greater than 80% which is significantly better than ran-
dom (AUC¼0.5) and is consistent with the scores of other recent DL
papers in quantitative biology (Mullane et al., 2019; Sureyya Rifaioglu
et al., 2019). Enrichment factors varied between 6–8 for the 5% signifi-
cance level models and 3–4 for the 10% significance level models.

3.3 Significance level analysis
Up-regulation and down-regulation signals were defined as: z-score
<left-tailed significance level and z-score >right-tailed threshold, re-
spectively. Figure 3A illustrates how the AUC values of the two bin-
ary classifier models for the six cell lines increased from 0.60 to 0.85
as the significance levels decreased in the range from 25% to 5%.
The top 5–10% of the gene perturbations were detected with higher
accuracies across the six cell lines. An example of the internal valid-
ation ROC plots for recognition of gene up-regulation in the PC3
cell-line is depicted in Figure 3B for the 5% significance level. We
observed that increasing the up-regulation significance level
decreased the DNNs ability to identify specific gene perturbations.
Similar behaviors were observed also for the down-regulation classi-
fier across all six cell lines (see Supplementary Table S1 for the data
for Fig. 3A).

3.4 Gap analysis
The smaller the significance levels were, the better the DNNs were able
to predict extreme perturbations. This suggested that we should ex-
clude negative examples that are very close to the positive class signifi-
cance level threshold. The rationale was that the DNN may have
considered these perturbations as ambiguous causing the DNN model

to behave randomly around the significance level threshold. This could
have been affecting the performance of the binary classifiers causing a
decrease in AUC scores. To study this effect, we defined a sample ex-
clusion gap that expanded from the classification significance level

Table 2. Exploratory statistics of the L1000 dataset including significance levels and corresponding z-score values

Statistics PC3 MCF7 HT29 A375 VCAP A549 Overall (76)

Minimum �10.0 �10.0 �10.0 �10.0 �10.0 �10.0 �10.0

Maximum �10.0 10.0 10.0 10.0 10.0 10.0 10.0

Mean �0.013 �0.012 �0.003 �0.001 �0.005 �0.017 �0.005

Median 0.001 0 0.005 0.001 0.002 0 0.002

Standard deviation 1.052 1.083 1.048 1.118 1.059 1.098 1.078

z-scores at 5% �1.538 �1.562 �1.487 �1.578 �1.493 �1.575 �1.534

z-scores at 10% �1.061 �1.08 �1.027 �1.089 �1.044 �1.092 �1.065

z-scores at 25% �0.504 �0.516 �0.491 �0.52 �0.504 �0.524 �0.511

z-scores at 50% 0.001 0 0.005 0.001 0.002 0 0.002

z-scores at 75% 0.504 0.515 0.501 0.529 0.509 0.522 0.517

z-scores at 90% 1.036 1.058 1.028 1.096 1.033 1.067 1.058

z-scores at 95% 1.463 1.498 1.461 1.568 1.453 1.5 1.496

Table 3. AUC scores for internal test set predictions for threshold of

5% and 10% significance levels

Significance

level

Cell line Sample

size

Down-regulation Up-regulation

AUC F-score Ef AUC F-score Ef

5% PC3 6 163 650 0.84 0.36 8.44 0.84 0.36 8.56

MCF7 5 876 558 0.84 0.38 8.82 0.84 0.39 8.86

VCAP 5 555 089 0.84 0.36 8.28 0.84 0.36 8.27

A549 4 529 363 0.81 0.34 6.14 0.81 0.34 6.03

A375 1 607 343 0.82 0.40 6.23 0.83 0.40 6.28

HT29 1 274 726 0.81 0.36 6.15 0.81 0.36 6.48

10% PC3 6 163 650 0.81 0.39 4.35 0.81 0.39 4.35

MCF7 5 876 558 0.82 0.41 4.58 0.82 0.41 4.53

VCAP 5 555 089 0.81 0.40 4.35 0.81 0.40 4.26

A549 4 529 363 0.79 0.39 3.39 0.79 0.39 3.41

A375 1 607 343 0.79 0.42 3.48 0.79 0.42 3.58

HT29 1 274 726 0.77 0.39 3.55 0.77 0.39 3.48

Note: AUC was reported separately for both up-regulation and down-regu-

lation classifications as each class was predicted by its own model.

Fig. 3. (A) AUC values for different up-regulation threshold for six cell types used in

this study. (B) ROC plots and AUC values for PC3 cell line for threshold of 5% sig-

nificance level. (C) ROC curves for predicting RNA-Seq perturbations using a model

trained on 3 h exposure time. (D) ROC curves for predicting RNA-Seq perturba-

tions using a model trained on 24 h exposure time
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threshold towards the distribution mean. The negative class thresholds
were set using a gap factor as a percentage of the distance from the
10% to 90% significance level thresholds toward the mean (see
Supplementary Fig. S2). We trained classifier models for gap factor
increments of 10% and evaluated AUC, precision and recall depicted
in Figure 4. In general, increasing the gap did increase each model’s
AUC scores. However, the cost of removing gap molecules would be a
decrease in trained chemical diversity (see Supplementary Table S2
data for Fig. 4 along with other gap factor measures).

3.5 Predicting RNA-Seq perturbation values
We demonstrated the applicability our LINCS trained model (Phase
2) to identify differential gene perturbation with an external dataset.
Specifically, we used RNA-Seq of LNCaP cells treated with a clinic-
ally relevant concentration of previously published androgen recep-
tor antagonists. Importantly, these developmental compounds were
not included in the LINCS training set and represent an unbiased
test set. We used the DNN model with optimal hyperparameters as
described in the methods section and obtained the prediction statis-
tics listed on the top half of Table 4. We obtained Morgan finger-
prints for Enzalutamide and in-house compounds VPC-17005 and
VPC-14449 as well as the GO descriptors for the 978 landmark
genes as described in the methods section. After combining the fea-
tures, we obtained predictions from our models. Predictions from
our models identified significant gene regulations in the RNA-Seq
data as listed on the bottom half of Table 4. Figure 3C and 3D
shows plots of the corresponding ROC curves.

The results show that AUC values hover around 80% when our
models were used to predict RNA-Seq values. F-score values were
somewhat on the lower end (P < 0.002) and is likely due to the ex-
treme imbalance between actives and inactive in the RNA-Seq data-
set. However, when looking at enrichment scores, they are lower
but consistent with the enrichment values that were obtained from

10-fold cross-validation using LINCS data. AUC scores that hover
around 80% show that our models were fair to good predictors of
RNA-Seq values and has enrichment values from 4 to 11 (see
Supplementary Table S3 for P-value calculations).

The limitations of the RNA-Seq data comparison arise from the
fact that the LINCS training data for LNCaP cell line was limited in
size with only 58 compounds tested. Further comparisons with RNA-
Seq experiments on cell-lines such as VCAP and A549 which have a
significantly more diverse set of drugs would expect to yield higher
AUC, F-scores and enrichment factors. Another limitation comes
from the exposure time differences. The LINCS data for LNCaP only
included experiments with 3 and 24h exposure times whereas the
RNA-Seq experiments were done with an exposure time of 6 h. These
differences would result in lower than expected prediction scores due
to differences in gene perturbation over time. We also see that the 6 h
RNA-Seq experiment exposure times is closer to the 3 h conditions of
the LINCS training data than the 24 h conditions as can be seen by the
increased performance. There were also slight differences in dose
amounts being 1.5mM and 6mM as described in Section 2.2 compared
to the 10mM dosage from the training set. We would also like to note
that the DESeq2 protocol uses a strict P-value adjustment that leads
us to have highly imbalanced data contributing to lower F-scores.
Additionally, we tried to improve our F-scores by using a version of
conformal predictions that have been shown to improve the predic-
tions of existing models (Ahmed et al., 2018; Svensson et al., 2017).
Yet, results did not improve on any of the measures in our case.

3.6 Applicability domain
Prediction machine learning models are always accompanied by a
question of reliability (Jaworska et al., 2005). In Quantitative
Structure Activity Relationship (QSAR) models, application domain
(AD) can be used to define the scope of molecules that were used in
the training set. When an AD is computed, we can determine how
molecules used for prediction, fit in the scope of the AD. For a simi-
larity based approach, a molecule that has high similarity scores
with the compounds of a training set will be considered to have a
more reliable prediction than a molecule that has low similarity
scores. There are multiple approaches to calculate the similarity
scores between the feature representations of molecules, each with
their own strengths and weaknesses. Since the features we used for
training were binary, we used the Jaccard index approach.

Figure 5 shows the calculated scores between the molecules that
were used for training to predict the RNA-Seq values. The similarity
scores of the molecules predicted are also marked in the diagram.
The plot demonstrates that the compounds in the RNA-Seq experi-
ments fall well within the applicability domain and have an average
similarity score to the chemicals from the LINCS training set in the
case of Enzalutamide and better than average similarity score in the
case of our two in-house compounds.

4 Conclusions

In this article, we report the first study of the efficacy of deep learn-
ing in the direct prediction of drug–gene interactions. The internal

Fig. 4. Effect of the gap factor on AUC of up-regulation and down-regulation pre-

dictions of the internal validation set

Table 4. The AUC scores for the 10-fold cross validation training on the top half and performance on predicting RNA-Seq values using the

trained models on the bottom half

Measurement Train data

experiment

conditions

Sample size Down-regulation Up-regulation

AUC F-score Ef AUC F-score Ef

LINCS internal 10-fold CV 10 mM 3 h 56 723 0.73 0.34 9.42 0.72 0.35 9.33

10 mM 24 h 55 745 0.82 0.49 4.77 0.81 0.48 4.79

RNA-Seq predictions 10 mM 3 h 2895 0.68 0.08 4.35 0.85 0.14 10.88

10 mM 24 h 2895 0.73 0.05 2.56 0.67 0.03 2.30

Note: The maximum F-score is considerably lower for RNA-Seq predictions (P-values <0.002) likely due to imbalanced data between active and inactive regu-

lations in the RNA-Seq data, however, enrichment values were slightly lower but remained consistent with 10-fold cross-validation values.
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model validation resulted in good prediction statistics with the cor-
responding cross-validated AUC parameters of �0.80. When com-
paring the prediction for our in house RNA-Seq data for three
different antiandrogens we see overall decreased accuracy compared
to the training statistics, but there is still utility in the form of enrich-
ment. Thus, DeepCOP did not show ideal results when applied to an
external set but it provided a valid proof of principle starting point,
termed for future improvement. Such drug-to-gene deep learning
models can be significantly improved in the future when more abun-
dant external data becomes available and when more standardized
and controlled experimental conditions are enforced. The proposed
deep learning tools can be also be further improved by the use of
more sophisticated gene and molecular descriptors; when optimized,
DeepCOP will be used to screen an ever growing massive library of
available chemicals for drug candidates with desired gene regulating
properties and can manipulate cellular pathways. We believe, that
such direct prediction of the gene regulating effect of small mole-
cules can pave the way for precision oncology studies where thera-
peutic candidates are tailored specifically for each patient’s unique
gene expression profile.
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