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Abstract

Motivation: Many methods have been developed to estimate immune cell composition from tissue transcriptomes.
One common characteristic of these methods is that they are trained using a set of general immune cell transcrip-
tomes that ignores tissue specificities. However, as immune cells are localized in different tissues, they may have
distinct expression profiles. Hence, calculations that use general signature matrices may hinder the deconvolution
accuracy.

Results: This study used single cell RNA-sequencing (scRNA-Seq) data from different mouse tissues instead of gen-
eral signature expression values to generate tissue-specific signature gene matrices that are used as the input of the
deconvolution model. First, the transcriptome of immune cells in each tissue was extracted from scRNA-Seq data
and used to construct the entire expression matrix of tissue immune cells. Then, after comparing different gene se-
lection strategies, the expressions of 162 seq-ImmuCC derived signature genes in tissue immune cell scRNA-Seq
data were regarded as the tissue specific signature matrices. Finally, a modest improvement in performance was
observed in multiple tissues that refer to a traditional general signature matrix in the deconvolution model. With the
fast accumulation of scRNA-Seq data, the introduction of these data into an estimation of immune cell compositions
for different tissues will open a new window for avoiding tissue bias for immune cell expression.
Availability and implementation: The signature matrices were available at https://github.com/wuaipinglab/ImmuCC/
tree/master/tissue_immucc/SignatureMatrix).
Contact: wap@ism.cams.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The use of tissue-infiltrating immune cells has long been recognized
as informative of health status due to the cells’ special role in main-
taining the balance of the local microenvironment. The composition
of immune cells is closely associated with the function or disease
state of tissues. This composition has traditionally been measured
using the expression of protein markers via flow cytometry and
immunohistochemistry (Basa et al., 2016; Yu et al., 2016). In recent
years, some computational methods have been proposed to estimate
immune-cell components from multi-omics data, particularly tissue
transcriptomes (Abbas et al., 2009; Altboum et al., 2014; Avila
Cobos et al., 2018; Chen et al., 2017, 2018; Li et al., 2016; Qi et al.,
2014).

Among these methods, gene expression in tissues has been
assumed to be a linear summation of expression scales obtained from
all the cellular components. Therefore, the proportions of cellular
components have been inferred by building a fitting model between
bulk and cell type specific expression profiles. In general, these com-
putational models have consisted of four steps. First, the transcrip-
tomes of immune cells profiled on one platform are collected. After
quality control, immune cell transcriptome data that can be correctly
classified using principal component analysis and hierarchical cluster-
ing methods are filtered and selected. Second, a set of signature genes
is defined by comparing gene expression across different cell types
and is then used to build an expression matrix of signature genes, the
signature matrix. For each cell type, genes significantly up-regulated
are identified by comparing with other immune cells. Significantly
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differentially expressed genes are then ranked according to their fold
change, and the top n genes for each immune cell type are combined
to form the signature gene sets. In addition, the average gene expres-
sion values across the replicates for each cell type are used as a repre-
sentative expression matrix. Combining the signature genes selected
and the representative expression matrix, the signature matrix is then
constructed. Third, a deconvolution model is developed by integrat-
ing the identified signature matrix with an appropriate machine
learning method. Finally, the model is validated with both the simu-
lated data and the experimental data.

Even though these computational models have been increasingly
applied (Abbas et al., 2009; Aran et al., 2017; Chen et al., 2017,
2018; Liebner et al., 2014; Newman et al., 2015; Qi et al., 2014;
Zhong et al., 2013), the existing models have some inherent limita-
tions. These limitations include such factors as the sources of im-
mune cells that are primarily collected from immune tissues or
in vitro cultured samples to generate a common training expression
dataset (Abbas et al., 2009; Altboum et al., 2014; Chen et al., 2017;
Li et al., 2016; Qi et al., 2014). This strategy could potentially intro-
duce data bias into the model when it uses divergent biological sam-
ples from different tissues. Evidence has suggested that the behavior
of internal cell components can be shaped by tissue micro-environ-
mental factors (Lavin et al., 2014; Mollaoglu et al., 2018). Immune
cells localized at different positions may have distinct expression
profiles (Mass et al., 2016). Macrophages can be classified into vari-
ous types according to their tissue origins; for example, brain micro-
glia, spleen red pulp macrophages, liver Kupffer cells, lung alveolar
macrophages and others (Ginhoux and Guilliams, 2016). Typically,
bias will be introduced when the testing data and the training data
of the computational model are not from the same tissue. A solution
is to construct a deconvolution model with a set of tissue-specific
signature gene matrices, which means, one tissue used one matrix to
build one model. Fortunately, with the development of single cell
RNA-sequencing (scRNA-Seq) technology, we are now able to view
the transcriptional information of tissue infiltrating immune cells at
the single cell level (Han et al., 2018). Therefore, it is possible to
construct a tissue-specific deconvolution model by integrating the
scRNA-Seq data of tissue immune cells.

In this study, a series of tissue-specific signature matrices are con-
structed to predict immune cell compositions from tissue RNA-Seq
data. Using the scRNA-Seq data collected by Han et al. (Han et al.,
2018), the transcriptome of tissue immune cells was obtained and
used to construct an entire expression matrix of tissue-specific im-
mune cells. With the signature genes selected and the expression pro-
files of tissue immune cells, a tissue-specific signature matrix can be
constructed. This tissue-specific signature matrix is then combined
with the computational frameworks of the CIBERSORT (Newman
et al., 2015) and ImmuCC methods (Chen et al., 2017), and a tissue-
specific deconvolution approach named tissue-ImmuCC is devel-
oped to infer the immune cell composition from the tissue transcrip-
tome data. Specifically, the training data used in tissue-ImmuCC is
comprised of several tissue specific signature matrices. To evaluate
different selection strategies for signature genes, the root mean
square error (RMSE) between the predicted proportions and the
flow cytometry results (Chen et al., 2017) are calculated. The results
indicate that the tissue-specific signature matrices developed using
the bulk RNA-Seq data-derived signature genes (Chen et al., 2018)
outperformed the scRNA-Seq data-derived signature genes. Using
the same evaluation strategy, the performance of three different
quantification methods used to measure the gene abundance of test-
ing data were compared. The gene length scaled quantification units,
including fragments per kilobase million (FPKM) or transcripts per
kilobase million (TPM) based testing data, exhibited a better per-
formance than the read counts-based model. Furthermore, the
tissue-specific approach was applied to seven synthetic tissue tran-
scriptomes, and a better performance was found when the training
data and testing data were from the same tissue. A comparison of
the tissue-ImmuCC and seq-ImmuCC showed that the tissue-
ImmuCC performed slightly well.

2 Materials and methods

2.1 Overview of approach development
(i) Data collection. Mouse tissue scRNA-Seq data produced by Han
et al. (Han et al., 2018) was downloaded from https://figshare.com/
articles/MCA_DGE_Data/5435866, and the batch removed digital
gene expression (DGE) data ‘MCA_BatchRemove_dge.zip’ was used
for later analysis. (ii) Sample annotation. The Pearson correlation
between the single-cell sequencing data and the reference data
(A matrix for the average transcriptome data of 894 cell types)
(Han et al., 2018) was calculated to assign a cell type to each sample
datum (Supplementary Materials and Methods Section). Tissue im-
mune cells were extracted and merged into ten major cell types
(T cells, B cells, NK cells, macrophages, dendritic cell, granulocytes,
neutrophils, basophils, mast cells and monocytes) according to their
labels. (iii) Median expression calculation. For each cell type, the
median expression of the genes was calculated and used to represent
its tissue expression value. For cell types with no more than 100 cells
in the tissue scRNA-seq data, the expression profile of peripheral
blood derived cells was used. (iv) Signature gene selection. Genes
that could be used to distinguish each immune cell from others were
used as its specifically expressed genes. According to the source of
immune cell and non-hematopoietic tissue sequencing data, three
different gene selection methods were designed. (v) Signature matrix
construction. By utilizing the transcriptome and signature genes of
the tissue immune cells, the expression pattern of signature genes
across different immune cells was used as the signature matrix.
Combined with the computational framework used in our previous
research (Chen et al., 2017; Newman et al., 2015), three different
signature gene selection strategies were evaluated using the experi-
mental data to provide the best option. (vi) Quantification method
comparison. The performance of three different quantification
methods used in the bulk RNA-Seq data, including read counts,
FPKM and TPM, were compared to select the best data type for the
testing data. (vii) Model evaluation. The tissue-specific model was
validated using the aggregated single-cell expression data and ex-
perimental data.

2.2 Data
(i) Single-cell sequencing data. Single-cell sequencing data of mouse
tissue from Han et al. was used to construct the signature matrix,
and the data were downloaded from the link https://figshare.com/
articles/MCA_DGE_Data/5435866/MCA_BatchRemove_dge.zip.
The scRNA-Seq data of 39 mouse tissues [bladder, bone marrow
(BM), BM cKit, brain, fetal brain, fetal female gonad, fetal intestine,
fetal kidney, fetal liverE14, fetal lung, fetal male gonad, fetal pan-
creas, fetal stomach, kidney, liver, lung, mammary gland involution,
mammary gland lactation, mammary gland pregnancy, mammary
gland virgin, muscle, neonatal brain, neonatal calvaria, neonatal
heart, neonatal muscle, neonatal pancreas, neonatal rib, neonatal
skin, ovary, pancreas, peripheral blood, placentae 14, prostate,
small intestine, spleen, stomach, testis, thymus and uterus] were
included in this dataset. In addition, the single cell transcriptomics
of five mouse tissues (spleen, mammary gland, BM, lung and kidney)
generated by The Tabula Muris Consortium (Tabula Muris et al.,
2018) were downloaded from https://ndownloader.figshare.com/
articles/5829687/versions/7. The transcriptome of tissue immune
cells of these two datasets was compared to evaluate the consistency
for the expression profiles of tissue immune cells. (ii) Bulk RNA-Seq
data of normal mouse tissue. To obtain the genes highly expressed
in non-hematopoietic tissues, the bulk RNA-Seq data of 228 mouse
non-hematopoietic tissues collected in our previously published
work was used in this study. Since immune cells typically account
for only a small proportion in non-hematopoietic tissues, genes
highly expressed in these tissues were primarily contributed by some
other non-immune cells. Therefore, it would be helpful to reduce the
bias when removing those genes that are highly expressed in both
immune cells and non-immune cells. The expression matrix for these
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228 normal mouse tissues was available at https://figshare.com/
articles/TissueSpecificDeconvolitionModel/8168120. (iii) Bulk
RNA-Seq data of mouse immune organs. Transcriptome data of
three immune organs (BM, spleen and peripheral blood) that had
been previously used to evaluate our seq_ImmuCC model were also
used here to validate the capability of the signature matrix. The ex-
pression matrix can be downloaded at http://wap-lab.org: 3200/im
mune/, and the raw fastq file at EMBL-EBI (www.ebi.ac.uk/arrayex
press) under accession number E-MTAB-6458. (iv) Aggregated
single-cell expression data. To assess the performance of the tissue
specific signature matrix, the aggregated single-cell expression data
were generated from single-cell RNA-Seq data as previously
reported (Schelker et al., 2017). Specifically, unique molecular iden-
tifier (UMI) counts from all the cells in each sample were added to
form the bulk transcription of genes in that tissue. The scRNA-Seq
data from seven tissues (lung, peripheral blood, BM, liver, spleen,
small intestine and mammary gland) were used to construct the
aggregated single-cell expression data. The aggregated single-cell ex-
pression data are available at Figshare https://figshare.com/articles/
TissueSpecificDeconvolitionModel/8168120. (v) Flow cytometry
data. The flow cytometry data measured in our previous work
were used herein to evaluate the capability of the signature matrix.
(vi) Software and codes. The R script of this approach was the same
as our previously reported tool, which is available at GitHub:
https://github.com/wuaipinglab/ImmuCC/blob/master/Microarray_
Deconvolution.R. The tissue-specific signature matrices of this
model are available at (GitHub: https://github.com/wuaipinglab/
ImmuCC/tree/master/tissue_Immucc/SignatureMatrix).

2.3 Immune cell expression matrix construction
For each tissue, the transcriptome data of all the immune cells were
extracted according to the annotation result of the tissue scRNA-Seq
data. Based on the scRNA-Seq data of the tissue immune cells, the
median expression of genes for each immune cell was calculated.
Then, to ensure the expression value in the signature matrix was at
the same scale as the cell number, the median expression of genes
for each cell type multiplied by 1000 was used to represent its tissue
expression level. Finally, the average gene expression of all the im-
mune cells was used as the expression matrix of the tissue immune
cells.

2.4 Signature gene selection
Using the transcriptome data of the immune cells, the significantly
differentially expressed genes in each cell type were identified. Given
immune cells typically account for only a small proportion in non-
hematopoietic tissues, the gene transcripts detected in the bulk tis-
sues were primarily from some non-immune tissue cells, including
fibroblasts, epithelial cells and others. To avoid the interference of
non-immune cells, genes highly expressed in non-hematopoietic tis-
sues were filtered out from the immune cell-specific gene sets. Due
to the divergent sources of the sequencing data for immune cells and
tissues, three different gene selection strategies were compared in
this study: (i) Method 1: General bulk cell-derived signature genes
plus total non-hematopoietic tissue highly expressed genes (‘BuImm
þ TT_NonHema’). Specifically, 162 signature genes selected in our
previous work to develop the seq-ImmuCC model were used here,
and the signature genes used in each tissue were the same
(Chen et al., 2018). Both the immune cell differentially expressed
genes and genes highly expressed in all the non-hematopoietic tis-
sues were selected from the bulk RNA-Seq data. The bulks RNA-
Seq data of immune cells was generated from the immune tissues or
in vitro cultured samples. The marker genes in each immune cell
were calculated using Voom (Law et al., 2014) when comparing
with the rest of the cell types. Next, the average gene expression in
the bulk RNA-Seq data of 146 non-hematopoietic tissues or cell
lines was calculated, and those highly expressed genes (log2 read
counts > 7) were regarded as non-hematopoietic tissue highly
expressed genes. (ii) Method 2: Tissue-specific single cell signature
genes plus total non-hematopoietic tissue highly expressed genes
(‘scImm þ TT_NonHema’). Genes significantly highly expressed in

immune cells were selected from tissue scRNA-Seq data, and genes
highly expressed in all non-hematopoietic tissues derived from the
bulk RNA-Seq data were used. Here, the marker genes for each im-
mune cell identified by R package ‘Seurat’ (Butler et al., 2018) were
downloaded from the Supplementary File of Han et al. (Han et al.,
2018). Genes with an average expression among all non-
hematopoietic tissue (log2 read counts > 7) were defined as non-
hematopoietic tissue highly expressed genes, the same as in Method
1. (iii) Method 3: Tissue specific single cell signature genes plus tis-
sue specific non-hematopoietic tissue high expressed genes (‘scImm
þ TS_NonHema’). Immune cell specifically expressed genes were
obtained in the same manner used in the second method. However,
the definition for non-hematopoietic tissue highly expressed genes
was a bit different. For each tissue, only genes that were highly
expressed in their own bulk RNA-Seq data were selected, whereas
genes highly expressed in other tissues were not considered. For ex-
ample, in lung, the mean expression for the bulks RNA-Seq data of
lung was calculated and the genes highly expressed in lung (log2
read counts >7) were selected as the non-hematopoietic tissue highly
expressed genes. Next, in combination with the selected signature
genes and the expression matrix of different tissue immune cells, the
tissue-specific signature matrix was constructed. For cell types with
no more than 100 cells in the tissue scRNA-Seq data, the corre-
sponding expression profiles were replaced with the profile derived
from the peripheral blood. Then, the bulk RNA-Seq data of BM, SP
and peripheral blood mononuclear cell (PBMC) were calculated
with the tissue-specific signature matrix derived from these three dif-
ferent strategies. The RMSE between the estimated result and the
flow cytometry measured proportion was calculated, and the values
among all three replicates were averaged to assess the prediction
error.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðpi � qiÞ2
s

The RMSE between the predicted proportion, p and the real pro-
portion, q, were used to evaluate the model performance. p: pre-
dicted proportion; q: real mixed proportion or flow cytometry
determined proportion; n: number of immune cells.

2.5 Deconvolution algorithm
Several computational algorithms have been applied to estimate the
relative proportions of different immune cells (Avila Cobos et al.,
2018). Among these tools, a method called CIBERSORT has been
shown to be robust to the background noise and resistant against
multi-collinearity (Newman et al., 2015). This algorithm framework
has already been validated and successfully applied in some single-
cell sequencing data based deconvolution models (Frishberg et al.,
2019; Newman et al., 2019; Schelker et al., 2017). Similar to other
deconvolution algorithms, this method also assumes that the gene
expression of heterogeneous tissues can be modelled as a linear sum-
mation of expression scales from all the cellular components. This
relationship can be represented as A ¼ BX, where A is the transcrip-
tome data of the biological sample, B is the signature matrix for the
expression of genes in all immune cells and X is the vector of relative
proportions of all immune cells. By minimizing the residuals be-
tween BX and A with a support vector regression-based algorithm,
the immune cell proportions in the tissue can be successfully
inferred. Here, by integrating the tissue-specific signature matrix
with the computational framework of CIBERSORT and ImmuCC,
the tissue-specific computational approach named tissue-ImmuCC
was constructed and used to determine the proportions of tissue im-
mune cells.

2.6 Aggregated single-cell expression data evaluation
Seven aggregated single-cell expression datasets, for BM, peripheral
blood, spleen, small intestine, lung, liver and pregnancy mammary
gland, were constructed by aggregating the expression values of all
the single cell data in that tissue (Supplementary Materials and
Methods Section). After this, all aggregated single-cell expression
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data were deconvolved using the signature matrix that corresponded
to these tissues. As the premixed proportion for each immune cell
was known, the Pearson correlation coefficient (PCC) between the
predicted result and the real mixed proportion was used to assess
the computational efficiency.

3 Results

3.1 Overview of the tissue-ImmuCC approach
In this approach, it was assumed that the entire tissue transcriptome
contributed and was linearly summed from the tissue’s cellular compo-
nents. As gene expression of immune cells is shaped by tissue-specific
factors, immune cells localized in different tissues present divergent ex-
pression profiles (Fig. 1a). With the cell cluster markers and single cell
RNA-Seq data provided by Han et al. (Han et al., 2018), up-regulated
genes for each cell type were determined (Fig. 1b and Supplementary
Fig. S1). One good example is macrophages. Some already known
macrophage associated genes were up-regulated for most tissue condi-
tions, including Cd68, Adgre1, Ccl3, Cxcl2 and some others (Fig. 1b).
In addition, it is worth noting that localized macrophages in different
tissues also have their own specifically expressed genes. Due to these
conditions, computation with a tissue-specific signature matrix was ne-
cessary to improve the performance of the model. Four major steps
were used to construct the tissue-ImmuCC approach (Fig. 1c): (i)
scRNA-Seq data preprocessing. The PCCs between tissue scRNA-Seq
data and the reference transcriptome data of different cell types were
calculated. The cell type with the highest PCC was used to label that
cell (Han et al., 2018) (Materials and Methods Section). (ii) Quality
examination. scRNA-Seq data of tissue immune cells were analyzed for
the expression of some flow cytometry valid marker genes. (iii) Model
construction. Different gene selection strategies were compared and
evaluated to obtain the best signature gene matrix. By integrating the
signature matrix with the deconvolution framework developed by the
CIBERSORT team (Newman et al., 2015), the tissue-specific computa-
tion tool can be used to estimate the immune cell proportion from the
transcriptome data. (iv) Model evaluation. The final model was eval-
uated using both aggregated single-cell expression data and flow
cytometry data (see the Data Section in Materials and Methods
Section).

3.2 Annotation of immune cells from tissue scRNA-Seq

data
Sequencing data for immune cells, including B cells, T cells, cd T
cells, NK cells, neutrophils, eosinophils, basophils, mast cells, den-
dritic cells, macrophages and monocytes, were extracted from
single-cell RNAseq datasets of tissues (Materials and Methods
Section). Here, the transcriptome of tissue infiltrated immune cells
from 39 mouse tissues including lung, BM and others, were
extracted from their scRNA-Seq data (Materials and Methods
Section). As shown in Figure 2a, immune cell constitutions across 39
tissues were successfully obtained. Consistent with prior knowledge,
the adult mouse tissue was primarily composed of macrophages,
whereas the neonatal body was dominated by granulocytes. For leu-
kocytes, including B cells and T cells, relatively high cell abundances
were observed in the spleen, thymus, small intestine, blood and
mammary gland, which was consistent with our previously calcu-
lated results obtained from bulk RNA-Seq data (Chen et al., 2018).
In addition, some immune cell types whose transcriptomes have
been seldom reported were also observed in this dataset. For ex-
ample, basophil cells were detected in multiple tissues including BM,
blood, muscle and other tissues, which highlights the potential ad-
vantage of this method to discover rare tissue cell types.

After assigning scRNA-Seq data onto cell types, their expression
features at the single cell level were investigated. Initially, custom
marker genes of some immune cells that had been previously verified
in both nucleic acid and protein levels were selected to examine their
expressions in the scRNA-Seq data (ThermoFisherScientific, 2017)
(Supplementary Table S1). In general, cell type-specific expression
profiles were observed for these selected marker genes at the single
cell level (Fig. 2b and Supplementary Fig. S2). For example, neutro-
phils in peripheral blood tended to have relatively high expression of
Ngp and Camp, while B cells had significantly higher expression of
Ighm, Cd79a, Cd79b and Ms4a1. In addition, similar to other
scRNA-Seq data, most immune cell-specific marker genes had zero
counts that were partially a result of the relatively low resolution of
the scRNA-Seq technology. Next, to demonstrate the assigning effi-
ciency, all immune cells in each tissue were visualized using the
t-SNE method. The results indicated that immune cells assigned into
the same cell type could be exactly classified into one group (Fig. 2c
and Supplementary Fig. S3). The distributions of gene expression

Fig. 1. Schematic of the tissue-ImmuCC approach. (a) A sketch map of the limitations of the traditional deconvolution model and potential strategies of dealing with each. (b)

Network relationship of macrophage specifically expressed genes derived from the scRNA-Seq data of eight tissues. Genes specifically expressed in each tissue were connected

to the node representing that tissue. The area of the dot is proportional to their degree. (c) The workflow for the construction of the tissue-ImmuCC approach
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among different tissues were also generated and compared (Fig. 2d
and Supplementary Fig. S4). For example, B cells could be classified
into different groups according to their expression of CD79a. The
proportion of cells with a relative high expression of CD79a in
the spleen and mammary gland were larger when compared to other
tissues. Additionally, the expression of CD79a was not observed in
thymus tissue-derived B cells. Therefore, some gene expression
levels of the same immune cell type originating from different tissues
had significantly different distributions. Furthermore, the median
expression level of genes in tissue immune cells used here (Han
et al., 2018) was compared with another study for mouse tissue
scRNA-seq data generated by The Tabula Muris Consortium
(Tabula Muris et al., 2018) (Supplementary Table S2). As indicated
in Supplementary Figure S5, a high consistency for the gene expres-
sion between these two different datasets was observed for most im-
mune cells.

3.3 Evaluation of different selection strategies for

signature genes
To reduce the interference of non-immune cell types, genes highly
expressed in non-hematopoietic tissues had to be filtered out to ob-
tain suitable signature genes. Three gene selection strategies were
proposed and evaluated to yield a best set of signature genes accord-
ing to the different sources of immune cell specifically expressed
genes and non-hematopoietic tissues highly expressed genes
(Fig. 3a). In the first strategy, ‘BuImm þ TT_NonHema’, 162 signa-
ture genes selected in our previously developed seq-ImmuCC model
were used (Chen et al., 2018). Here, the bulk RNA-Seq data of im-
mune cells generated from the bulk immune tissues or in vitro cul-
tured samples were used to obtain immune cell specifically
expressed genes without considering their tissue specificity. Next,
genes with a high expression level in the bulk RNA-Seq data of 146
non-hematopoietic tissues or cell lines were filtered out. The second
strategy, ‘scImm þ TT_NonHema’, involved deriving immune cell
specifically expressed genes from the scRNA-Seq data and obtaining
the non-hematopoietic highly expressed genes from the bulk RNA-
Seq data. Tissue scRNA-Seq data were analyzed using the R package
‘Seurat’ for each tissue, and the marker genes for each immune cell
cluster were extracted. By removing genes highly expressed in 146
non-hematopoietic mouse tissues or cell lines, tissue specific
immune cell signature genes were selected. In the third strategy,

‘scImm þ TS_NonHema’, the immune cell specifically expressed
genes were the same as in ‘scImm þ TT_NonHema’, whereas the
definition of the non-hematopoietic highly expressed genes was dif-
ferent. For each tissue, only the genes highly expressed in their own
bulk RNA-Seq data were filtered out from the immune cell specific-
ally expressed gene sets, whereas genes highly expressed in other tis-
sues were kept. As indicated in Figure 3b and Supplementary Figure
S6, the signature genes selected in these three different strategies
were largely different. For peripheral blood, only 44 genes were
commonly selected using all 3 methods. Compared with the other 2
methods, there were 109 distinct signature genes selected by
‘BuImm þ TT_NonHema’.

As the sequencing data of some immune cells were missing in
many tissues of the scRNA-Seq data, the transcriptomes of these im-
mune cells were replaced with the peripheral blood derived sequenc-
ing data (Fig. 3c). Finally, tissue specific signature matrixes for 14
mouse tissues were constructed, including lung, liver, spleen, small
intestine and others. In the BM, peripheral blood, lung and neonatal
pancreas, transcriptome data of immune cells were detected for
most of the cell types. For the other nine selected tissues, only ex-
pression profiles approximately five out of nine immune cells were
detected from the scRNA-Seq data of those tissues. To examine the
potential bias, the lung was used as a representative tissue to test the
effect of mixing blood immune cell data. It has been observed that
the predicted proportions were not affected for most immune cell
types except for two major tissue residential immune cells, including
macrophage and dendritic cells. As illustrated in Figure 3c, the tran-
scriptome data of these immune cells was detected in most of our
selected tissues and did not need to be replaced.

After signature gene selection, the expression of signature genes
across different immune cells were taken as the correspondent signa-
ture matrix, and the tissue specific signature matrixes designed from
these three different methods were validated using both the bulk
RNA-Seq of three immune organ and the correspondent flow
cytometry data (Data Section). As indicated in Supplementary
Figure S7, regardless of the quantification units used for testing the
data, a lower RMSE in ‘BuImm þ TT_NonHema’ was observed
when both the training data and the testing data were from the same
origin. In addition, the other two gene selection strategies yielded
relatively poor results. Finally, ‘BuImm þ TT_NonHema’ was
chosen for the latter analysis, and the signature genes used in each
tissue were the same.

Fig. 2. Characteristics of tissue immune cells identified from scRNA-Seq data. (a) Relative proportion of 11 immune cell types in 39 mouse tissues. (b) Hierarchical clustering

for the expression of the selected custom marker genes in the scRNA-Seq data of peripheral blood immune cells (log2 transformed UMI counts). (c) A t-SNE visualization of

scRNA-Seq data of peripheral blood derived immune cells. Cells are colored according to the cell type. (d) Distribution for the expression of CD79b in B cells across multiple

tissues (log2 transformed UMI counts). The lines are colored by tissue type
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The gene segments in the scRNA-Seq were counted using UMI
counts, whereas the quantification methods primarily used in the
bulk RNA-Seq were the read counts, FPKM and TPM. To examine
which expression units used in the bulk RNA-Seq would be more
suitable for this tissue specific model, the performances of these
three different counting methods were compared. As shown in
Supplementary Figure S7, in ‘BuImm þ TT_NonHema’, the FPKM
and TPM-based model performed better in PBMCs and the spleen
(SP), whereas a slightly lower RMSE was seen for BM using the read
counts based model. However, for ‘scImm þ TT_NonHema’ and
‘scImm þ TS_NonHema’, no significant improvement was seen in
all three tissues. In summary, the FPKM or TPM based quantifica-
tion method for the bulk RNA-seq data plus ‘BuImm þ
TT_NonHema’ achieved the best performance.

Finally, the potential bias when replacing the transcriptome of
missing cell types with the peripheral blood cell types was evaluated.
By replacing the tissue specific immune data with blood cell immune
data, the PCCs between the predicted immune cell proportion and the
real mixed proportion were used to evaluate the bias. Then, with this
new generated signature matrix and the aggregated single-cell expres-
sion data of lung, the relative proportion for each immune cell was
calculated. It has been observed that the predicted proportion will
not be affected for most cell types except for tissue residential
immune cells, including macrophages and dendritic cells
(Supplementary Fig. S8). As illustrated in Figure 3c, the transcriptome
data for these two immune cells was detected in most of the selected
tissues. Therefore, it is reliable when replacing the transcriptome of
some other immune cells with the blood derived immune cells.

3.4 Evaluation of tissue-ImmuCC on different tissues
After using the signature gene matrix and using it for further decon-
volution, the performances of tissue specific models were tested with

training data and testing data that were not from the same tissue.
Seven aggregated single-cell expression datasets were deconvolved
with seven tissue specific models. The PCCs between the predicted
immune cell proportions and the premixed proportions were calcu-
lated. As indicated in Figure 4a, the PCCs ranged from 0.94 to 0.99
when the testing data and training data were from the same tissue.
However, when tissue specific models were used for other tissues,
the PCCs were nearly all lower than 0.5. With respect to each tissue
expression data, the proportions of five immune cells, including neu-
trophils, macrophages, dendritic cells, T cells and B cells, were esti-
mated using the tissue specific signature matrix and these were more
consistent with the real proportions (Fig. 4b and Supplementary Fig.
S9). When applying these models on BM data, the largest cell group
was neutrophils in the BM model, accounting for 45.03% and the
dominant immune cell in the other models was dendritic cells
(38.61 6 7.08%) and T cells (23.89 6 14.08%). For instance, the
PCC was 0.51 when liver transcriptomic data was used in the lung-
specific model. Taken together, better performance was observed
when both the training data and testing data were derived from the
same tissue type.

Next, this tissue-specific model was applied to four aggregated
single-cell expression data derived from other datasets. As illus-
trated in Figure 4c, compared with the previous bulk model seq-
ImmuCC, a lower RMSE was observed when both the training
data and testing data were derived from the same tissue type.
However, it should be noted that a generally acceptable result was
still observed in some cases when the tissue used for building the
training data and the tissue used to generate the aggregated single-
cell expression data were not same. For example, in kidney tissue
under the accession number GSE107585, a similar RMSE value
was seen in both the liver model and the kidney model. This may
indicate the possibility of using the tissue specific model for cross
use under some conditions.

Fig. 3. Overview of the different signature matrix construction strategies. (a) Diagram of the three different signature gene selection strategies and signature matrix construc-

tion. (b) Venn plot of the signature genes selected in peripheral blood using three different methods. (c) Source for the sequenced immune cell data in each tissue. The red

squares indicate that the amount of immune cell sequencing data directly derived from that tissue was sufficient, whereas the white squares indicate the cell number is less than

100 and the peripheral blood derived immune cell was replaced (the scRNA-Seq data of eosinophils is not shown because it was not detected in the peripheral blood)
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3.5 Comparison of tissue-ImmuCC with the traditional

model
To evaluate the performance in real applications, the tissue-
ImmuCC was compared with our previously developed seq-
ImmuCC model that was derived using only bulk data (Chen et al.,
2018). Three immune tissues, SP, BM and PBMC, were used for this
analysis that compared the predicted results with experimentally
measured data (Fig. 4d). In BM, values for B cells and granulo_mo-
nocytes calculated using tissue-ImmuCC were 21.76 6 5.09% and
76.90 6 4.86%, respectively, which was more consistent with the
percentage of experimentally measured B cells (26.34 6 1.60%) and
granulo_monocytes (64.61 6 2.59%). In peripheral blood, a modest
improvement was observed by using tissue-ImmuCC for granulo_
monocytes (14.49 6 4.89%) and T cells (36.70 6 2.21%) when
compared with the seq-ImmuCC estimated result (23.95 6 3.37%
for granulo_monocytes and 32.06 6 3.86% for T cells). However,
the cytometry detected proportions were 9.62 6 2.55% and
42.92 6 6.63%, respectively. Furthermore, for the spleen, the B cell
proportion returned by using tissue-ImmuCC was 61.23 6 5.78%,
which was closer to the experimental value (63.2 6 2.20%) com-
pared to the seq-ImmuCC calculated result (50.87 6 1.79%).
Simultaneously, in terms of the granulo_monocytes, poor perform-
ance was observed for these two computational models
(8.24 6 1.16% in seq-ImmuCC and 11.65 6 1.87% in tissue-
ImmuCC). In summary, the tissue-ImmuCC approach displayed
slightly improved performances compared to the bulk only derived
seq-ImmuCC model for three tested tissues.

4 Discussion

By combining the transcriptomic information of signature genes
across each immune cell and a suitable computational framework,
tissue immune cell constitution can be directly estimated from its ex-
pression profile. For traditional computation tools, the attention has
primarily been focused on how to optimize the capability of differ-
ent machine learning methods. As is well known, model accuracy
may also be determined by the training data, with the exception of
algorithms. Limited by previous transcriptomic analysis technolo-
gies, immune cells used to profile their expression were primarily
isolated from immune organs including the blood, spleen, BM,
lymph nodes and other tissues. Thus, in previous models, a single
signature matrix was applied to different tissue transcriptomic data.
However, immune cells that are localized in different tissues may
possess distinct expression profiles. Therefore, bias will be intro-
duced when the transcriptomic data of immune cells used for model
training are not consistent with the sample tissue. In this study, a
training data curation and selection approach has been tested using
scRNA-Seq data to address this problem. Using tissue scRNA-Seq
data, tissue-specific training data were constructed using their own
immune cells. Different from previous models, the training data in
tissue-ImmuCC is composed of several tissue specific signature
matrices. After the application of the tissue-ImmuCC approach on
both synthetic data and experimental data, the model’s performance
under various conditions was evaluated.

In terms of the signature matrix, both the cell types in the col-
umn and the selected signature genes in the row contribute to the

Fig. 4. Comparison of the performance of seven tissue-specific models’ different tissue transcriptomic data. (a) Evaluation for tissue-specific model using the aggregated single-

cell expression data. Pearson correlation between the predicted proportions and the real mixed proportions was used to represent the performance. The row shows the name of

the tissue-specific model, and the column lists the tissue name of the aggregated single-cell expression data. Blue corresponds to a high PCC value, and white corresponds to a

lower value. (b) Evaluation of the performance of the tissue-specific model in the aggregated single-cell expression data of BM. A 3D bar plot was used to show the predicted

and real mixed immune proportions. (c) Evaluation of the performance of both the tissue-specific model and seq_ImmuCC with five tissue transcriptome datasets (three real

bulk RNA-Seq datasets and four aggregated single-cell expression datasets). The RMSEs between the predicted proportions and the real proportions were used to evaluate per-

formance. (d) Comparison of the performance between the tissue-ImmuCC and seq-ImmuCC in three mouse tissues. Both the tissue-ImmuCC and seq-ImmuCC estimated pro-

portions were compared with the flow cytometry measured proportion
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accuracy and range of application of this model. First, for cell types
in the tissue-specific signature matrix, the tissue-ImmuCC approach
developed here can be used to predict the proportion of major im-
mune cells, including T cells, B cells, NK cells, macrophages, den-
dritic cells, monocytes and other cell types. Moreover, immune cells
like basophils, whose transcriptomic information is rarely reported,
were successfully captured in some tissue scRNA-Seq data. Thus,
relative to traditional transcriptomic analysis methods, scRNA-Seq
is helpful for comprehensive learning of rare immune cells.
However, it should be noted that some immune cells were missed in
several of the tissue scRNA-Seq datasets (Fig. 3c). In addition, ex-
cept for the major immune cell types, further information concern-
ing immune subtypes including CD4 T cells, CD8 T cells, cd T cells
and others will also be useful for understanding immune functions.
The cell preparation method in our datasets consisted of directly
harvesting single cells from the total cells without prior sorting. As
immune cells only account for a small proportion of all cells in non-
immune organs, it is difficult to capture enough immune cells using
routine experimental techniques. To extend the application of the
tissue-ImmuCC approach, the enrichment of immune cells should be
conducted to obtain enough sequencing data for immune cells.

Obviously, signature genes are another important constituent of
the signature matrix. In the present study, signature genes identified
from both the traditional bulk RNA-Seq data and tissue scRNA-Seq
data were selected, and the performance of these models was com-
pared. Unexpectedly, the bulk RNA-Seq data-derived signature
genes exhibited better performance than gene sets obtained from
scRNA-Seq data. Generally, the bulk RNA-Seq data represent the
average value among multiple cells and may be more robust than
scRNA-Seq data. Because all of the tissue single cells are sequenced
without the enrichment of immune cells, the cell number in most tis-
sue scRNA-Seq data is not sufficient. Also, as the sequencing depth
was somewhat low in this dataset (each cell was sequenced at ap-
proximately 3000 reads/cell), immune cell expression information
may not be fully captured. Therefore, transcriptomic analysis with a
larger number of cells and deeper sequencing may result in a more
comprehensive picture of gene expression. Furthermore, research
has shown that datasets collected from a single platform or only
from healthy individuals will introduce unwanted biological and
technical noise (Vallania et al., 2018). Thus, integrating the tran-
scriptomic data profiled on multiple platforms and including both
the scRNA-Seq and the bulk RNA-Seq will be beneficial for obtain-
ing a more robust result.

In addition to the training data, the quantification method used
for the testing data will also have an impact on model performance.
The algorithm framework used in most deconvolution tools has
been developed based on a linear model. It has been reported that
TPM based quantification methods can best mimic the linearity of
tissue components in bulk RNA-Seq (Jin et al., 2017). Different
from traditional bulk RNA-Seq, the UMI counts-based quantifica-
tion method was applied in this study to single-cell sequencing data.
The results showed that the tissue-ImmuCC, the gene length scaled
quantification method that included FPKM and TPM resulted in a
better performance when signature genes were obtained from bulk
RNA-Seq data. However, a slightly lower RMSE was observed
when the read counts-based model was applied to BM. In summary,
these results indicate that further validation of the linearity in the
scRNA-Seq data is still needed, because the expression value gener-
ated using different quantification methods was in different units.

Previously, a model named seq-ImmuCC developed by us has
demonstrated the ability to estimate the composition of ten immune
cells from mouse RNA-Seq data. However, the immune cell tran-
scriptome collected from multiple tissues, including peripheral
blood, spleen, lymph node, BM and others, was combined to con-
struct this model without considering tissue origins. Primarily, the
transcriptome of some tissue residential immune cells will be shaped
by the tissue-specific regulators. Due to limitations of the experi-
mental detection technology, it was difficult for us to view the ex-
pression profile of rare cells using the bulk RNA-Seq method. To
reduce the bias produced under various tissue microenvironments,
the tissue-specific gene expression for each immune cell was used in

this tissue-specific signature matrix. The tissue-ImmuCC approach
was then compared with the previously reported seq-ImmuCC
(Chen et al., 2018), whose signature matrices were developed from
the bulk RNA-Seq data of immune cells. The model performances
were compared for three immune tissues. The tissue-ImmuCC ap-
proach showed a modest improvement. However, a relatively worse
result was seen for T cells in BM. A possible explanation may be
that the sequencing depth for the scRNA-Seq data were somewhat
low, which made it difficult to distinguish those cells from other
cells. Also, as the scRNA-Seq data were composed of both immune
cells and non-immune cells, this may have resulted in the sequence
data not fully representing tissue immune cells. Thus, further
sequencing for CD45 positive cells will be needed to improve upon
this study. It should be noted that the immune cell data used in seq-
ImmuCC were primarily from immune tissues that included blood,
BM, spleen and other tissues (Chen et al., 2018). Relative to other
non-immune tissues, immune cells localized in these tissues may
share a similar transcriptome. In addition to these immune tissues,
we also applied this model to the aggregated single-cell expression
data of other non-immune tissues. Compared with seq-ImmuCC, a
modest improvement was observed in this tissue-specific model in
respect to the RMSE values. However, limited by the validation
data, only 5 out of 14 mouse tissues selected in our signature matrix
were used to assess this tissue-specific model. Thus, further applica-
tion of tissue-ImmuCC on other non-immune tissues will assist in
the evaluation of the model’s performance.

In addition to discrete cell types, the expression trajectory from
naı̈ve states to terminal differentiation states can also be constructed
from single-cell sequencing data. By analyzing the transcription dy-
namics at the single cell level, the trajectory of cell differentiation
can be successfully constructed. Recently, studies have shown that
the cellular abundance over the entire differentiation space can be
successfully estimated with a single-cell sequencing-based expression
profile for continuous cell states (Frishberg et al., 2019). Limited by
the amount of sequenced single cell data, it would be difficult to
build a complete differentiation route for each immune cell in these
datasets. The scRNA-Seq data for each cell type was merged to rep-
resent its expression information without considering that type’s lo-
calization in the entire differentiation route. Therefore, further
sequencing of more immune cells will be useful to construct a com-
plete transcriptome profile across different cell states. By integrating
this strategy with our tissue-specific approach, the tissue immune
cell composition can be viewed from multiple perspectives.

In summary, this study explored some uncertainty issues that
have resulted from the application of scRNA-Seq data. Due to limi-
tations caused by the amount of sequencing data, tissue-ImmuCC
can only be partially implemented in mouse tissues. Conceivably,
with the comprehensive application of single-cell technologies such
as scRNA-Seq and mass cytometry, tissue immune cells under vari-
ous conditions will be more accessible. Due to the model construc-
tion framework developed in this study, the application of these
tools can be easily expanded.

Acknowledgements

Z.C. and A.W. conceived and designed this study. Z.C., X.Q. and A.W. ana-

lyzed the data and results. C.J., W.L. and Q.S. contributed to the discussion

and analysis of the studies. Z.C. and A.W. wrote the manuscript. All authors

have approved of the final manuscript.

Funding

This work was supported by the following funding: (i) The National Key Plan

for Scientific Research and Development of China (2016YFD0500301), (ii)

The CAMS Initiative for Innovative Medicine (2016-I2M-1-005), (iii) The

Six-talent Peaks Project in the Jiangsu Province (SWYY-169), (iv) The Jiangsu

Provincial Natural Science Foundation (BK20161245), (v) The Open Project

Program of the National Laboratory of Pattern Recognition (NLPR)

(201900004), (vi) The Non-profit Central Research Institute Fund of Chinese

Academy of Medical Sciences (2018RC310022) and (vii) Central

826 Z.Chen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/3/819/5554701 by guest on 10 April 2024



Public-Interest Scientific Institution Basal Research Fund (2016ZX310195,

2017PT31026 and 2018PT31016).

Conflict of Interest: none declared.

References

Abbas,A.R. et al. (2009) Deconvolution of blood microarray data identifies cellu-

lar activation patterns in systemic lupus erythematosus. PLoS One, 4, e6098.

Altboum,Z. et al. (2014) Digital cell quantification identifies global immune

cell dynamics during influenza infection. Mol. Syst. Biol., 10, 720.

Aran,D. et al. (2017) xCell: digitally portraying the tissue cellular heterogen-

eity landscape. Genome Biol., 18, 220.

Avila Cobos,F. et al. (2018) Computational deconvolution of transcriptomics

data from mixed cell populations. Bioinformatics, 34, 1969–1979.

Basa,R.C. et al. (2016) Decreased anti-tumor cytotoxic immunity among

microsatellite-stable colon cancers from African Americans. PLoS One, 11,

e0156660.

Butler,A. et al. (2018) Integrating single-cell transcriptomic data across differ-

ent conditions, technologies, and species. Nat. Biotechnol., 36, 411–420.

Chen,Z. et al. (2017) Inference of immune cell composition on the expression

profiles of mouse tissue. Sci. Rep., 7, 40508.

Chen,Z. et al. (2018) seq-ImmuCC: cell-centric view of tissue transcriptome

measuring cellular compositions of immune microenvironment from mouse

RNA-Seq data. Front. Immunol., 9, 1286.

Frishberg,A. et al. (2019) Cell composition analysis of bulk genomics using

single-cell data. Nat. Methods, 16, 327–332.

Ginhoux,F. and Guilliams,M. (2016) Tissue-resident macrophage ontogeny

and homeostasis. Immunity, 44, 439–449.

Han,X. et al. (2018) Mapping the mouse cell atlas by microwell-seq. Cell,

172, 1091–1107.

Jin,H. et al. (2017) Comprehensive evaluation of RNA-seq quantification

methods for linearity. BMC Bioinformatics, 18 (Suppl. 4), 117.

Lavin,Y. et al. (2014) Tissue-resident macrophage enhancer landscapes are

shaped by the local microenvironment. Cell, 159, 1312–1326.

Law,C.W. et al. (2014) Voom: precision weights unlock linear model analysis

tools for RNA-seq read counts. Genome Biol., 15, R29.

Li,B. et al. (2016) Comprehensive analyses of tumor immunity: implications

for cancer immunotherapy. Genome Biol., 17, 174.

Liebner,D.A. et al. (2014) MMAD: microarray microdissection with analysis

of differences is a computational tool for deconvoluting cell type-specific

contributions from tissue samples. Bioinformatics, 30, 682–689.

Mass,E. et al. (2016) Specification of tissue-resident macrophages during or-

ganogenesis. Science, 353, aaf4238.

Mollaoglu,G. et al. (2018) The lineage-defining transcription factors SOX2

and NKX2-1 determine lung cancer cell fate and shape the tumor immune

microenvironment. Immunity, 49, 764–779. e769.

Newman,A.M. et al. (2015) Robust enumeration of cell subsets from tissue ex-

pression profiles. Nat. Methods, 12, 453–457.

Newman,A.M. et al. (2019) Determining cell type abundance and expression

from bulk tissues with digital cytometry. Nat. Biotechnol., 37, 773.

Qi,L. et al. (2014) Deconvolution of the gene expression profiles of valuable

banked blood specimens for studying the prognostic values of altered per-

ipheral immune cell proportions in cancer patients. PLoS One, 9, e100934.

Schelker,M. et al. (2017) Estimation of immune cell content in tumour tissue

using single-cell RNA-seq data. Nat. Commun., 8, 2032.

Tabula Muris,C. et al. (2018) Single-cell transcriptomics of 20 mouse organs

creates a Tabula Muris. Nature, 562, 367–372.

ThermoFisherScientific. (2017) Immune cell guide (Human and mouse antigens).

Available at: https://assets.thermofisher.com/TFS-Assets/LSG/brochures/im

mune-cell-guide.pdf.

Vallania,F. et al. (2018) Leveraging heterogeneity across multiple datasets

increases cell-mixture deconvolution accuracy and reduces biological and

technical biases. Nat. Commun., 9, 4735.

Yu,Y.R. et al. (2016) A protocol for the comprehensive flow cytometric ana-

lysis of immune cells in normal and inflamed murine non-lymphoid tissues.

PLoS One, 11, e0150606.

Zhong,Y. et al. (2013) Digital sorting of complex tissues for cell type-specific

gene expression profiles. BMC Bioinformatics, 14, 89.

Tissue-specific deconvolution of immune cell composition 827

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/3/819/5554701 by guest on 10 April 2024

https://assets.thermofisher.com/TFS-Assets/LSG/brochures/immune-cell-guide.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/brochures/immune-cell-guide.pdf

