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Abstract

Motivation: A digenic genetic interaction (GI) is observed when mutations in two genes within the same organism
yield a phenotype that is different from the expected, given each mutation’s individual effects. While multiplicative
scoring is widely applied to define GIs, revealing underlying gene functions, it remains unclear if it is the most suit-
able choice for scoring GIs in Escherichia coli. Here, we assess many different definitions, including the multiplica-
tive model, for mapping functional links between genes and pathways in E.coli.

Results: Using our published E.coli GI datasets, we show computationally that a machine learning Gaussian process
(GP)-based definition better identifies functional associations among genes than a multiplicative model, which we have
experimentally confirmed on a set of gene pairs. Overall, the GP definition improves the detection of GIs, biological rea-
soning of epistatic connectivity, as well as the quality of GI maps in E.coli, and, potentially, other microbes.
Availability and implementation: The source code and parameters used to generate the machine learning models in
WEKA software were provided in the Supplementary information.
Contact: sandra.zilles@uregina.ca or mohan.babu@uregina.ca
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large-scale genetic (gene–gene, or epistatic) interaction (GI) maps in
human cells (Bassik et al., 2013; Boettcher et al., 2018; Du et al.,
2017; Horlbeck et al., 2018) and other organisms (Frost et al.,
2012; Horn et al., 2011; Lehner et al., 2006; Ryan et al., 2012), es-
pecially the most comprehensive digenic (Costanzo et al., 2010,
2016) and trigenic (Kuzmin et al., 2018) GI maps of the budding
yeast Saccharomyces cerevisiae, have revealed extensive insights into
genetic redundancy, and identified cellular functionality of varied
genes. GI maps in yeast have also revealed the functional wiring in
response to DNA damage or autophagy stress (Bandyopadhyay
et al., 2010; Guenole et al., 2013; Kramer et al., 2017; Srivas et al.,
2013), metabolic adaptation (Szappanos et al., 2011), cellular pro-
tein homeostasis (Rizzolo et al., 2017) and the evolution of new
traits (Taylor and Ehrenreich, 2014), as well as contributed to the
discoveries of new gene functions and uncharacterized protein com-
plexes or pathways (Collins et al., 2007; Hoppins et al., 2011;
Jonikas et al., 2009; Schuldiner et al., 2005). Motivated by these

efforts in yeast, we (Butland et al., 2008) and others (Typas et al.,
2008; van Opijnen et al., 2009) have developed analogous high-
throughput GI screening methods in the prokaryotic Gram-negative
model organism, Escherichia coli.

Our eSGA (E.coli synthetic genetic array) approach allows for
systematic creation and phenotypic scoring of double mutants by
exploiting natural homologous recombination and bacterial conju-
gation to transfer a genetically marked ‘query’ deletion (or partial
loss-of-function hypomorphic mutant allele) into a panel of E.coli
essential hypomorphic or nonessential single gene deletion mutant
‘recipient’ strains. By employing this method, GIs pertaining to vari-
ous biological processes (i.e. cell envelope, protein synthesis, genome
integrity, nutrient stress), including antibiotic targets, were system-
atically mapped to reveal the epistatic dependencies and cross-talk
(Babu et al., 2014; Cote et al., 2016), as well as the dynamic alter-
ation of GI networks in response to environmental challenges or
genotoxic insults (Babu et al., 2011b; Gagarinova et al., 2016;
Kumar et al., 2016).
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The presence of an epistatic relationship is determined by com-
paring the growth fitness of double-mutant strains to their single-
mutant counterparts, with colony size measurements reflecting
strain fitness. In a multiplicative definition (a.k.a. model) used for
E.coli and yeast GI mapping, for functionally unrelated genes, which
represent the majority of possible gene–gene combinations, the
product of the two single-mutant growth fitness measurements is
expected to equal the fitness of the corresponding double mutant.
Conversely, combining two functionally linked genes would be
expected to produce more severe (negative or aggravating/synthetic
sick or lethal effects, indicating parallel/redundant pathways) or less
severe (positive or alleviating/buffering or suppression, suggesting a
linear pathway) fitness defects than the predicted product of single-
mutant fitness measurements. The strength and confidence of the GI
is then determined using an interaction score for each E.coli-mutant
gene pair based on the multiplicative rule originally developed for
yeast (Baryshnikova et al., 2010; Collins et al., 2006).

In addition to the multiplicative model, other predefined func-
tions for epistasis, such as minimum (double mutant has the same
fitness as the less-fit single mutant), logarithmic (GIs measured on a
logarithmic fitness scale) and linear additive (double mutant has the
fitness equal the sum of two single-mutant fitness values), have been
tested in yeast using the growth-rate measurements of single and
double mutants (Mani et al., 2008). This revealed that multiplicative
and logarithmic functions are suitable for identifying functional
relationships, specifically for growth-related phenotypes (i.e. colony
fitness or growth rates), due to the nonlinear nature of cell growth
(Mani et al., 2008; Wang et al., 2014). Conversely, additive model
was shown to be appropriate for assessing phenotypes that change
linearly (Wang et al., 2014). Because these quantitative definitions
diverge vividly and lead to different biological inferences when con-
structing GI networks (Mani et al., 2008), the choice of a model
should always depend on the type of phenotype and read-out
(Walhout et al., 2012). As with yeast studies (Costanzo et al., 2010,
2016), large-scale E.coli genetic screens have typically used colony
growth as a proxy for strain fitness measurement, and the multi-
plicative model for scoring GIs (Babu et al., 2011, 2014; Butland
et al., 2008; Gagarinova et al., 2016; Kumar et al., 2016). While the
choice of a model can have a determining effect on the interpretation
of the results of a GI study, there has been no systematic evaluation
of the GIs that would be differentially predicted in E.coli using other
statistical models and machine learning algorithms.

Here, using our recently published large-scale GI map of E.coli
genome integrity (Kumar et al., 2016) as a case study, we compared
multiple models based on their ability to identify functional relation-
ships among gene pairs in E.coli. We show that a nonparametric
machine learning-based Gaussian process (GP) can discriminate be-
tween genetically noninteracting and interacting E.coli gene pairs
better than the published multiplicative and other machine learning
and statistical models tested. We further experimentally verified this
directly, testing predicted interactions for more than a dozen gene
pairs. Using the GP model, we then re-evaluated existing GI data,
identifying numerous interactions that have been missed by the
multiplicative algorithm. We predict that the GP will improve the
function prediction accuracy for the 16% (702 of 4432) of genes
that still lack annotations, and thus can substantially increase the
amount of gene functional information derived from the E.coli GI
screens.

2 Materials and methods

2.1 Data collection and prediction of GIs
Colony size measurements (as proxies for strain fitness), normalized
via the online SGAtool (Wagih et al., 2013), were obtained for
102 255 viable digenic mutants and their corresponding 549 single
gene mutants from our standard nutrient-rich condition E.coli GI
network (Kumar et al., 2016). In addition, we included 1767 gene
pairs that were missed in the original genome integrity GI study
(Kumar et al., 2016), yielding quantitative values for a total of
104 022 gene pairs. For statistical reproducibility, each Hfr query

mutant in the genome integrity study was screened in quadruplicate
against arrayed F�-recipient single-gene deletion mutants, generat-
ing four replicates per donor–recipient combination. The standard
error (SE) measurements for the normalized colony sizes of the re-
cipient single mutants (Wy; SE: 0 to 1.91�10�1) and double
mutants (Wxy; SE: 3.19 � 10�7 to 9.54 � 10�1) were experimental-
ly quantified (Kumar et al., 2016), and fall within the SE range
(Supplementary Table S1). Whereas the fitness measurement of each
donor mutant (Wx) was represented as the median of normalized
colony sizes for all double mutants arising from the corresponding
donor’s GI screen.

The normalized fitness measurements of the single (Wx: 0.91–
1.20; Wy: 0.52–2.64) and double (Wxy: 0.00–1.96) mutants were
then used to compute the expected double-mutant fitness according
to predefined (i.e. additive, logarithmic, minimum, multiplicative)
and machine learning (i.e. linear regression, LR; support vector re-
gression, SVR; neural network, NN; GP) models, with normalized
colony size values of 1.0 equaling wild-type (WT) fitness. To enable
comparisons between the chosen predefined and machine learning
models, we computed the GI score (e) to define epistatic relation-
ships among pairs of genes as the difference between expected and
observed double-mutant fitness measurements, such that the score
of zero would reflect a noninteraction, and most scores would be
expected to center on zero. Conversely, aggravating and alleviating
GIs would be defined as those whose double-mutant fitness signifi-
cantly different from the fitness expected based on the two corre-
sponding single-mutant fitness values.

2.2 Predefined GI models
The four predefined formulas employed to delineate GIs are detailed
elsewhere (Mani et al., 2008). Briefly, first, in the multiplicative def-
inition GI score Wxy � (Wx * Wy), the product of the two single-
mutant (Wx, Wy) growth fitness values is deducted from the
observed double-mutant (Wxy) fitness. Second, in the additive defin-
ition score Wxy � (Wx þWy � 1), the sum of single-mutant growth
fitness values (minus one) is subtracted from the corresponding
observed double-mutant fitness value. Third, in minimum definition
GI score Wxy � Min (Wx Wy), the growth fitness value from the
slowest-growing single mutant (Min [Wx, Wy]) is subtracted from
the respective double-mutant fitness value. Fourth, the logarithmic
definition GI scores Wxy – log 2 ((2Wx � 1) (2Wy � 1) þ 1) reflect
the fitness scale in logarithmic function.

2.3 Defining GIs by machine learning models
GIs measured using four different machine learning algorithms,
along with chosen parameters under each definition, built within the
WEKA (Smith and Frank, 2016) machine learning software (ver
3.9.3), are summarized, briefly, as follows:

LR: The training data are modeled in a way such that the pre-

dicted (dependent) variable is a linear function of the input (inde-

pendent) variables. Here, the independent variables were Wx and

Wy (signifying two single mutants’ growth fitness), and the de-

pendent variable was Wxy (double-mutant growth fitness). We

used standard WEKA implementation of LR.

SVR: Kernel function is used to map the input data into a higher-

dimensional space, in which a linear hyperplane is trained and

then used as a model for prediction. Again, the input variables

were Wx and Wy, and the output variable was Wxy. We used

RegSMOImproved algorithm with the polynomial kernel func-

tion under standard parameter settings as defined in WEKA.

NN: Input values are linearly combined and fed through layers of

so-called neurons, which pass on their output values (computed

via a linear activation function) to the next layer, eventually lead-

ing to the output layer which produces the final prediction for

the given inputs. In numerous iterations, internal weights are

adjusted so that the output values approximate the ones given in

the training data. We used the WEKA implementation for train-

ing a feed-forward NN (multilayer perceptron) with one hidden
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layer with one unit, using the sigmoid activation function. For all

other parameters, we used the standard setting in WEKA. As al-

ways, the input variables were Wx and Wy, and the output vari-

able was Wxy.

GP: This definition that relies on Bayesian principles initializes a

posterior probability distribution on the training dataset, and can

be best explained by comparing simple linear regression to

Bayesian linear regression. In the former, a linear relationship is

assumed between the dependent (Wxy) and independent (Wx,

Wy) variables, where the intercept and slope were calculated

using the parameters h0 and h1, and an error term (�Þ is added.

Y ¼ f ðxÞ þ �; where f ðxÞ ¼ h0 þ h1x

In the latter, a probabilistic method is implemented where a distri-
bution over the parameters h0 and h1 is initialized, and then restruc-
tured based on the observed data points (x; f xð Þ; here x is a pair of
single-mutant values, and f xð Þ the corresponding double-mutant
value). While GP generalizes the Bayesian approach to a nonpara-
metric method, it does not assume a certain shape of target function
(such as linear function or polynomial of degree k) in advance, and
thus does not maintain a probability distribution over parameter
vectors as Bayesian linear regression does. Instead it maintains a dis-
tribution over potential functions f ðxÞ that are consistent with the
observed data points (x; f xð ÞÞ. Typically, one defines a probability
distribution over functions f (x), and a domain for the input varia-
ble x (i.e. the domain would be the set of possible pairs of single-
mutant fitness values). Here, the functions f (x) that are smooth over
the chosen domain for x, with a mean, for example (1, 1), used for
sampling. The smoothness is obtained from a covariance matrix,
corresponding to a kernel function. The covariance matrix defines
the shape of a multivariate Gaussian distribution. In case of a bivari-
ate Gaussian distribution, if there are two normally distributed but
independent variables x1 and x2, the covariance between x1 and x2

is 0. However, if we assume 1 as the variance for each independent
variable, the covariance matrix, in this case, will be:

X
¼ 1 0

0 1

� �

The joint probability of variables x1 and x2 ½Equation (1)] that
is used to infer the conditional probability of one variable to the
other will allow GP to obtain a posterior distribution, which can be
succinctly expressed as the joint probability of observed output val-
ues (i.e. output values of f) and unobserved output values (i.e. output
values of the underlying target function f*).

x1

x2

� �
� N l1

l2

� �
;

r11 r12

r21 r22

� � !
(1)

f

f�

� �
� N l

l�

� �
;

K K�
KT
� K��

� � !
(2)

Here K ¼ covariance matrix expressing similarity between
observed (training) x values calculated by a kernel function; K� ¼
covariance matrix expressing similarity between the training and
test values for x; K�� ¼ covariance matrix expressing similarity be-
tween the test values for x; and KT

� ¼ transpose of K�. Finally, for
training dataset x we have observed the corresponding outcome f ðxÞ
(i.e. denoted as f), whereas for test dataset x� we predict an outcome
f ðx�Þ (i.e. denoted as f�). This is best represented by computing a
probability p f�jx�; x; fð Þ; assuming that f and f� jointly have a
Gaussian distribution. Equation (1) means that (x1; x2Þ is normally
distributed (N ) with mean (l1;l2; l; l�Þ, and covariance matrix
(r11; r12; r21; r22 Þ. To summarize, a GP is an infinite family of
random variables with the property that every finite subset forms a
vector of random variables that follows a Gaussian distribution. In
machine learning with GPs, a kernel function is used for estimating
the similarity between input data points so that similar input leads
to comparable predictions. We used the WEKA implementation

with the radial basis function kernel. The only parameter of that
kernel, gamma, was set to the default value 1.0 for the data from
Kumar et al. (2016) or Costanzo et al. (2010), and to 3.0 for the
data from Babu et al. (2014).

2.4 Training and test datasets
Unlike predefined models, supervised machine learning algorithms
require training and test datasets. Since the normalized colony sizes
of single and double mutants were subjected to predefined and ma-
chine learning models to predict epistatic relationships for evaluat-
ing the difference between these models, we used a fold change (FC)
metric, as an alternate measure, to define our training and test data-
sets. As in any large-scale GI study, interacting gene pairs are
defined using a cut-off assignment (e.g. P�0.05; 5% significance),
and gene pairs that pass the chosen statistical threshold suggest
aggravating or alleviating interactions, while those that fall below
this threshold are deemed as noninteracting pairs. Conversely, GI
scores calculated for digenic mutant combinations that showed a
normal distribution centered on zero (i.e. neutral or noninteracting)
suggests that fitness of most double mutants (i.e. with combinations
of functionally unrelated mutations) should be close to the fitness of
individual single-mutant growth. However, in the case of our FC se-
lection criteria (see below), the noninteracting gene pairs essentially
range from FC of 0.90 to 1.11. Whereas with respect to interacting
test pairs, aggravating interactions had FC of 0.00–0.49, and allevi-
ating interactions had FC of 1.21–2.66. The FC was computed for
gene pairs with double-mutant fitness (Wxy) that was similar to one
or both of the two single mutants (Wa ¼Wx or Wa ¼Wy).

FC ðWxy;WaÞ ¼
Wxy

Wa
if

Wxy

Wa
� 1; and

FC ðWxy;WaÞ ¼
Wa

Wxy
otherwise

Our selection of training set (Supplementary Table S2) includes
drawing random gene pairs using the cut-off indicated below (as
long as sufficient number of pairs existed for training), where the
normalized fitness of Wxy double mutants compared to Wx or Wy
single mutants should have a FC �0.9.

FC Wxy;Wa

� �
� 0:9

Otherwise, Wxy double mutants that are similar to Wx and Wy
single mutants should have a FC �0.8.

FC Wxy;Wx

� �
� 0:8; and FC Wxy;Wy

� �
� 0:8

This led us to construct 12 bins with different normalized fitness
values, with 20 distinct gene pairs chosen within each bin. The
resulting 336 training gene pairs were subjected to 5-fold cross-
validation by distributing them randomly into five sets. We then
assessed the performance of each model using the remaining gene
pairs in the other four sets. This process was repeated such that the
model validation is iteratively performed, and the expected double-
mutant fitness values from these iterations were then combined to
generate the final model.

In addition to the training set, we generated a test dataset for
both noninteracting and interacting gene pairs (Supplementary
Table S2). To select noninteracting pairs, we set two criteria. First,
we considered gene pairs whose double-mutant growth fitness were
comparable to their respective single mutants.

FC Wxy;Wx

� �
� 0:9; and FC Wxy;Wy

� �
� 0:9

Second, we chose gene pairs with double-mutant fitness close to
the fitness of the most fit (i.e. fitness � 1.0) parental single mutant.

FC ðWxy; min Wx;Wy

� �
� f0:8 if jWx � Wyj � 0:4g

Similarly, we set two analogous parameters for selecting interact-
ing gene pairs to serve as a test set. In the first case, gene pairs with
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double-mutant growth fitness distinct from their two single mutants
were selected.

FC Wxy;Wx

� �
� 0:7; and FC Wxy;Wy

� �
� 0:7

In the second case, we considered gene pairs with double-mutant
growth fitness that were close to the more substantial constitutive
single mutant’s deletion fitness.

FC ðWxy; max Wx;Wy

� �
� 0:8 if Wx � Wy

�� �� � 0:4g
n

These aforesaid factors yielded 400 noninteracting and 400
interacting test gene pairs, comparable in size to the training set, for
proper evaluation of the performance of the selected models.
Notably, we ensured that our noninteracting test gene pairs did not
have any overlap with the training dataset.

2.5 Statistical measures to evaluate model performance
We adopted three widely used statistical metrics (mean absolute
error, MAE; root mean square error, RMSE; coefficient of variation,
CV) to measure the performance of the models. Using the MAE, the
average magnitudes of deviation of double-mutant fitness from the
expected neutral phenotype (i.e. error) in the training and test sets
were measured. Specifically, MAE quantifies the average absolute
differences between observed and expected double-mutant fitness
values. Here, error (e) ¼ deviation of the observed � expected dou-
ble-mutant fitness for n samples (ek, k¼1, 2, 3, . . ., n), ek is the error
of the kth gene pair, and n is the total number of gene pairs.

MAE ¼ 1

n

Xn

k¼1
jekj

Because all errors in the MAE have equal weight, MAE is typic-
ally less sensitive to large prediction errors. Therefore, we applied
RMSE, which is more sensitive in predicting large errors. Briefly, the
average magnitude of prediction errors was measured on an entire
training and test datasets using the square root of the average of
squared differences between observed and expected double-mutant
fitness values.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k¼1
e2

k

r

For both MAE and RMSE, the average prediction error ranges
from zero to infinity. As a measure of variance, for each model we
applied CV ¼ r

l, where a standard deviation (SD) (r) relative to the
mean (l) error (e) of all gene pairs was expressed as a percentage.

2.6 Decision tree-based classification
Using the C4.5 decision tree algorithm provided within the WEKA
software, 800 test gene pairs were partitioned into interacting
(aggravating, alleviating) or noninteracting and were incorporated
independently into the decision tree classifier with training labels
based on multiplicative or GP model. A 5-fold cross-validation was
applied to these test pairs for each definition, whereby four-fifths of
the data were used for training, and the other one-fifth was held out
for testing. Briefly, each of the aggravating, alleviating and noninter-
acting pairs were assigned specific labels: -ve, þve, and O, respect-
ively. The resulting 3�3 confusion matrix was used to compute the
percentage of interacting or noninteracting pairs that was classified
correctly.

2.7 Examining GIs for shared functional links using

gene set enrichment analysis
Functional enrichment analysis was performed as described previ-
ously (Subramanian et al., 2005) using a gene set enrichment ana-
lysis (GSEA) (ver. 3.0) tool. Briefly, a pre-ranked gene list of
normalized fitness values corresponding to the pairs defined as
aggravating (1614), alleviating (2459) and noninteracting (4073)
under the GP definition were investigated to determine if the GI
pairs share similar Gene Ontology (GO) functions. All GO

annotation genesets for E.coli were downloaded from EcoCyc, and
GO terms with a minimum of 2 to a maximum of 500 annotated
genes were considered for GSEA. Genes that were enriched for a
GO term with a P�0.05 and with a false discovery rate (FDR) of
25% or less were used to assess the functional relationship, as long
as an enriched GO term function is held by both genes in a pair.

2.8 Bacterial strains and media
Strains used for experimental validation include the WT E.coli K-12
BW25113; kanamycin-marked F�-recipient single-gene deletion mu-
tant strains from the Keio knockout library (Baba et al., 2006),
including the functionally unrelated gene JW5028 (Gagarinova
et al., 2012); F� single-mutant strains with hypomorphic alleles of
essential genes generated by integrating a C-terminal sequential pep-
tide affinity fusion tag and a kanamycin selection cassette into the
30-UTR of the respective essential genes to perturb transcript abun-
dance as described previously (Babu et al., 2014; Butland et al.,
2008); and chloramphenicol-marked high-frequency recombination
Cavalli (HfrC) donor single-mutant strains created using k-Red re-
combination as reported earlier (Butland et al., 2008). Strains
were grown on Luria-Bertani (LB) medium at 32	C for 24 h. In add-
ition, as indicated, kanamycin (F� recipients and double mutants;
50 lg/ml), chloramphenicol (HfrC donors and double mutants;
34 lg/ml), bleomycin (BLM; 0.25mM) and methyl methanesulfonate
(MMS; 0.05%) were added to the media.

2.9 Validation of predicted GI pairs
Double mutants were created by conjugating a chloramphenicol-
marked HfrC donor gene deletion mutant with the kanamycin-
marked F�-recipient mutant strains, following the eSGA procedure
(Butland et al., 2008). The double mutants and the corresponding
single mutants were serially diluted in LB medium and pinned onto
LB plates with and without DNA-damaging agents (BLM, MMS) to
assess the sensitivity of the strains to DNA damage. Phase-contrast
cell morphology micrographs from the cultures of single or double
mutants incubated for 2 h in the presence of DNA-damaging agents
were captured using a Carl Zeiss LSM700 confocal microscope; and
cell lengths were measured using ImageJ.

3 Results and discussion

3.1 GP identified more bona fide GIs than other models
To evaluate the performance of the selected models, we employed
RMSE and MAE metrics on the training (336) and test (400) gene
pairs based on predicted GI scores. Our hypothesis is that for any
noninteracting gene pairs, the observed double-mutant fitness values
that are not different from expectation should have a low RMSE
and MAE values. Consistent with this notion, just as the noninter-
acting test gene pairs (Fig. 1A), GP showed smallest RMSE and
MAE compared to other definitions (see Supplementary Table S2
for mean and SD from a 5-fold cross-validation of the training set
shown for machine learning models in Fig. 1A). As well, in contrast
to predefined models, low CV exhibited by GP was comparable to
other machine learning models. We also attempted to modify the
parameter settings (i.e. gamma and noise parameters) used in GP
model to evaluate its performance by measuring the error metrics
(RMSE, MAE) on the training dataset (Supplementary Table S2).
Parameter sampling was performed manually by testing various
gamma (or noise) values that are above or below the default setting.
We found no substantial effect on the performance of the trained
predictors even when parameter settings were modified. Similarly,
since NN model on the training and test datasets exhibited error
metrics (Fig. 1A) close to GP, we posited that fine-tuning the param-
eter settings for NN may achieve better performance than GP.
However, even under different parameter settings, we were unable
to achieve better error metrics for NN over GP (Supplementary
Table S2).

Gene pairs with related biological functions connected by GIs
are rare (Mani et al., 2008). We therefore should expect most of the
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gene pairs to be noninteracting. As a result, observed double-mutant
fitness values will yield a distribution that approximates the
expected distribution. Quantitative measurement of GIs for those
noninteracting gene pairs would then have a tight normal distribu-
tion centered around zero (i.e. low dispersion and low bias), indicat-
ing that GIs are restricted only to certain pairs. Here, the left and
right tails of the distribution represent gene pairs with negative
(aggravating) and positive (alleviating) GIs, respectively. By apply-
ing this strategy to the training or test double-mutant strains, and to
the 104 022 digenic mutants of the genome integrity network
(Kumar et al., 2016), we examined the je-scorej distribution to dis-
cern which definition produced values close to zero. As with the
training or test dataset (Fig. 1B), we found the distribution of GP for
all digenic mutant pairs approximated a normal distribution that is
tight and close to zero (i.e. mean ¼ 0.02, SD¼ 0.22; with lowest
bias and dispersion for e scores; Fig. 1C), conforming to the expect-
ation that most gene pairs are noninteracting. Alternately, other
models showed a positive or negative shift in the distribution of je-
scorej with a greater number of scores deviating from zero (i.e. with
bigger SDs; Fig. 1B and C).

3.2 GP identifies new GIs missed by the multiplicative

model
We next investigated if the performance of GP in terms of negligible
deviation of observed double-mutant fitness from expectation and
tight je-scorej distribution for genes involved in genome integrity was
consistent when applied to a different E.coli GI dataset not focused
on any particular function. To do so, we obtained the growth fitness
measurements of 600 000 digenic mutant strains and their respective
single mutants from our genome-wide GI study (Babu et al., 2014) in
which we crossed 163 functionally unrelated ‘donor’ mutant alleles
from diverse core bacterial processes against 3968 nonessential single

gene deletions and 149 hypomorphic mutant strains. Using this
growth fitness evidence, 504 gene pairs were selected for training
set based on the same selection criteria as described above (see
Section 2). Here, GP once again exhibited insignificant deviation of
double-mutant fitness from expectation as determined by 5-fold
cross-validation (Supplementary Fig. S1A), as well as least bias and
dispersion (i.e. normal distribution centered on neutrality) compared
to other models (Supplementary Fig. S1B). Collectively, these results
suggest that, as in yeast (Mani et al., 2008), the choice of model is
vital since it can markedly impact our discovery of E.coli GIs, espe-
cially when 5% (235 076 of 4 889 920) of total digenic mutants
examined to date are solely supported by large-scale genetic screens
relying on the multiplicative function (Babu et al., 2011, 2014;
Gagarinova et al., 2016; Kumar et al., 2016).

To further analyze the performance of the GP model in identify-
ing GIs, we compared how well the gene pairs among the top 25%
ranked (26 005 of 104 022 double mutants) by je-scorej thresholds
for GP (e � �0.152; e � 0.153) and the multiplicative (e � �0.221;
e � 0.203) model were in agreement with the identification of their
putative GIs. Here, in order to compare eGP and eMulti, we defined
gene pairs with eGP � �0.152 or eMulti � �0.221 as aggravating, eGP

� 0.153 or eMulti � 0.203 as alleviating and those that do not pass
the threshold as noninteracting. While the interaction type for most
(84%, 21 932) of the digenic mutant gene pairs (14 740 alleviating,
7192 aggravating; Supplementary Table S1) displayed by GP and
multiplicative definitions were similar, for one-sixth (16%, 4073) of
the gene pairs they predicted inconsistently (Fig. 1C inset). The latter
observation led us to investigate which model might have misclassi-
fied the interacting gene pairs.

A close examination of 3481 gene pairs (category A) that were
defined as having aggravating interactions (�2.064 � eMulti � �0.221)
by the multiplicative, but not by the GP definition (�0.152 � eGP �
1.00) showed no obvious growth fitness defects in the double mutants

Fig. 1. Performance measurements of GP over other GI definitions. (A) Error values shown for the indicated definitions using training and test pairs compiled from the genome

integrity study (Kumar et al., 2016). (B, C) GI (e) score distributions of training (B-i), test (B-ii) and for all (C) gene pairs plotted against various definitions with normal distri-

bution centered around zero (dotted line), and with tails signifying aggravating (-ve) and alleviating (þve) interactions. The zoom in of the tails is shown as an inset in the top-

right corner. The overlap of aggravating or alleviating GIs between GP and the multiplicative definition is shown as a Venn diagram (C) in the inset. (D) Box plots showing the

distribution of GI (e) scores for gene pairs classified differently by the GP and the multiplicative definitions (grouped under various categories, see text), and their respective

normalized single (Wx: donor; Wy: recipient) and double (Wxy)-mutant colony sizes that exhibit slow (< 1.0), normal (1.0) and fast (>1.0) growth
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relative to their respective single mutants (Fig. 1D-i), indicating that
GP accurately followed the expectation that most gene pairs were not
aggravating. For example, in contrast to the multiplicative model
(eMulti ¼ �0.224), GP classified the association between recA and ssb
as close to neutral (eGP ¼ 0). This observation is consistent with previ-
ous findings (Cox and Lehman, 1982; Eggler et al., 2003;
Kowalczykowski et al., 1987), suggesting that both ssDNA binding
proteins, Ssb and RecA, compete for ssDNA substrates in vivo; hence
ssb suppresses the nucleation stage of recA filament formation on
ssDNA and subsequent homologous recombination. Likewise, 1614
gene pairs (category B) were defined as aggravating by GP (�0.308 �
eGP � �0.152) but not by the multiplicative model (�0.220 � eMulti �
�0.029). While gene pairs in this category were assigned negative e
scores by both models, the strength and confidence of putative GIs are
different. If a gene pair has a strong GI, then it is expected to be within
the top-ranked list of gene pairs. In that sense, GIs predicted by the
multiplicative model inconsistently classified the pairs as noninteract-
ing (i.e. fell below the chosen cut-off; eMulti � �0.221) despite many
double mutants exhibited weak growth fitness compared to their single
mutants (Fig. 1D-ii). For example, GP has successfully captured the
aggravating interaction (eGP ¼ �0.159) previously reported for recB
priA double mutants (Mccool and Sandler, 2001), whereas this inter-
action (eMulti ¼ �0.108) was precluded under the multiplicative defin-
ition as it was below the selected je-scorej cut-off.

Additionally, among the 592 gene pairs (category C) predicted
by the multiplicative model as alleviating (0.203 � eMulti � 0.291),
but were classified as noninteracting by the GP definition (0.053 �
eGP � 0.151) showed that when double mutants and their respective
single mutants had moderate growth fitness defects, the GP model
closely matches the expectation of these gene pairs being noninter-
acting (Fig. 1D-iii). Similarly, based on the growth fitness of double
mutants that show better growth than their corresponding single
mutants, GP has classified 2459 gene pairs (category D) as alleviat-
ing (0.152 � eGP � 1.00) as expected; whereas the multiplicative
model showed a greater tendency to place these gene pairs as aggra-
vating or close to neutrality (�1.941 � eMulti � 0.203; Fig. 1D-iv).
An illustrative example is when compared to the multiplicative
model (eMulti ¼ 0), GP (eGP ¼ 0.215) defines the interaction between
the components of cellulose synthase complex, BcsF and BscQ, as
alleviating, consistent with the notion that such interactions tend to
occur between the subunits of a protein complex (Babu et al., 2014;
Bandyopadhyay et al., 2008; Collins et al., 2007; Costanzo et al.,
2019).

Although the above results suggested that the classification of
gene pairs by GP to appropriate interaction class was consistent
with colony growth measurements, we investigated further if the GI
pairs (4073; sum of categories A and D) favored by the multiplica-
tive model, that when not in agreement with GP, can be clearly dem-
onstrated by their change in interaction direction, irrespective of
their chosen threshold. We found that for less than a quarter (19%;
776 of 4073) of the pairs defined by the multiplicative model as
aggravating, GP clearly classified these pairs either as alleviating
(103 pairs) or noninteracting (673 pairs; Supplementary Table S1).
The interaction trend (i.e. positive or negative) for the remaining
three-fourths (81%; 3297 of 4073) of the pairs was reliable under
two definitions, but these pairs had neutral (not significant) interac-
tions according to GP, consistent with the observed neutral colony
sizes (Fig. 1D) and with the expectation that most pairs would not
interact.

Next, our rationale for using top 25% (26 005) of the ranked GI
pairs by je-scorej thresholds for GP and multiplicative model was to
obtain large sets of gene pairs to make reasonable biological inter-
pretations about model performance. While this method of utilizing
top-ranked gene pairs is widely adopted for evaluating the perform-
ance of GI predictions (Ulitsky et al., 2009), and in cross-study val-
idation using multiple transcriptomic datasets to generate a robust
prediction model (Kim et al., 2016), we applied statistical thresholds
corresponding to two SD (jZ-scorej � 1.96; P�0.05;
Supplementary Fig. S1C) to the 104 022 digenic mutants of the gen-
ome integrity network to examine the predictive capability of GP
and multiplicative model in identifying GIs. Of the 6980 statistically

significant (P�0.05) GI pairs, 4502 had GI (e) scores of �1.96 or
lower indicating aggravating relationships, and 2478 with e-scores
of þ1.96 or higher representing alleviating interactions
(Supplementary Fig. S1C). Three-fourths (72%; 4998 of 6980) of
the digenic mutant pairs were consistently captured by both GP and
multiplicative models. Whereas for the rest of the gene pairs, GP ap-
proach has reliably classified 542 pairs as aggravating (category II)
and 816 as alleviating (category IV), indicating that 601 pairs (cat-
egory I) that have initially thought of as aggravating and 23 (cat-
egory III) as alleviating by the multiplicative model were indeed
inconsistent, based on the fitness of the double mutants relative to
single mutants (Supplementary Fig. S1D; Supplementary Table S3).
This trend persisted even when choosing different P-value-based
cut-offs (data not shown), where most (95%; 6604) of the signifi-
cant Z-transformed GI pairs in the 95th percentile (P�0.05) were
found in nearly all (99%; 25 991 of 26 005) of the top 25% of the
ranked gene pairs (Supplementary Fig. S1E). Overall, these results
suggest that the conclusions of our findings remain consistent,
whether the selection of GI pairs was based on top-ranking or P-
value based cut-off.

Since probabilistic decision tree-based classifiers can reveal the
characteristics of a model in terms of its GI predictive accuracy for
gene pairs (Wong et al., 2004), we conducted an independent evalu-
ation of the definitions based on training the decision tree using the
800-pair test dataset (classifying 200 as aggravating, 200 as alleviat-
ing and 400 as noninteracting). This trained classifier was then used
to examine if GP and the multiplicative definition categorize gene
pairs into appropriate interaction types, as expected. Based on the
decision-tree classification score threshold of eGP � �0.440 and eGP �
0.110 (Supplementary Fig. S2A), GP achieved an accuracy (consist-
ently classifying the GI type) of 99.63% (797 of 800 pairs) at an error
(inconsistently classifying the GI type) rate of 0.375% (3 of 800 pairs)
as determined by 5-fold cross-validation. Conversely, at the classifica-
tion score threshold of eMulti � �0.385 and eMulti > 0.126
(Supplementary Fig. S2A), the accuracy of the multiplicative defin-
ition was 96.9% (775 of 800) at an error rate of 3.125% (25 of 800;
Fig. 2A). Further investigation on these 25 gene pairs (Supplementary
Table S4) revealed that the multiplicative model misclassified 21 alle-
viating interactions as noninteracting, 2 noninteracting pairs as allevi-
ating and 2 alleviating pairs as aggravating or noninteracting. In fact,
some of the alleviating interactions among the 21 gene pairs are well
supported by literature evidence. For example, the multiplicative def-
inition identified the association between helicase II (uvrD) and hom-
ologous recombination (recA, recD) mutants as noninteracting,
whereas GP classified these pairs as being alleviating, in agreement
with the observation that UvrD and RecA act in the same pathway
and function in concert with RecBCD-dependent recombination
intermediates (Bidnenko et al., 2006). A similar high accuracy and
negligible deviation of observed double-mutant fitness from expect-
ation for the GP method was obtained in comparison to the multi-
plicative model, when the decision-tree classifier was used on 104 022
gene pairs (Supplementary Table S4). As with the decision tree ap-
proach (Fig. 2A), we also achieved a greater area under the receiver
operating characteristic curve for the interacting (0.996) and nonin-
teracting (0.998) test pairs predicted by GP model (versus 0.975 and
0.996 for the multiplicative model, respectively; Supplementary Table
S4). While these differences appear modest, they correspond to hun-
dreds of gene pairs that are differently classified and will have sub-
stantial impact on our biological interpretation of the identified
pathways.

3.3 Validation of GI pairs identified by GP model
As error metrics, e distribution, and cross-validation confirmed GP
to be a better predictor than the multiplicative model for identifying
GIs and functional relationships in E.coli, we next sought to system-
atically examine whether the aggravating (1614; category B) or alle-
viating (2459; category D) GIs identified under the GP model
conform to the previous notion (Baryshnikova et al., 2010) regard-
ing a common biological function. To do so, we used GSEA
(Subramanian et al., 2005) to evaluate enriched functional
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annotations among interacting gene pairs. Using GSEA with the pre-
ranked gene list of fitness data and all 3440 GO terms as input, we
found enrichment for 9 significant (P�0.05; false-discovery rate �
0.25) GO terms. Among these terms, one-quarter (25%, 999 of
4073) of the enriched (P¼1.04 � 10�278 by hypergeometric test)
gene pairs defined as aggravating or alleviating under the GP defin-
ition shared a GO term (Fig. 2B; Supplementary Table S5).
Conversely, only very few (0.07%, 3 of 4073) disagreeing aggravat-
ing (3481; category A) or alleviating (592; category C) GI pairs that
were defined by GP as noninteracting (Fig. 2B) shared the same GO
functional attribute. Instead, 48-fold underrepresentation for pairs
with a shared annotation (P¼1.39 � 10�232 by hypergeometric
test) than interacting pairs observed under the GP definition. While
the assumption is that most noninteracting gene pairs should not
have a close functional relationship (Mani et al., 2008), shared func-
tionality observed for certain enriched noninteracting pairs is
expected because the case study (Kumar et al., 2016) was focused on
genome integrity rather than random pairs, and because a low level

cross-talk is expected between processes due to indirect, common
effects on fitness. In any case, since the enrichment for shared GO
terms among the number of noninteracting pairs is several fold (220
times; 26.4% versus 0.12%; Fig. 2B) lower than among the number
of interacting pairs under the GP definition, our results suggest that
GP is a strong predictor of functional links, as indicated by aggravat-
ing or alleviating GIs.

Next, a detailed inspection of the pairs categorized as aggravat-
ing (1614; category B) and alleviating (2459; category D) by the GP
model, and those pairs in disagreement with the multiplicative
model (3481, category A; 592, category C), indicated that in com-
parison to interactions with annotated genes, over half (57%; 4673
of 8146) of the pairs had epistatic dependencies between unanno-
tated E.coli genes (i.e. orphans or genes of unclear function) not pre-
viously linked to DNA repair, or between unannotated and known
genomic integrity targets (Fig. 2C). To rigorously verify the reliabil-
ity of the interactions defined using the GP model, we selected a sub-
set of these gene pairs for independent experimental validation using

Fig. 2. Assessment and validation of GI pairs from GP definition. (A) Accuracy and error rate of the GI definitions estimated on 800 test pairs compiled from the genome integ-

rity study (Kumar et al., 2016). (B) Percentage gene pairs defined as aggravating (-ve), alleviating (þve) and noninteracting under GP definition enriched (FDR-corrected

P-value � 0.05; enriched GO term in the ranked gene set was assessed by Kolmogorov–Smirnov test) for a shared Gene Ontology (GO) term function. (C) Percentage gene

pairs with epistatic relationships between orphan (gene of unknown function)–orphan, annotated–annotated or orphan–annotated genes. (D) Confirmation of gene pair classi-

fications by the GP model that were either in agreement or in disagreement with the multiplicative model. For this comparison, the top 25% of the ranked GI pairs were

selected. GI (e) score � �0.152 for GP and � �0.221 for the multiplicative model are considered as aggravating (-ve sign), and �0.153 for GP and �0.203 for multiplicative

as alleviating (þve). Scores that did not meet the chosen aggravating or alleviating threshold were considered as noninteracting (with no sign indicated). The fitness of the dou-

ble-mutant colonies and their respective GI scores from the indicated model should dictate their predictive capability of identifying reliable GI type. Hfr Cavalli donor (nones-

sential or *essential hypomorphic) single mutant marked with chloramphenicol (Cm; i) and F�-recipient single-mutant (nonessential or *essential hypomorphic) strains

marked with kanamycin (Kan; ii) were crossed and selected on plates with Cm and Kan to generate double mutants (iii), which are shown along with their respective scores

from GP and multiplicative definitions below the colony images. Multiple colonies represent replicates. Functionally unrelated gene JW5028 was used as a control. (E)

Sensitivity or resistance (i) of the indicated deletion mutant strains to DNA-damaging agents that induce double-strand breaks, as reported in a chemical-genetic screen

(Nichols et al., 2011). Growth sensitivity (ii) is shown for mutants and wild-type (WT) cells grown on bleomycin (BLM) and MMS. Phenotypic complementation shows the

overexpression of yicR in trans. (F) Cell morphology micrographs (i) and cell lengths (ii) of WT and mutant strains before and after DNA damage with MMS (t¼2 h) treat-

ment. Cell lengths of the WT or mutant strain is an average of �100 different cells; * indicate significant (Student’s t-test) difference between double mutants and their single

mutants. Scale bar equals 10 lm
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the mini-array genetic crosses. Specifically, our selection of ‘agree-
ment’ gene pairs entails noninteracting or aggravating interactions
under GP and multiplicative models (e.g. ylcG with umuD/yhhZ/
mraZ; yebV with fabZ/mukB/pagP/fliZ; yicR with recB). Whereas
the ‘disagreement’ gene pairs include aggravating interactions under
multiplicative definition, but noninteracting according to the GP
model (e.g. yaiU with umuD/yhhZ/ mraZ; ftsH with fabZ/mukB/
pagP/fliZ; category A in Supplementary Table S1), or pairs that
were noninteracting in the multiplicative model, but alleviating
under the GP definition (e.g., yicR with ftsKNW or recCE; category
D in Supplementary Table S1). Notably, when GP and multiplica-
tive definitions disagreed, GP predictions were experimentally veri-
fied (Fig. 2D). As an illustrative example, an uncharacterized
gene, yicR displayed alleviating and aggravating GIs with homolo-
gous recombination genes (recBCE) under the GP definition, where-
as the multiplicative model defined all these GIs as aggravating
(Fig. 2D). To examine the biological implication of these GP or
multiplicative assignments, we compared the sensitivity of the E.coli
yicR-mutant strain to DNA damage induced by genotoxic agents
(BLM, MMS) with the sensitivities of WT or recBCE single gene de-
letion strains.

BLM or MMS introduces clusters of lesions in DNA to form sin-
gle- or double-strand breaks (SSBs, DSBs), or produces an assort-
ment of N- and O-methylated bases in DNA by blocking the
replication fork progression. In E.coli, when these genotoxins in-
duce DNA damage, cell survival depends on rec-dependent homolo-
gous recombination and repair pathways (Knezevic-Vukcevic and
Simic, 1991; Kosa et al., 2004; Nowosielska et al., 2006). It is
known from previous evidence (Knezevic-Vukcevic and Simic,
1991; Nichols et al., 2011) that yicR and the recombination-
deficient recBC-mutant strains, but not recE deficient strains, are
sensitive to the cytotoxic effects of BLM, MMS (Fig. 2E) or other
genotoxic agents that induce DSBs (Nichols et al., 2011). Consistent
with this observation, in our experiments, strains lacking yicR
showed hypersensitivity (Fig. 2E), but inactivation of both yicR and
recC did not enhance the effect compared to the respective single
mutants. Thus, the lack of synergy in yicR-recC double mutants sug-
gests, consistent with the GP prediction, that yicR functions with
recC. Conversely, the increased sensitivity of yicR-recB double
mutants to BLM or MMS is consistent with the GP and multiplica-
tive definitions that recB is absolutely required for the yicR pheno-
type. Whereas, when compared to yicR-recB/recC phenotypes, yicR
recE double mutants were fully resistant like the recE single
mutants, suggesting that yicR does not function redundantly with
recE. This lack of additive effect is in agreement with the GP
definition.

Recombination-deficient strains (e.g. rec mutants), sensitive to gen-
otoxic agents, exhibit impaired cell division and chromosome segrega-
tion, forming aberrantly long, nonseptate, multi-nucleate filaments
(Babu et al., 2011; Kumar et al., 2016). Therefore, we ascertained if
the observed yicR-recB and yicR-recC phenotypes suggested by hyper-
sensitivity to MMS, as well as by aggravating and alleviating GIs by
GP, respectively, indicate involvement in chromosome segregation fol-
lowing DNA damage. We found that the double mutants of yicR with
recB, but not with recC, exhibited longer (�9.2lm avg. cell length)
filamentous cells compared to WT or single mutants (Fig. 2F) after
MMS treatment. This suggests that YicR appears to function in co-
operation with RecC, while functioning in parallel with RecB in DSB
repair pathway, which is consistent with the GP and multiplicative def-
inition. Additionally, our findings decisively indicate that, like yicR-
recC or yicR-recE growth fitness, other gene pairs that were tested by
genetic crosses (Fig. 2D) were in fact misclassified as aggravating inter-
actions under the multiplicative model.

4 Conclusions

Global epistatic E.coli connectivity maps based on colony
growth measurements, under standard laboratory growth conditions
or in the presence of genotoxic or environmental stressors (Babu
et al., 2011, 2014; Cote et al., 2016; Gagarinova et al., 2016;

Kumar et al., 2016) have been generated using the multiplicative
function, following the framework established in yeast
(Baryshnikova et al., 2010; Collins et al., 2006, 2007). However,
there was no comparable, rigorous evaluation performed on large-
scale E.coli GI data to justify the use of the multiplicative model. As
a result, it has not been clear if the multiplicative definition has had
any ramifications on the interpretation of GIs generated in E.coli to
date. Therefore, in the current study, using the growth fitness of vi-
able digenic mutant combinations and their corresponding single-
gene deletion mutants of functionally related protein-coding genes
involved in genome integrity (Kumar et al., 2016), we provided pre-
dictions for pairs of genes with the interaction subtype for each of
the selected machine learning and predefined models. This dataset
was then employed to compare the underlying performance of the
GIs between definitions, with a set of statistical and experimental
measures, to reveal the practical differences among definitions.
Notably, based on the error metrics and je-scorej distributions of the
training and genome integrity datasets, we found the GP definition
to display lower RMSE and MAE values, with e distributions cen-
tered around zero and more closely conforming to the ideal normal
distribution (i.e. most gene pairs are noninteracting) than under
other definitions that showed more bias and greater dispersion of e-
scores. Although the NN definition exhibited low CV on the nonin-
teracting test gene pairs (Fig. 1A), as we have shown in Figure 1B,
NN on the test pairs exhibited a negative shift in the normal distri-
bution of e-score (i.e. deviating from zero) compared to the distribu-
tion of GP that approximated a normal distribution that is tight and
close to zero (i.e. with lowest bias and dispersion for e scores). In
any case, our rationale for choosing GP over NN definition is not
solely based on the error metrics of noninteracting test dataset, but
rather on our observations with other sets of experimental results
(Fig. 1B; Supplementary Fig. S1A; and Table S2, sheets 4 and 5).

Other important observations came from the analyses was the
gene pairs that were inconsistently classified by the GP and the
multiplicative models. In the case of 3481 aggravating (category A)
and 592 alleviating (category D) GIs defined under the multiplica-
tive model, the double mutants and one of the two single-mutant fit-
ness measurements appear to near one, or WT and not different
from one another (Fig. 1D); yet, the multiplicative model has
defined these pairs as aggravating or alleviating. In contrast, GP
defined the majority of these pairs as noninteracting, which we con-
firmed to be consistent experimentally with the genetic crosses per-
formed on more than a dozen gene pairs. Additional evidence from
GSEA on these GP-classified noninteracting pairs revealed less func-
tional enrichment, supporting the respective GP model assignments.
Decision tree classifiers also further indicate that GP had the highest
accuracy and lowest error in consistently classifying the test and gen-
ome integrity gene pairs to appropriate interaction type when com-
pared to the multiplicative model. When we repeated the aforesaid
analyses on an independent genome-wide GI study (Babu et al.,
2014) that included genes broadly representing various bacterial
processes, we found that GP similarly outperformed multiplicative
and other definitions.

While through multiple lines of evidence we have demonstrated
that GP is able to show comparable results with different E.coli
datasets, for example, with functionally related (Kumar et al., 2016)
or unrelated (Babu et al., 2014) groups of genes, we tested if this def-
inition can likewise perform well in the budding yeast that examined
5.4 million digenic pairs for synthetic GIs (Costanzo et al., 2010).
The examination of the je-scorej distributions showed that, unlike in
E.coli, the GP and multiplicative definitions in yeast displayed al-
most identical error metrics and je-scorej distributions with lowest
bias and dispersion, conforming to the expectation that most gene
pairs are noninteracting (Supplementary Fig. S2B). This outcome
raises the question of why the multiplicative model was not consist-
ent in certain cases with the GP definition on E.coli GI datasets. We
found that the discrepancy with the multiplicative definition
occurred when the normalized colony sizes for one of the observed
single mutants is much larger (Wx or Wy >1.0), causing the multi-
plicative model to consider those gene pairs as aggravating instead
of alleviating or noninteracting. Hence, it can be less sensitive to
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defining alleviating or suppression phenotypes, which in fact is evi-
dent from one-tenth (13%; 311 of 2459) of the gene pairs (category
D) that were classified as aggravating (Supplementary Table S1).
The remaining (87%, 2148 of 2459) large proportion of gene pairs
were misclassified as noninteracting because the multiplicative
model cannot distinguish the small fitness differences observed be-
tween single and double mutants. While under certain circumstances
the multiplicative model introduces disagreement with GP, for most
(84%; 21 932 of 26 005) of the top-ranking gene pairs, we found
both definitions to perform equally well for identifying epistatic
relationships when the growth of the double mutants (better or
worse) can be different from at least one single mutant with a mod-
erate fitness defect or both single mutants with near WT fitness
(Supplementary Fig. S2C). Taken together, we suggest those favor-
ing the multiplicative model should exclude interactions, where the
fitness of one of the single mutants is especially large, to place more
confidence on biological conclusions.

To facilitate exploration, we have provided the source code used to
generate the machine learning models in WEKA software environment,
along with the supporting E.coli training dataset in WEKA’s native for-
mat (Supplementary Material). In summary, we conclude that GP is a
viable alternative for future epistatic studies or those underway in uni-
cellular (Peters et al., 2016; Shapiro et al., 2018) or multicellular organ-
isms (Billmann et al., 2018) using the CRISPR genetic screens that are
in quest for identifying functional relationships. As with any other
high-throughput screening framework, large-scale genetic screens can
be noisy; hence it is beneficial to employ GP and the multiplicative
model or any other definition, as long as there is a general consensus
between definitions in classifying the consistent GI types.
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