
Genome analysis

PyRanges: efficient comparison of genomic

intervals in Python

Endre Bakken Stovner1,2,3,4,* and Pål Sætrom1,2,3,4

1Department of Computer Science, 2Department of Clinical and Molecular Medicine, 3Bioinformatics Core Facility and 4Department of

Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim

7013, Norway

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on May 31, 2019; revised on July 26, 2019; editorial decision on July 30, 2019; accepted on August 1, 2019

Abstract

Summary: Complex genomic analyses often use sequences of simple set operations like intersection, overlap and
nearest on genomic intervals. These operations, coupled with some custom programming, allow a wide range of
analyses to be performed. To this end, we have written PyRanges, a data structure for representing and manipulat-
ing genomic intervals and their associated data in Python. Run single threaded on binary set operations, PyRanges
is in median 2.3–9.6 times faster than the popular R GenomicRanges library and is equally memory efficient; run
multi-threaded on 8 cores, our library is up to 123 times faster. PyRanges is therefore ideally suited both for individ-
ual analyses and as a foundation for future genomic libraries in Python.

Availability and implementation: PyRanges is available as open source under the MIT license at https://github.com/
biocore-NTNU/pyranges and the documentation exists at https://biocore-NTNU.github.io/pyranges/

Contact: endrebak85@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Comparing sets of intervals is a fundamental task in genomics, and a
few basic operations allow for answering many scientific questions.
For example, to find genes potentially targeted by a transcription
factor, one can intersect the sets of intervals representing gene posi-
tions and representing transcription factor binding sites to identify
those that overlap.

Several toolboxes of genomic operations exist, such as bedtools
(Quinlan and Hall, 2010) and bedops (Neph et al., 2012) for the
command line and GenomicRanges (Lawrence et al., 2013) for the
R programming environment.

GenomicRanges is a data structure for representing and operat-
ing on genomic intervals and their metadata, which are stored as a
2D table in memory. By providing methods for access and for set
operations on genomic intervals, programmers can use the R pro-
gramming language to manipulate and analyse the contents of
GenomicRanges. Consequently, GenomicRanges is a powerful tool
for writing complex and custom genome analyses. Indeed, in R,
GenomicRanges is a foundational library, and a cornerstone of gen-
omics packages in the R Bioconductor project (Gentleman et al.,
2004).

Python is currently ranked as the most popular programming
language in the world (according to IEEE Spectrum’s compound
metric; Cass and Bulusu, 2018, https://spectrum.ieee.org/static/inter

active-the-top-programming-languages-2018) and is much used in
data science and bioinformatics, yet it lacks a GenomicRanges im-
plementation. Instead, the current way to do genomics in Python is
to use pybedtools, a Python wrapper for bedtools (Dale et al.,
2011). This solution has several drawbacks including relying on ex-
ternal software, heavy I/O and disk use for each operation, lack of
position-based querying, the inability to use the Python data science
stack on pybedtools objects and limiting users to work with a few
bioinformatics file formats instead of arbitrary genomic data (see
Supplementary Discussion for details). The PyRanges library rem-
edies this situation by providing a Python GenomicRanges imple-
mentation which is multi-threaded, fast and memory efficient.

2 Library

2.1 Implementation
The PyRanges data structure is logically represented as a 2D table.
Each row represents an interval, and the columns each describe ei-
ther a part of the location (chromosome, start position, end position
and optionally, strand) or metadata (name, score, exon number or
any arbitrary value desired by the user). The underlying implementa-
tion uses a dictionary that maps chromosome and strand pairs to
their respective 2D tables; however, this division is largely invisible

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 918

Bioinformatics, 36(3), 2020, 918–919

doi: 10.1093/bioinformatics/btz615

Advance Access Publication Date: 2 August 2019

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/3/918/5543103 by guest on 19 April 2024

https://github.com/biocore-NTNU/pyranges
https://github.com/biocore-NTNU/pyranges
https://biocore-NTNU.github.io/pyranges/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz615#supplementary-data
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://academic.oup.com/


to the user. The data in the 2D tables are stored in Pandas
DataFrames, thus allowing the vast Python science stack to be used
seamlessly with PyRanges. Furthermore, DataFrames allow for stor-
ing the data contiguously in native data types, such as integers,
floats or categoricals, to ensure memory efficiency.

To make PyRanges fast, its operations are written in Cython or
C. Moreover, by keeping the data belonging to each chromosome in
separate DataFrames, these logically distinct data can easily be inde-
pendently processed. In this way we avoid the substantial time costs
of splitting and merging the data for each operation. PyRanges pro-
vides parallel processing through the Ray framework (Moritz et al.,
2018), resulting in a speed-up provided the data are sufficiently big
(see Section 2.3).

2.2 Functionality
PyRanges’ main functionality includes functions for reading genom-
ic intervals from files, and unary and binary functions for manipu-
lating one and two sets of genomic intervals. File reading functions
support common formats such as bed, GTF/GFF and bam. Unary
functions manipulate single PyRanges by subsetting, clustering or
computing coverage; that is, the number of intervals overlapping
each genomic position. Binary functions include operations, such as
intersection, nearest and subtract that create a new set of genomic
intervals by comparing two sets of intervals. See the Supplementary
Material for a full list of PyRanges’ operations.

PyRanges also uses and provides two stand-alone libraries useful
beyond bioinformatics. One library (pyrle) implements run-length
encoding arithmetic, which is useful to compactly represent and
efficiently do arithmetic on the coverage (or any other nucleotide-
associated score) of sets of regions. The other library (NCLS) imple-
ments the Nested Containment List, which is an immutable interval
tree with better memory efficiency and speed than a regular interval
tree both for tree construction and interval queries (see
Supplementary Timings).

2.3 Performance
The PyRanges library has been extensively benchmarked for both
speed and memory use (Fig 1; Supplementary Timings). We used
two types of data for testing: (i) libraries of reads only, i.e. they
included no metadata and were hence more lightweight and (ii) GTF
annotations. We used unsorted test files generated by bedtools ran-
dom for hg38 to simulate the read files. To create a large GTF, we
used sampling with replacement on the Gencode hg38 GTF.

For binary operations, PyRanges in single-threaded mode was
6.5–31 (median 14) and 9.8–36 (median 24) times faster than
pybedtools on 1e6 and 1e7 intervals, respectively. Compared to
GenomcRanges, PyRanges was 1.3–16 (median 2.3) and 1.9–84
(median 9.6) times faster. Run multi-threaded on 8 cores, the
speed-ups for the same operations on 1e7 intervals were 13–63 and
1.8–123 times compared to pybedtools and GenomicRanges, re-
spectively. For all operations, PyRanges run single-threaded on 1e7
intervals had a median speed-up of 26 and 4.0 times and used a

median 5.7 and 5.1 times less memory compared to pybedtools and
GenomicRanges, respectively.

3 Conclusion

PyRanges is an efficient and feature-rich library for genomics in the
extremely popular Python programming language, and the only one
of its kind. We therefore expect it to be a boon to current and future
bioinformaticians and researchers working in Python.

Funding

This work was supported by the Research Council of Norway [230338]; and

Stiftelsen K.G. Jebsen.

Conflict of Interest: none declared.

References

Dale,R.K. et al. (2011) Pybedtools: a flexible Python library for manipulating

genomic datasets and annotations. Bioinformatics, 27, 3423–3424.

Gentleman,R.C. et al. (2004) Bioconductor: open software development for

computational biology and bioinformatics. Genome Biol., 5, R80.

Lawrence,M. et al. (2013) Software for computing and annotating genomic

ranges. PLoS Comput. Biol., 9, 1–10.

Moritz,P. et al. (2018) Ray: A distributed framework for emerging AI applica-

tions. In: 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18), pp. 561–577.

Neph,S. et al. (2012) Bedops: high-performance genomic feature operations.

Bioinformatics, 28, 1919–1920.

Quinlan,A.R. and Hall,I.M. (2010) Bedtools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26, 841–842.

Fig. 1. Running time (left) and memory usage (right) as a function of the number of

intervals for four common binary functions on genomic intervals; see

Supplementary Timings for complete benchmark results

PyRanges 919

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/3/918/5543103 by guest on 19 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz615#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz615#supplementary-data

