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Abstract

Motivation: RNA structure is difficult to predict in vivo due to interactions with enzymes and other molecules. Here
we introduce CROSSalive, an algorithm to predict the single- and double-stranded regions of RNAs in vivo using
predictions of protein interactions.
Results: Trained on icSHAPE data in presence (m6aþ) and absence of N6 methyladenosine modification (m6a-),
CROSSalive achieves cross-validation accuracies between 0.70 and 0.88 in identifying high-confidence single- and
double-stranded regions. The algorithm was applied to the long non-coding RNA Xist (17 900 nt, not present in the
training) and shows an Area under the ROC curve of 0.83 in predicting structured regions.
Availability and implementation: CROSSalive webserver is freely accessible at http://service.tartaglialab.com/new_
submission/crossalive
Contact: gian.tartaglia@crg.es
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The in vitro structure of an RNA differs from that in vivo for the
action of molecules such as RNA-binding proteins (Livi et al.,
2015). The complex mechanisms contributing to the formation of
structure in vivo are poorly characterized and previous analysis sug-
gests a prevalence of single-stranded regions for all RNA types
(Rouskin et al., 2014), although conservation of double-stranded
regions has been observed for specific non-coding RNAs (Spitale
et al., 2015). In the cellular environment RNA undergoes a number
of modifications such as methylation that influence both stability
and turnover of the whole transcriptome (Liu and Jia, 2014). Mettl3
is a key component of the complex that methylates adenosine resi-
dues at the N6 (m6a) and plays a central role in determining RNA
structure in vivo. Indeed, a method of probing RNA structure using
the chemical probe NAI-N3 (icSHAPE) indicated that m6a pro-
motes transition from double- to single-stranded regions (Spitale
et al., 2015). Through analysis of icSHAPE data we developed the
CROSSalive method for the prediction of RNA secondary structure
in vivo. One important part of our approach is the use of catRAPID
predictions of protein interactions to classify single- and double-
stranded regions of RNA molecules (Bellucci et al., 2011).
catRAPID estimates the binding through van der Waals, hydrogen
bonding and secondary structure properties of both protein and
RNA sequences.

2 Workflow and implementation

CROSSalive profiles a RNA sequence computing the corresponding
secondary structure in vivo with (m6aþ) and without (m6a-) methyla-
tion, which is significantly different from that in vitro (Supplementary
Fig. S1). The algorithm uses predictions of protein interactions to iden-
tify single- and double-stranded regions (Spitale et al., 2015):

• For the training and testing we selected RNA fragments carrying the

central nucleotide with the highest (single-stranded; 105 non-

redundant sequences) and lowest icSHAPE reactivities (double-

stranded; 105 non-redundant sequences), following the analysis carried

out for CROSS in vitro (Delli Ponti et al., 2017). Each RNA fragment

contains a total of 51 nucleotides to allow calculations with

catRAPID (Bellucci et al., 2011). The nucleotides are represented as A

¼ (1, 0, 0, 0), C¼ (0, 1, 0, 0), G¼ (0, 0, 1, 0) and U¼ (0, 0, 0, 1).
• The catRAPID approach uses a phenomenological potential that

exploits several physico-chemical predictors including RNAfold for

the RNA structure (Bellucci et al., 2011). 7797 regions from a li-

brary of 640 canonical RNA-binding proteins (Agostini et al., 2013)

were analyzed to identify those able to discriminate nucleotides in

single- and double-stranded states with accuracies >0.6 (m6aþ: 228

regions; m6a-: 206 regions; Supplementary Figs S2 and S3).
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• The dataset is enriched for proteins with gene ontology (Klus

et al., 2015) related to RNA structure (double- and single-

stranded RNA binding; helicase activity; m6aþ: 101 regions;

m6a-: 81 regions; Supplementary Tables S1 and S2). The Youden

cut-off was computed on catRAPID scores for each protein in

the dataset. Scores above the cut-off were set to 1 (0 otherwise).
• Neural networks (m6aþ and m6a-, with and without protein

contributions) were trained using the architecture described in

our previous publication for icSHAPE in vitro (Delli Ponti et al.,

2017). Each RNA fragment is assigned a score between -1 (high

propensity to be single-stranded) to 1 (high propensity to be

double-stranded; Supplementary Fig. S4).

3 Performances

CROSSalive scores were ranked by their absolute value and equal
groups of positives and negatives were selected to assess the per-
formances of the algorithm. From low (50%) to high-confidence
(HC) scores (1%, Fig. 1A) the accuracy of the models increases
monotonically reaching a maximum of 0.86 for the m6aþ model
when protein interactions are used (10-fold cross-validation, CV). In
comparison, the in vitro icSHAPE model based on RNA sequence
information only (Delli Ponti et al., 2017) discriminates single- and
double-stranded regions with a 0.88 accuracy (10-fold CV on 1%
HC scores). The m6a- in vivo model shows lower accuracy (0.74 in
10-fold CV on 1% HC scores) mainly because m6a removal affects
the quality of the training set by altering the stability and turnover
of the transcriptome (Liu and Jia, 2014). We applied CROSSalive to
an independent in vivo SHAPE-Map experiment (Smola et al.,
2016) on the long non-coding Xist (17 900 nt; not in the training).
We used the in vivo m6a- model because Mettl3 is poorly abundant
in the trophoblasts (Thul et al., 2017) employed in SHAPE-Map and
only few nucleotides are methylated at the 50 and 30 of Xist (Patil
et al., 2016). The algorithm achieves an Area under the ROC curve
(AUC) of 0.83 on the 15% HC single- and double-stranded regions
ranked by SHAPE reactivity (Fig. 1B). Moreover, CROSSalive pro-
file shows a correlation of 0.45 with the SHAPE-Map one (Fig. 1B).
The m6a- model trained on RNA sequence information only
achieves an AUC of 0.53 (�0 correlation).

4 Conclusions

By using sequence-based information, CROSSalive profiles the RNA
secondary structure in vivo. The use of different models (in vivo/
in vitro, m6aþ/m6a-) will help to identify structural regions to

investigate experimentally. As previously done with CROSS (Delli
Ponti et al., 2017), CROSSalive can be integrated as a constrain in
thermodynamics-based approaches such as RNAfold, which will
allow study structural differences of RNAs in vivo and in vitro
(Lorenz et al., 2016).
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Fig. 1. CROSSalive performances. (A) 10-fold cross validation for each specific algorithm (in vitro, in vivo m6aþ, in vivo m6a-) with the same training and testing conditions

(balanced training set, filtering out sequence redundancy). The accuracies are reported for the scores ranked by their absolute value (same number of positives and negatives

were selected), where 50% is the complete set (median). Integrating predictions with protein interactions improves the accuracy. (B) Secondary structure profile of Xist using

m6a- model. Known repetitive regions of Xist such as Rep A and Rep C are reported to be very structured (i.e. score > 0). The predicted profile has an overall correlation of

0.45 with in vivo SHAPE data. In the top right we report the ROC curve of CROSSalive on the top and bottom 15% ranked SHAPE data (AUC of 0.83)
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