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Abstract

Summary: DDAP is a tool for predicting the biosynthetic pathways of the products of type I modular polyketide syn-
thase (PKS) with the focus on providing a more accurate prediction of the ordering of proteins and substrates in the
pathway. In this study, the module docking domain (DD) affinity prediction performance on a hold-out testing data-
set reached 0.88 as measured by the area under the receiver operating characteristic (ROC) curve (AUC); the Mean
Reciprocal Ranking (MRR) of pathway prediction reached 0.67. DDAP has advantages compared to previous inform-
atics tools in several aspects: (i) it does not rely on large databases, making it a high efficiency tool, (ii) the predicted
DD affinity is represented by a probability (0–1), which is more intuitive than raw scores, (iii) its performance is com-
petitive compared to the current popular rule-based algorithm. DDAP is so far the first machine learning based algo-
rithm for type I PKS DD affinity and pathway prediction. We also established the first database of type I modular
PKSs, featuring a comprehensive annotation of available docking domains information in bacterial biosynthetic
pathways.
Availability and implementation: The DDAP database is available at https://tylii.github.io/ddap. The prediction algo-
rithm DDAP is freely available on GitHub (https://github.com/tylii/ddap) and released under the MIT license.
Contact: ukarvind@umich.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Natural products (NPs) such as penicillin, erythromycin, artemisinin,
taxol and tetrodotoxin are small chemical compounds produced by
bacteria, fungi, plants and animals. These small molecules are found
to display a broad range of biological activities (Katz and Baltz,
2016). About 40% of new drugs approved in the past 30 years were
either unaltered NPs or derived from NPs (Newman and Cragg,
2016). Interest is growing in the search for novel NPs in both indus-
trial and academic fields. Although new mass spectrometry (MS), and
nuclear magnetic resonance (NMR) technologies have improved effi-
ciency, complete characterization of isolated NPs is still an intellectual
challenge, which renders structure elucidation of new NPs time con-
suming. Developing computational tools to predict NP structures
based on DNA/protein sequences [e.g. antiSMASH (Blin et al., 2019),
NP.searcher (Li et al., 2009), PRISM (Skinnider et al., 2017) and
SeMPI (Zierep et al., 2017)] is of high interest to facilitate and stream-
line structure characterization, and offer new automated approaches.

Polyketide synthases (PKSs) are one of the most important
classes of biosynthetic enzymes. Type I modular PKS (T1PKS) con-
sists of a series of genes encoding multifunctional proteins, including
a loading module and multiple extension modules (Dutta et al.,
2014). Each extension module is responsible for adding one acyl-
monomer to the polyketide chain. The assembly order of polyketide
substrates is not always coincident with gene cluster architecture in
the bacterial genome. Therefore, finding the correct order of mod-
ules and substrates in the polyketide biosynthetic pathway is a cru-
cial step in structure prediction. Previous research has demonstrated
that the substrate assembly order is determined by cognate docking
domain (DD) pairs at the N-/C-terminus of PKS proteins (Gokhale
and Khosla, 2000; Gokhale et al., 1999). In 2009, Yadav et al. pub-
lished a rule-based DD affinity prediction algorithm, based on a gen-
eral assumption about the 6-deoxyerythronolide B synthase (DEBS)
DD structure (Yadav et al., 2009). This method is used by many
well-known NP discovery tools including antiSMASH and
NP.searcher, despite its several defects (see Supplementary
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Materials): (i) The assumed DD structure does not apply to all DDs
(Moss et al., 2019; Whicher et al., 2013). (ii) This algorithm typical-
ly yields a large number of tied ranks in pathway prediction. (iii)
The upper/lower limits of the pathway likelihood scores vary with
the total number of genes in the PKS, which makes the scores diffi-
cult to interpret. The Yadav et al. study is the only available algo-
rithm that specifically predicts DD affinity in T1PKS.

In this study, we collected pathway information of T1PKS from
manuscripts published over the past 24 years (1995–2018) and
developed a machine learning based docking domain affinity predic-
tion tool, DDAP. DDAP uses protein sequences to predict the assem-
bly order of the compounds produced by T1PKS. The DDAP
database includes 172 T1PKS and 764 docking domains. This is the
first and most comprehensive database of DDs in bacterial type I
modular PKSs.

2 Materials and methods

2.1 The DDAP database
The DDAP database contains 172 records of type I modular PKS
proteins, among which 92 are annotated with published pathway in-
formation, 80 are annotated with pathways predicted by DDAP.
Pathway information includes the docking domain sequences (764
DDs) and the order of genes in the biosynthetic pathway. Users are
able to download all above-mentioned datasets from the database
and browse the pathway data through an interactive table on the
web page.

2.2 Docking domain affinity prediction
DDAP has two main functions: (i) predicting the likelihood of inter-
action given the amino acid (AA) sequences of a C-terminal DD
(Head) and a N-terminal DD (Tail); (ii) predicting the most likely
pathways based on the predicted DD affinity. DDAP uses machine
learning models to predict DD affinity (Fig. 1A–C). DDAP takes DD
sequences in FASTA format as input and returns the predicted affin-
ity of each DD pair. The affinity will always be a number between 0
and 1, where 1 indicates high affinity (Fig. 1D).

2.3 Pathway prediction
antiSMASH 5 is a state-of-the-art tool for natural product gene clus-
ter discovery (Blin et al., 2019). Following antiSMASH identifica-
tion of a biosynthetic gene cluster, DDAP can read the PKS
annotation and its docking domain affinity prediction algorithm
predicts the order of modules/substrates in the biosynthetic pathway
(see Supplementary Materials). Alternatively, users can also provide
the AA sequences of PKS proteins in FASTA or CSV format. In the
output, DDAP returns an exhaustive list of all possible pathways,
each associated with a probability score (0–1), and a SMILES string
representing the backbone structure of the proposed biosynthetic
product. DDAP also provides a plot of the compound structure for
the top ten most likely pathways (Fig. 1E).

3 Results

According to the five-fold cross-validation results of the best per-
forming model, the area under the receiver operating characteristic
(ROC) curve (AUC) for DD affinity prediction was 0.80 (95% CI:
0.78–0.81). The Mean Reciprocal Ranking (MRR) of the true path-
ways was 0.63 (95% CI: 0.59–0.67). Approximately 71% of the
time, the true pathway ranked among the top three. We further
tested the best performing model on the hold-out testing set. The
final model achieved AUC ¼ 0.88 (95% CI: 0.77–0.98) for DD af-
finity prediction. The MRR for pathway prediction was 0.67 (95%
CI: 0.27–1.00). The true order received the highest likelihood score
in 4 of 7 testing pathways (see Supplementary Materials).

Finally, we compared our method with the most widely used
method, which was originally developed by Yadav et al., and later
adopted by antiSMASH and NP.searcher. We used antiSMASH
4.2.0 (Blin et al., 2017) to test the performance of Yadav’s method.

Seventy pathways were used to compare the performance (see
Supplementary Materials). For these 70 pathways, antiSMASH
achieved MRR ¼ 0.48 (95% CI: 0.38–0.57); DDAP achieved MRR
¼ 0.62 (95% CI: 0.57–0.66).

4 Conclusion

In this study, we established a database for pathways and docking
domains of type I modular polyketide synthases. We also built a ma-
chine learning based algorithm that predicts T1PKS pathways. The
DDAP algorithm is shown to outperform the state-of-the-art without
relying on large databases of proteins/compounds. The prediction
tool can be readily incorporated into natural product discovery pipe-
lines and used as a complementary tool along with genome mining
software to provide accurate predictions of bacterial type I modular
PKS pathways and backbone structures of the secondary metabolites.
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Fig. 1. Overview of DDAP algorithm. (A) A schematic view of polyketide synthase

modules and docking domains. (B) The pipeline of the feature selection method in

Model 1. The similarity measure utilized in this study is the bit-score which is not in

the range of (0–1) as depicted in the plot. (C) The pipeline of the feature selection

method in Model 2. (D) An example of the input and output of DDAP for docking

domain affinity prediction. (E) An example of the input and output of DDAP for

pathway prediction
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