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Abstract

Motivation: Increasing numbers of large scale single cell RNA-Seq projects are leading to a data explosion, which
can only be fully exploited through data integration. A number of methods have been developed to combine diverse
datasets by removing technical batch effects, but most are computationally intensive. To overcome the challenge of
enormous datasets, we have developed BBKNN, an extremely fast graph-based data integration algorithm. We illus-
trate the power of BBKNN on large scale mouse atlasing data, and favourably benchmark its run time against a num-
ber of competing methods.

Availability and implementation: BBKNN is available at https://github.com/Teichlab/bbknn, along with documenta-
tion and multiple example notebooks, and can be installed from pip.

Contact: st9@sanger.ac.uk or jp24@sanger.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The past few years have seen a rapid development of single cell
RNA-Seq, with its increased throughput allowing large scale atlas
projects to release data for hundreds of thousands of cells (Tabula
Muris Consortium et al., 2018; Han et al., 2018). As with any tech-
nology, variation in experimental procedures and conditions be-
tween labs creates batch effects that need to be corrected, especially
if the potential of collaborative large scale atlasing efforts is to be
realized (Kiselev et al., 2018). A number of algorithms have been
proposed to tackle this problem (Barkas et al., 2018; Butler et al.,
2018; Haghverdi et al., 2018; Hie et al., 2019; Korsunsky et al.,
2018; Stuart et al., 2019), but most of them struggle with excessive
run time or resource requirements. This is likely to be further exa-
cerbated as the size of scRNA-Seq collections continues to grow.
The need for effective scaling into huge datasets is leading to
scRNA-Seq analysis becoming established in Python, with SCANPY
(Wolf et al., 2018) offering a comprehensive set of analysis and visu-
alization tools covering the entirety of a typical workflow. The only
batch correction method currently operating in Python is
Scanorama (Hie et al., 2019), which has massive resource require-
ments that make it challenging to analyze large data collections.

Here, we present BBKNN (batch balanced k nearest neighbours),
a simple, fast and lightweight batch alignment method. Performing

batch correction at the neighbourhood graph inference step allows
for the creation of an algorithm one to two orders of magnitude
faster than existing methods, including those implemented with effi-
cient performance in mind. BBKNN is written in Python and com-
patible with SCANPY, and its output can be immediately used for
dimensionality reduction (McInnes and Healy, 2018), clustering
(Traag et al., 2019) and pseudotime inference (Haghverdi et al.,
2016). We illustrate the method’s utility using a large collection of
mouse atlasing data (Tabula Muris Consortium et al., 2018; Dahlin
et al., 2018; Deng et al., 2014; Han et al., 2018; Kernfeld et al.,
2018; Mohammed et al., 2017; Park et al., 2018; Zeisel et al.,
2015), and benchmark its run time against established methods on
datasets of up to 219 cells.

2 Materials and methods

A common step in scRNA-Seq analysis is the identification of a
neighbourhood graph, often done as identifying each cell’s k nearest
neighbours in principal component space. This graph is a good ap-
proximation of cell population structure, providing a basis for di-
verse downstream analysis. This includes clustering (Traag et al.,
2019), dimensionality reduced visualization (McInnes and Healy,
2018) and pseudotime trajectory inference (Haghverdi et al., 2016).
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However, experimental variation added by batch effects often leads
to cells being unable to connect to the same cell type/state across
batches, introducing distortion and fracturing to this graph struc-
ture. This causes significant problems in all downstream analysis
options outlined above.

BBKNN modifies the neighbourhood construction step to pro-
duce a graph that is balanced across all batches of the data. This ap-
proach treats the neighbour network as the primary representation
of the data. For each cell, the BBKNN graph is constructed by find-
ing the k nearest neighbours for each cell in each user-defined batch
independently, resulting in each cell having an independent pool of
neighbours in each batch. The neighbour sets are subsequently
merged and processed via the UMAP algorithm (McInnes and
Healy, 2018), which is the standard adopted by SCANPY (Wolf
et al., 2018). BBKNN’s speed stems from a combination of the sim-
plicity of the algorithm with the default use of approximate neigh-
bour detection (annoy, https://github.com/spotify/annoy). This
allows the algorithm’s run time to linearly scale with cell total in-
crease. An exact neighbour detection algorithm (Johnson et al.,
2017) is supported at a performance loss.

BBKNN’s main assumption is that at least some cells of the same
type exist across batches, and that the differences between the same
cell type across batches caused by batch effects are less than the dif-
ferences between cells of different types within a batch. This is the
core assumption of mnnCorrect (Haghverdi et al., 2018) and other
methods inspired by it. In this case, the graph construction will
group together similar cell types across batches while leaving unre-
lated cell types well separated. Further details of the method, along
with a demonstration on simulated (Zappia et al., 2017) and real
(Kiselev et al., 2018) data, are discussed in the Supplementary
Methods and Supplementary Figures S1–S4.

3 Results

Recent times have seen a veritable flood of murine scRNA-Seq data,
with multiple labs across the world collecting diverse datasets rang-
ing from early embryo development to fully matured adult organs.
We have collated eight of those, covering cells from at least 26 dif-
ferent mouse organs (Tabula Muris Consortium et al., 2018; Dahlin
et al., 2018; Deng et al., 2014; Han et al., 2018; Kernfeld et al.,
2018; Mohammed et al., 2017; Park et al., 2018; Zeisel et al.,
2015). After down-sampling the data to ensure balanced population
sizes (Supplementary Methods, Supplementary Fig. S5), we ended
up with a collection of 114 600 cells that were clearly split based on
dataset of origin (Supplementary Fig. S6A). Applying BBKNN to the
data overcomes this technical effect. Annotating the cells based on
atlas of origin along with canonical marker genes (Supplementary
Fig. S7) reveals an intuitive biological trajectory (Supplementary
Fig. S6B). It starts in the centre of the manifold with embryonic stem
cells, which branch into T cell, B cell, myeloid, megakaryocyte and
erythrocyte populations in the top of the manifold and epithelial,
mesenchymal, endothelial, muscular and neuronal cells in the other
path. As such, not only does BBKNN successfully correct the batch
effect, it manages to propose a biologically sound structure to the
neighbour graph that translates to a cohesive trajectory in UMAP
space. When correcting the same data with Harmony (Korsunsky
et al., 2018), the leading method in the field, cell populations are
successfully merged but the final manifold is more fragmented, with
no way to reconstruct the developmental trajectory (Supplementary
Fig. S8). The quality of batch mixing in the corrected manifolds was
assessed with kBET (Büttner et al., 2019), with BBKNN mildly out-
performing Harmony on average score (Supplementary Fig. S9).

In order to comprehensively evaluate BBKNN’s efficiency with re-
lation to established methods (Barkas et al., 2018; Butler et al., 2018;
Haghverdi et al., 2018; Hie et al., 2019; Korsunsky et al., 2018; Stuart
et al., 2018), we used simulated data (Zappia et al., 2017) to bench-
mark the algorithms on variably sized datasets (Supplementary Fig.
S10). The total cell count was scaled in powers of two, from 211 to 219,

with each dataset featuring two equally sized batches of two matching
cell types. BBKNN’s default approximate neighbour mode scales lin-
early with the dataset increase and remains consistently one to two
orders of magnitude faster than the other methods. The supported
exact nearest neighbour algorithm does not scale linearly with dataset
increase, but remains faster than Harmony across the benchmark. The
other R-based approaches were left out at the 215 mark, and
Scanorama was unable to complete processing the 216 cell dataset due
to resource constraints. The benchmarking was carried out on a per-
sonal MacBook Pro with 16GB RAM and a four-core i7 processor.
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