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Abstract

Summary: Despite the availability of existing calculators for statistical power analysis in genetic association
studies, there has not been a model-invariant and test-independent tool that allows for both planning of
prospective studies and systematic review of reported findings. In this work, we develop a web-based application
U-PASS (Unified Power analysis of ASsociation Studies), implementing a unified framework for the analysis of
common association tests for binary qualitative traits. The application quantifies the shared asymptotic power
limits of the common association tests, and visualizes the fundamental statistical trade-off between risk allele fre-
quency and odds ratio. The application also addresses the applicability of asymptotics-based power calculations in
finite samples, and provides guidelines for single-SNP-based association tests. In addition to designing prospective
studies, U-PASS enables researchers to retrospectively assess the statistical validity of previously reported
associations.

Availability and implementation: U-PASS is an open-source R Shiny application. A live instance is hosted at https://
power.stat.lsa.umich.edu. Source is available on https://github.com/Pill-GZ/U-PASS.

Contact: gaozheng@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The probability of detecting a true association between genetic and
phenotype variations, known as statistical power, is influenced by a
number of factors such as sample sizes, the statistical test used, the
frequency of the risk variant and magnitude of the effect on the trait.
Power analysis, which determines the suitable factor combinations
in order to achieve sufficient statistical power, plays an important
role in determining study designs (Goodwin et al., 2016; Skol et al.,
2006), and in interpreting published findings (Ioannidis, 2005).

There has been a number of widely used calculators for genome-
wide association studies (GWAS). Sham (1998) studied power ana-
lysis of likelihood ratio tests for associations between marker SNPs
and quantitative or qualitative traits; the results were implemented
in GPC (Purcell et al., 2003). Skol et al. (2006) studied the perform-
ance of two-sample t-tests, and extended the analysis to two-stage
designs; the results were implemented in the CaTS calculator, and
later, in the GAS calculator for one-stage designs (Johnson and
Abecasis, 2017). Independently, Menashe et al. (2008) implemented
the calculations for one-stage designs in the PGA calculator. Recent
works have also studied power of a number of SNP-set-based tests
targeting rare variants (Derkach et al., 2018; Wang et al., 2014). See
Sham and Purcell (2014) for a review.

Despite these efforts, some difficulties remain in practice:

1. Lack of universality. Existing power analyses are tied to the

underlying models and the statistical procedures used; power

calculations for a certain model-method combination may not

be valid if either the model or the method changes. Users are

burdened with matching the appropriate tool to the specific type

of analysis they wish to perform. This is complicated by the fact

that the precise test and model assumptions are rarely made ex-

plicit in the existing calculators.

2. Mismatching definitions of key quantities. While GWAS cata-

logs, e.g. NHGRI-EBI (MacArthur et al., 2017), require studies

to report risk allele frequency (RAF) in the control group, all of

the aforementioned power calculators assume the RAF input to

be the frequency in the general population. These quantities are

not necessarily equal, and using one in place of the other may

grossly distort power estimates.

3. (In)accuracies in finite samples. While existing tools rely on

large-sample approximations in their power calculations, these

approximations are not reliable in finite samples when genetic
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variants are rare. Existing calculators are silent about the applic-

ability of asymptotics-based approximations, and how they

should be corrected.

As a result, it is not only challenging to use the existing power
calculation tools for planning genetic association studies correctly,
but also difficult to systematically review the statistical validity of
findings reported in the literature, since different models and tests
must be handled differently, and with care.

In an effort to address these difficulties and deficiencies, we pro-
pose a unified framework for power analysis of single variant associ-
ation studies. By abstracting away the assumptions of disease
models and testing procedures which may vary from study to study,
we reduce the problem to the essential quantities that are invariant
to nuisance parameters. These ideas are implemented in the software
U-PASS (Unified Power analysis of ASsociation Studies), enabling
model-invariant, test-independent power analysis as well as system-
atic reviews of the statistical validity of reported findings.

We briefly summarize the important features and uses of the
software below. Mathematical details and results from numerical
experiments are collected in the Supplementary Material.

2 Methods and features

2.1 The canonical and disease model parametrizations
We provide two ways of specifying the alternative hypothesis in
power analysis. In addition to specification through disease models,
we provide users with the option to perform power analysis by spec-
ifying the canonical parameters, whose estimates are reported and
curated in the NHGRI-EBI GWAS Catalog:

• Conditional distribution of risk allele variant among controls,

i.e. RAF in the Control group, denoted as f.
• Odds ratio (OR) of allele variants, denoted as R.

The canonical parameters (f and R) are common to models of
qualitative traits and invariant to model choices. This disease
model-invariance allows users to perform power analysis valid for
studies employing different models. We also elucidate on the link be-
tween the two approaches, and provide a ‘disease model converter’
in the application, performing explicit conversions from the disease
models to the canonical parametrizations.

2.2 A test-independent power analysis
While power calculations are necessarily tied to the statistical tests
used, for many common association tests, statistical powers are asymp-
totically equivalent. We show in the Supplementary Material that the
likelihood ratio test, v2 test, Welch’s t-test and LR test for logistic
regressions have asymptotically the same power, as long as the canonic-
al parameters assume the same values. This test-independent analysis
allows us to calculate power in a unified fashion, regardless of the stat-
istical tests used. In particular, when performing retrospective analysis,
users need only specify the number of cases and controls. The common
power limits are calculated as a function of RAF and OR, and visual-
ized as a heatmap in the OR-RAF diagram. The formulas used for
power calculations in terms of the canonical parameters are detailed in
Supplementary Material Section 4.

2.3 Review and forensics of reported findings
This unified treatment allows us to examine results from different
studies in the same diagram, even when they do not employ the
same model or statistical test. This enables systematic reviews of
reported findings for their statistical validity. In particular, a
reported association predicted to have low power given the study’s
sample size—lying in the dark regions of the OR-RAF diagram—
while not impossible, invites further scrutiny.

Studies where reported associations show misalignment with the
predicted equi-power curves may be further investigated for potential
problems. We reached out to one study where gross misalignment was
identified (Domı́nguez-Cruz et al., 2018). The authors of the study con-
firmed that this was the result of a problem in the data curation process
of the GWAS Catalog (Domı́nguez-Cruz, personal communication).

The software provides options for users to load and overlay find-
ings reported in the NHGRI-EBI GWAS Catalog, or upload data
from other sources compliant with the Catalog’s data format.

2.4 Rare variants and finite sample corrections
We address the quality of asymptotic approximations in our power
analysis, as well as the applicability of single variant tests when rare
genetic variants are present. Specifically, we provide a lower bound
on the variant counts needed to calibrate Fisher’s exact test. If vari-
ant counts fall below the threshold, exact tests, and by extension,
single-SNP-based association tests, cannot be correctly calibrated to
have the desired Type I error rate without sacrificing all statistical
power. In such cases, the asymptotic approximations do not apply.
We mark this low-count, low-power region on the OR-RAF dia-
gram. See Supplementary Material Section 5 for further details.

The software also provides options for users to specify the rare
variant as (i) having less than a specified count or (ii) occurring in
less than a percentage of all subjects in the study, as is customary in
the literature.

3 Implementation

U-PASS is implemented as an interactive web-based R Shiny applica-
tion, hosted at https://power.stat.lsa.umich.edu, open to the public.
Source code is freely available at https://github.com/Pill-GZ/U-PASS.
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