
Gene expression

SpaCell: integrating tissue morphology and spatial gene

expression to predict disease cells

Xiao Tan†, Andrew Su†, Minh Tran and Quan Nguyen *

Division of Genetics and Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, QLD, Australia

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Anthony Mathelier

Received on August 12, 2019; revised on November 22, 2019; editorial decision on November 28, 2019; accepted on December 4, 2019

Abstract

Motivation: Spatial transcriptomics (ST) technology is increasingly being applied because it enables the measure-
ment of spatial gene expression in an intact tissue along with imaging morphology of the same tissue. However, cur-
rent analysis methods for ST data do not use image pixel information, thus missing the quantitative links between
gene expression and tissue morphology.

Results: We developed a user-friendly deep learning software, SpaCell, to integrate millions of pixel intensity values
with thousands of gene expression measurements from spatially barcoded spots in a tissue. We show the integra-
tion approach outperforms the use of gene-count data alone or imaging data alone to build deep learning models to
identify cell types or predict labels of tissue images with high resolution and accuracy.

Availability and implementation: The SpaCell package is open source under an MIT licence and it is available at
https://github.com/BiomedicalMachineLearning/SpaCell.

Contact: quan.nguyen@uq.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Spatial transcriptomics (ST) technology is emerging as an important
platform for measuring molecular biological processes at the tissue
level (Burgess, 2019). Different from other genomics technologies,
ST does not require dissociating cells from the original tissue.
Molecular measurements can be mapped back to the spatial location
of the cells in tissue via spatial barcodes, adding a novel spatial data
dimension to gene expression data. Moreover, platforms such as
Slide-seq generate a tissue image and a gene expression profile of the
same tissue, allowing the integration of tissue morphology and spa-
tial gene expression (Salmén et al., 2018).

However, incorporating imaging data to gene expression data is a
new analysis area, while current analysis pipelines mainly focus on
using expression values but not image pixel values. Image pixel inten-
sity data contain informative features that can be used for diagnosing
diseases such as for cancer staging (Coudray et al., 2018). Although
machine learning methods exist for analyzing imaging data (Komura
and Ishikawa, 2018), these methods do not utilize molecular data.
Advances in genomics technologies create new data types for novel
machine learning applications to combine molecular measurements
with image pixel data to characterize tissue morphological images be-
yond current pathological annotation (Hekler et al., 2019). Existing
methods for spatial data analysis, however, use gene expression, but
not image pixel information (Dries et al., 2019; Navarro et al., 2017).

We developed SpaCell with a comprehensive workflow to utilize both
pixel and gene expression data to train neural network (NN) models
for cell-type and disease-stage classification.

2 Main workflow

SpaCell’s workflow (Fig. 1) starts with two-stream data preprocessing.
For image preprocessing, SpaCell first removes any colour cast, which
is the background difference from the white background in the
Hematoxylin and Eosin staining image, then performs stain normal-
ization to overcome inconsistencies in the staining process (Macenko
et al., 2009) (Supplementary Methods). Then, high images are tiled
into small tiles and the tiles are resized to 299� 299 pixels, where
each tile contains one spot. To increase model performance and gener-
alizability, SpaCell performs random rotation and Z-transform of the
tiled images for each training step. For count matrix preprocessing,
gene counts are mapped read counts to each ST spot, recovered by
spatial barcodes. A large range of programs developed for single-cell
data analysis are available for users to process and normalize count
data. SpaCell has built-in and fast options to remove unreliably
detected spots and genes, followed by library-size normalization.

In the cell-type classification model (Supplementary Methods),
SpaCell analyses one high-resolution image and its spatial count ma-
trix. To extract a latent feature vector for each image tile, we fit pre-
trained convolutional neural network (CNN) weights from the
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ResNet50 model to utilize big data in the ImageNet database. For
each tile feature vector and its corresponding spot gene counts, we
trained two autoencoders to find two latent spaces of equal dimen-
sion, which are then concatenated into one latent vector. For all
spots, the latent vectors are then combined to form a latent matrix
representative for both image and gene-count data, which are then
used to perform clustering (default as K-means clustering) to identify
cell types. After spot clustering, SpaCell provides visualization func-
tions to evaluate the model performance. Importantly, to enable
quantitative comparison to pathological annotation information, we
devised an approach to automatically and accurately detect and
map annotation contours from a low-resolution image to a whole
slide image. After mapping, we use spot coordinates and the
contour-masked regions to compare computational prediction with
pathological annotation.

In the disease-stage prediction model (Supplementary Methods),
SpaCell uses hundreds of images and corresponding count matrices.
Both tiles and count data are input into a fully connected model, ini-
tially as two streams (Fig. 1). Each image tile is initiated by a CNN
with weights pre-trained on the ImageNet dataset and these weights
are trainable together with parameters from the count stream. To in-
crease model generalization and reduce over-fitting, the following
strategies are applied: random sampling of images stratified by labels
ensuring unseen test images, 5-fold cross-validation, drop-out and L2
penalization. Following model training, users can apply evaluation
functions in SpaCell for quantitative analysis of model performance
such as test accuracy, ROC curves and confusion matrix.

SpaCell models were tested on a prostate cancer (Berglund et al.,
2018) and amyotrophic lateral sclerosis (Maniatis et al., 2019)

datasets (Supplementary Methods), which represent a dataset with
few images and high resolution compared to a dataset with more
images and lower resolution. By testing >40 models, we consistently
found that the combination of pixel and gene expression data
improved model performance by 8–14% in accuracy, precision, F-
score and area under the curve in cell-type models (Supplementary
Figs S1 and S2) and 4% in disease-stage classification models
(Supplementary Fig. S3).

3 Implementation

SpaCell has been developed with Python 3.7 as a user-friendly soft-
ware. Installation and tutorials are described in the SpaCell GitHub
page and PyPI repository. Changes in the parameter settings are kept in
the config file for reproducibility. SpaCell uses Keras and TensorFlow
backend which are portable between platforms and supports graphics
processing units distribution to accelerate the training step.

4 Conclusion

SpaCell is a pioneering software program implementing deep NNs
for integrating image pixel data and spatial gene expression data for
biomedical research. We show that SpaCell can automatically and
quantitatively identify cell types and disease stages. We tested over
40 models and consistently found that the integration of both data
types increased model performance compared to using one type of
data input. Moreover, SpaCell prediction results have higher reso-
lution, specific to thousands of spatial spots, compared to typical
pathological annotation with several large regions. We expect that
our model can be applied to any type of spatial omics data that have
both images and expression values.
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Fig. 1. Two main analysis workflows of SpaCell: cell-type identification and disease-

stage classification
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