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Abstract

Motivation: The use of liquid biopsies for cancer patients enables the non-invasive tracking of treatment response
and tumor dynamics through single or serial blood drawn tests. Next-generation sequencing assays allow for the
simultaneous interrogation of extended sets of somatic single-nucleotide variants (SNVs) in circulating cell-free
DNA (cfDNA), a mixture of DNA molecules originating both from normal and tumor tissue cells. However, low circu-
lating tumor DNA (ctDNA) fractions together with sequencing background noise and potential tumor heterogeneity
challenge the ability to confidently call SNVs.

Results: We present a computational methodology, called Adaptive Base Error Model in Ultra-deep Sequencing
data (ABEMUS), which combines platform-specific genetic knowledge and empirical signal to readily detect and
quantify somatic SNVs in cfDNA. We tested the capability of our method to analyze data generated using different
platforms with distinct sequencing error properties and we compared ABEMUS performances with other popular
SNV callers on both synthetic and real cancer patients sequencing data. Results show that ABEMUS performs better
in most of the tested conditions proving its reliability in calling low variant allele frequencies somatic SNVs in low
ctDNA levels plasma samples.

Availability and implementation: ABEMUS is cross-platform and can be installed as R package. The source code is
maintained on Github at http://github.com/cibiobcg/abemus, and it is also available at CRAN official R repository.

Contact: f.demichelis@unitn.it or alessandro.romanel@unitn.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Liquid biopsy provides an exceptional source of information for the
identification and measurement of biomarkers relevant to precision
oncology, from diagnosis and prognosis to treatment selection and
monitoring of treatment response (Heitzer et al., 2019). Circulating
cell-free DNA (cfDNA) carries the genomic characteristics of tumor
cell material shed into the bloodstream. In the presence of metastatic
disease and/or of multifocal tumors, where single tissue biopsies
would fall short in allowing heterogeneity assessment, cfDNA repre-
sents an ideal alternative to capture the disease genomic features.

Several studies already demonstrated the prognostic value of circu-
lating tumor DNA (ctDNA; the fraction of free DNA released from
tumor cells as opposed to normal cells) and the ability to track
tumor dynamics through the analysis of genomic lesions detected in
the circulation of cancer patients (Annala et al., 2018; Bettegowda
et al., 2014; Dawson et al., 2013; Sclafani et al., 2018; Siravegna
et al., 2015; Thierry et al., 2014; Tie et al., 2016; Vietsch et al.,
2017). One outstanding example of the use of liquid biopsy for the
detection of relevant single-nucleotide variant (SNV) is the FDA-
approved test for EGFR exon 21 L858R substitution mutation in
metastatic non-small-cell lung cancer patient (Kwapisz, 2017),
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approved on June 1, 2016. While highly sensitive technologies as
digital PCR can be used for the investigation of SNVs in cfDNA,
only next-generation sequencing (NGS) approaches allow for the
simultaneous interrogation of large sets of genomic loci and for the
discovery of mutations, with yet restricted amount of DNA (10–50
ng). In the NGS-based cfDNA testing, the perfect trade-off between
SNV detection performance and sequencing depth is key.
Specifically, low ctDNA fractions together with potential tumor het-
erogeneity challenge the ability to confidently call SNVs also due to
the sequencing background noise. We therefore recognized the need
for a benchmarked widely applicable computational method that
combines individual’s genetic knowledge and empirical signal to
readily detect and quantify somatic SNVs in cfDNA also in the pres-
ence of low tumor fractions. We set up a computational method-
ology named Adaptive Base Error Model in Ultra-deep Sequencing
data (ABEMUS) to discriminate between true SNVs and artefactual
signals by learning locus-specific and data-driven variant-allelic frac-
tion (AF) thresholds while leveraging platform-specific single base
resolution information from sequencing assays (Fig. 1). Performance
and results were compared across an array of in silico and real liquid
biopsy data (including in silico dilutions) against SNV detection
methods commonly used in tumor tissue-based studies (Cibulskis
et al., 2013; Kim et al., 2018; Koboldt et al., 2012; Larson et al.,
2012) or specifically proposed for cfDNA data (Kockan et al.,
2017).

2 Materials and methods

2.1 Plasma and germline sequencing data from cancer

patients
To build different ABEMUS platform-specific sequencing error ref-
erence models and study their properties, we collected germline sam-
ples sequencing data profiled using five platforms (here intended as
the combination of library preparation kit and sequencing machine/
chemistry). Specifically, we used both (i) whole-exome sequencing
(WES) data from 40 normal samples sequenced both with
NimbleGen (Roche NimbleGen SeqCap Exome v3, 64 Mb covered)
(Beltran et al., 2017) and with HaloPlex (Agilent HaloPlex Exome,
36 Mb covered) kits (Beltran et al., 2016), and (ii) custom-targeted
panel data from three sets of normal samples (N¼20, 113 and 3)
sequenced via Roche NimbleGen N250 targeted panel, Ion
AmpliSeq Targeted Custom Amplicon Panel (Carreira et al., 2014;
Romanel et al., 2015) or Illumina True Seq Custom Amplicon and
covering 3.2 Mb, 40 kb and 106 kb, respectively (see Supplementary
Table S1). Additionally, we queried 118 plasma samples from 17
metastatic prostate cancer patients (median number of plasma sam-
ples per patient is 5) profiled on an Ion AmpliSeq Targeted Custom
Amplicon Panel. The case samples have been previously annotated
by tumor content (ctDNA) using CLONET (Prandi et al., 2014) and
by manually curated SNVs calls (Carreira et al., 2014).

2.2 Data pre-processing for ABEMUS computations
Pileup data (PILEUP files) were generated using PaCBAM (Valentini
et al., 2019) to obtain depth of coverage and allele-specific statistics
at each considered locus. Genomic positions with variant AF greater
than zero are available in *.pabs PaCBAM output files. Sequencing
reads with read and base qualities �20 were retained in the pileup
computation.

2.3 Global and local estimations of sequencing errors
Given a set of germline samples profiled with the same platform, cu-
mulative PILEUP across all samples for all targeted genomic positions
is computed. PILEUP data are used by ABEMUS to build the overall
distribution of variant AFs observed in the set of germline samples
(global sequencing error distribution, GSE) and to compute a locus-
specific measure (per-base error measure, pbem). The GSE is used to
determine a coverage independent AF threshold (AFth) and a
coverage-dependent AF threshold (AFth cov bin). Given a desired level
of specificity (user defined, default 0.995), the AFth value is computed

as the corresponding quantile of the GSE, while AFth cov bin values are
similarly computed stratified by depth of coverage bins. Formally,

AFth ¼ quantileðGSE; sÞ
AFth cov bin ¼ quantileðGSEcov bin; sÞ

where s is the desired detection specificity (0� s�1), and
GSEcov bin � GSE is the subset of AFs in GSE with depth of coverage
within a bin of coverage, cov bin.

The local pbem is computed as:

pbemx ¼

PN

i¼1

alti x

PN

i¼1

covi x

where x is a genomic locus, alt is the number of sequencing reads
supporting an allele different from the reference, cov is the total
coverage and N the number of germline samples considered.

2.4 ABEMUS single-nucleotide variants calls
Given a plasma sample and pre-computed GSE and pbem estima-
tions, the identification of putative somatic SNVs in the plasma sam-
ple is performed through two main sequential filtering steps. First,
ABEMUS filters genomic positions using either the pre-computed
coverage independent AFth or coverage-dependent AFth cov bin thresh-
olds (as determined by user, default coverage-dependent AFth cov bin).
The former applies the same threshold across all positions with
AF > 0, while the latter applies coverage stratified thresholds to each
locus x based on the depth of coverage covx 2 cov bin. Last, for each
retained locus, ABEMUS tests the plasma sample locus x AF against
the corresponding pbemx. Since the pbem is computed on all reads
from a panel of germline samples, at a specific locus x, the AF thresh-
old AFthpbem

ðxÞ is computed as a function of the pbemx and of the

local plasma sample coverage (covx) as follows:

AFthpbem
ðxÞ ¼ F pbemx; covx

� �
�Rcov;tsize

This function returns the maximum AF observed among
100 000 experiments modeled as binomial distributions Bðn; pÞ with
p corresponding to pbemx and number of trials n corresponding to
the locus coverage covx. This value is then rescaled by a factor
R cov;tsize; which maximizes ABEMUS precision and recall in plasma
samples with global mean coverage equal to cov and target size
equal to tsize.

Further filtering criteria on minimal locus coverage and minimal
AF in plasma sample can be applied to reflect a priori user-specific
requirements. Additionally, when matched germline sample data are
available, filters on minimal locus coverage and maximal AF in
matched germline sample can be applied. At each computation step,
the list of genomic loci to be processed is reduced (intermediate and
final lists are saved). The final list includes the set of putative somat-
ic SNVs for the plasma sample.

2.5 Synthetic BAM files generation, preserving real data

features, coverage and sequencing error
To test ABEMUS performance, synthetic BAM files were generated
using summary statistics from a collection of human germline sam-
ples. Specifically, we considered 50 germline BAM files profiled
with Agilent HaloPlex Exome kit (36 Mb covered) at approximately
200� mean depth of coverage (Beltran et al., 2015). Coverage and
allele-specific statistics across all captured genomic regions were
computed and characterized both at region and base-specific level.
In particular, we computed pbem and the probability distribution
Pstart, which for each position x in the panel measures the probabil-
ity of observing a mapped read with starting position in x. Synthetic
BAM files were obtained from synthetic FASTQ files aligned to the
human hg19 reference genome using BWA aligner (Li and Durbin,
2009) and were finally processed with SAMtools (Li et al., 2009).
Given a number N of required reads of length L and a set S of
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heterozygous SNPs derived from randomly selected European indi-
viduals from the 1000 Genomes Project, synthetic FASTQ files were
created by generating N synthetic reads using the following proced-
ure: (i) select a start alignment position chr : x using the probability
distribution Pstart; (ii) build the read sequence considering the gen-
omic coordinates chr : x; ðxþ LÞ in the human hg19 reference gen-
ome and select an allele with probability 0.5; (iii) introduce an error
at each read position chr : y 2 chr : x; chr : xþ Lð Þ½ � with a prob-
ability reflective of maxð0:002; pbemyÞ where 0.002 is the average
background error computed from the original germline data; (iv)
introduce the alternative base of a SNP s 2 S at genomic position
chr : y 2 chr : x; chr : xþ Lð Þ½ � if chr : y corresponds to the genomic
position of SNP s. If the synthetic data are intended to represent a
case sample, an heterozygous SNV m from a set M of pre-selected
heterozygous SNVs is introduced in a read at position chr : y 2
chr : x; chr : xþ Lð Þ½ � if chr : y corresponds to the genomic position
of SNV m; the SNV is introduced with a probability TC, where
TC 2 ½0; 1� represents a level of ctDNA. Base quality values in
FASTQ files are all set to a pre-defined value Q. Using this

procedure, we generated two large datasets of synthetic data, one to
optimize ABEMUS performance and one to run comparative per-
formance study with other tools.

2.6 Generation of synthetic data to optimize ABEMUS

performance
Using the previously described procedure, we generated a set of 50
synthetic germline BAM files and a set of 9 plasma-germline synthet-
ic BAM file pairs reflective of covering 36 Mb (100% of HaloPlex
target) at mean coverage of 2000�. Plasma BAM files were gener-
ated introducing in each sample a different set of 200 clonal hetero-
zygous SNVs and mimicking a range of ctDNA values, as 80%,
40%, 20%, 15%, 12.5%, 10%, 7.5%, 5% and 2.5%. PILEUP data
for these samples were calculated with PaCBAM and used to gener-
ate synthetic input data for ABEMUS covering different scenarios of
depth of coverage, target size and admixture level. Specifically, start-
ing from those PILEUP data and adopting a sub-sampling proced-
ure, we generated synthetic input data to represent assays with

Fig. 1. ABEMUS schematic ABEMUS inputs are pre-processed sequencing data from (matched) control and case samples (e.g. plasma, tumor tissue) profiled using the same

platform (library preparation kit and sequencing machine). The computational workflow includes two separate steps. First, control samples are pooled and analyzed to esti-

mate platform-specific error models: (i) overall distribution of allelic fractions (AFs) (global sequencing error estimation, GSE) and (ii) locus-specific error measure (per-base

error measure, pbem). For an intended specificity level, the GSE is used to determine coverage independent (AFth) and coverage-dependent (AFth cov bin) AF thresholds (GSEs

corresponding to AF¼0 not shown although considered in quantile estimations). For each position x, the AF threshold AFthpbem
xð Þ is computed as a function of the observed

local pbemx and is dependent on the locus coverage covx and on the assay target size through a rescaling factor R. Second, for each case sample, ABEMUS nominates a set of

putative somatic SNVs by filtering all available genomic positions having AF> 0 using pre-computed global and local sequencing error estimations

ABEMUS: platform-specific and data-informed detection of somatic SNVs in cfDNA 2667
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smaller genomic targets (75%, 50%, 25%, 12.5%, 6%, 3%, 1%,
0.5% and 0.1% corresponding to 26.6, 17.7, 8.9, 4.4, 2.1, 1.1, 0.4,
0.2 and 0.04 Mb of the 36 Mb HaloPlex target, respectively), each
at multiple mean coverages (50%, 25%, 10% of the original cover-
age corresponding to 1000�, 500� and 200� mean coverage, re-
spectively). Combinations of targets (N¼10) and coverage levels
(N¼4) resulted in an extended collection of 2000 synthetic germline
input data grouped in 40 target-coverage classes and 360 synthetic
plasma-germline input data also grouped in 40 target-coverage
classes across 9 different levels of ctDNA. Case tumor BAM files
were generated introducing in each case a different set of 200 clonal
heterozygous SNVs except for BAM files covering 0.2 and 0.04 Mb
in which sets of 100 clonal heterozygous SNVs were introduced. For
all synthetic samples, base qualities were set to 20. Generated syn-
thetic reads length was set to 101 bp. This dataset is referred to as
Synthetic Dataset #1.

2.7 Generation of synthetic data for comparative

analyses with published tools
A second set of plasma and matched germline synthetic BAM files
was generated to compare ABEMUS performances against published
SNV detection tools. Three combinations of depth of coverage and
target size were considered: (i) 2000� mean depth of coverage
across 1% HaloPlex target; (ii) 1000� mean depth of coverage
across a 12.5% of HaloPlex target and (iii) 200� mean depth of
coverage across 100% HaloPlex target. For each scenario, we gener-
ated 50 synthetic germline BAM files and a set of 9 synthetic
plasma-germline samples pairs spanning a range of ctDNA values
(80%, 40%, 20%, 15%, 12.5%, 10%, 7.5%, 5% and 2.5%). Case
plasma BAM files were generated introducing in each sample a dif-
ferent set of 200 clonal heterozygous SNVs. For each plasma sam-
ple, two synthetic BAM files were generated, considering base
qualities set to 20 and 30. Generated synthetic reads length was set
to 101 bp. This dataset is referred to as Synthetic Dataset #2.

2.8 In silico dilutions from real cfDNA data for

comparative analyses with published tools
To further perform comparative analyses with published tools, we
created in silico dilutions from real cfDNA and matched normal
data, in order to control for ctDNA. Briefly, from previously pub-
lished data (Carreira et al., 2014), we selected 41 plasma samples
from 8 patients with at least one reported somatic SNV and with
plasma mean coverage higher than the matched germline control
sample (Buccal Swab). A computational procedure was applied to
precisely admix fractions of tumor and germline sequencing reads
sampled from original BAM files accordingly to the intended
ctDNA while preserving the original mean depth of coverage. Let
ctDNAin be the reported ctDNA level of the plasma sample,
ctDNAtar be the target ctDNA level, covp be the mean coverage of
the plasma sample and covg be the mean coverage of the germline
sample. Then, synthetic dilutions are obtained by mixing a fraction
Fp of plasma data reads and a fraction Fg of germline data reads
(when Fg � 1), with:

Fp ¼
ctDNAtar

ctDNAin
and Fg ¼ ð1� FpÞ�

�covp

�covg

By applying this procedure, a final set of 291 synthetically
diluted samples covering a wide range of ctDNA levels (80%, 40%,
20%, 15%, 12.5%, 10%, 7.5%, 5% and 2.5%) was generated.
This dataset, which is hence built using a sub-sampling procedure
that mixes sequencing reads from real cfDNA and matched control
samples, is referred to as Synthetic Dataset #3.

2.9 ABEMUS parameters used in study experiments

and data availability
ABEMUS parameters applied in study experiments are listed in
Supplementary Tables S2 and S3. The reference error models of the

platforms investigated in this study are available at http://github.
com/cibiobcg/abemus_models.

3 Results

3.1 ABEMUS summary overview
ABEMUS is a tool specifically designed to detect somatic SNVs from
cfDNA data and is implemented as package in the R environment.
The identification of somatic SNVs from a plasma sample is per-
formed by ABEMUS using locus-specific and data-driven filters that
are calculated exploiting pre-computed reference error models
(Fig. 1). For each experimental platform, here intended as the com-
bination of library preparation kit and sequencing machine/chemis-
try, reference error models that estimate both global and local
sequencing error background are built by ABEMUS from a set of
germline samples data generated with the same platform. Of note,
ABEMUS provides pre-computed reference error models for several
experimental platforms. When matched germline sample data are
available for a plasma sample, additional filters can be used by
ABEMUS to refine the identification of somatic SNVs by further
considering private SNPs (e.g. singletons).

As a result, ABEMUS nominates a list of putative somatic SNVs
in a format compatible with external tools providing also functional
annotations [i.e. Oncotator (Ramos et al., 2015), SnpEff (Cingolani
et al., 2012)] together with additional information like the locus
strand bias and the genomic context, which altogether can be further
used to rank or prioritize the identified SNVs.

3.2 Pbem is a sequencing platform-dependent feature
We tested the hypothesis that sequencing errors, quantified using
pbem, depend on the experimental platform. To test this hypothesis,
we collected a series of data of germline samples profiled using dif-
ferent platforms as reported in Supplementary Table S1. We first
exploited the 113 germline samples from the 40 kb IonTorrent PGM
sequencing series and assessed pbem for two disjoint subsets of sam-
ples (56 and 57) across all targeted genomic loci. The resulting dis-
tributions of pbem and coverage were comparable and further the
pbem correlation (Pearson’s product-moment correlation, r¼0.72)
indicated agreement between the two sets of base level measures
(Fig. 2A, S1 versus S2). Similarly, two subsets of the 36 Mb WES
assay (Agilent HaloPlex Exome) sequencing series of 10 germline
samples each (Fig. 2A, S3 versus S4) and to subsets of the 3.2 Mb
Roche NimbleGen N250 targeted panel sequencing series (Fig. 2A,
S5 versus S6) demonstrated comparable results. On the contrary, the
same procedure but comparing data generated by two platforms
(Ion AmpliSeq Targeted Custom Amplicon Panel on IonTorrent
PGM and Illumina True Seq Custom Amplicon on Illumina MiSeq)
from the same set of normal samples resulted in non-correlated
pbems series (r ¼ �0.02) on the 7201 shared bp (Fig. 2B, S7 versus
S8). The same result was obtained from 40 normal samples WES
data generated using two kits, the Roche NimbleGen SeqCap
Exome v3 and the Agilent HaloPlex Exome (r ¼ 0.03) with 31 Mb
shared positions. These experiments suggest that the background
noise of sequencing experiments is locus and platform specific
(Fig. 2C). Indeed, 	50% of targeted positions show evidence of
errors (pbem > 0) only when data are derived from one platform.

3.3 Stability and optimization of global sequencing

error estimation GSE
To formally investigate the properties of GSE background ABEMUS
estimates, we compared the coverage-based AF threshold measures
AFth cov bin computed on synthetic germline data (Synthetic Dataset
#1) across different mean coverages (N¼4; 2000�, 1000�, 500�
and 200�), target sizes (N¼4; 36, 17.7, 4.4 and 0.4 Mb) and detec-
tion specificities (0.99, 0.995, 0.999). Overall, although estimations
of AF thresholds were relatively stable across different mean cover-
ages and target sizes (Fig. 3A), especially for strict values of detec-
tion specificity, poorly populated coverage bins demonstrated sparse
GSEcov bin distributions (Fig. 3A and Supplementary Fig. S1). To
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correct for this bias, we implemented a refined procedure to identify
the most suitable coverage-based AF threshold also in those bins
that are problematic due to low cardinality. Briefly, assuming that
coverage bins stability is function of bins cardinality, we tested the
stability of each coverage bin cov bin by performing sub-sampling
analysis on coverage cov bin0, representing the bin having the closest
but higher cardinality with respect to cov bin. Specifically, each
coverage bin is first decomposed into subsets N and M containing
positions with AFs > 0 and AFs ¼ 0, respectively. Then, coverage
bins are sorted by decreasing cardinality of N and starting from
the most populated bin of non-zero AFs (and sequentially for each
ith coverage bin), k random samplings (k ¼ 1000 by default) of
Niþ1 and Miþ1 AFs are performed from Ni and Mi, respectively.

For each random sub-sample, the resulting GSE
0
cov bin (with

GSE
0
cov bin � GSEcov bin) is used to estimate AF0th cov bin. The vari-

ability across the k estimated AFth cov bin values is quantified using
the coefficient of variation CV. For each ith coverage bin, if CVi <
thCV (thCV ¼ 0:01 by default), the cardinality of the coverage bin
C iþ1 is considered reliable for the AF threshold estimation, hence
the AFth cov biniþ1

is computed using Ciþ1 AFs. Otherwise, if

CVi � thCV, the AFth cov biniþ1
is updated as AFth cov binj

where j< i is

the last coverage bin such as CVj < thCV. If all coverage bins have

CVi � thCV, then all AFth cov bin are set to the coverage independent
AF threshold (AFth). As shown in Figure 3B, the refined procedure
resulted in highly stable AF thresholds, across different combination
of coverage mean, target size and detection sensitivity.

3.4 Assessment of scaling factors to maximize

ABEMUS performance
Synthetic Dataset #1 was used to identify the best scaling factor R to
maximize ABEMUS precision and recall for combinations of cover-
age and target size at different ctDNA levels. We tested a wide range
of R values (N¼71, min ¼ 0.5, max ¼ 8, step 0.01) and evaluated
the corresponding F1 scores. For each combination of target size,
mean coverage and ctDNA level, we selected the minimum factor R
among those such that FR > Fthr, where FR is the F1 score achieved
by ABEMUS using the scaling factor R and Fthr a custom threshold.
Analyses using Fthr 2 f0:9; 0:92; 0:94; 0:96; 0:98g indicate that
the wider the genomic target and the higher the mean coverage, the

Fig. 2. Estimation and comparison of pbem within and across platforms. (A) Correlations among pbem computed using disjoint sets of control samples sequenced on the same

platform. Three platforms are considered. S1 (N¼56) and S2 (N¼ 57) are normal samples sequenced using Ion AmpliSeq Targeted Custom Amplicon panel (40 kb;

IonTorrent PGM); S3 (N¼20) and S4 (N¼ 20) are control samples sequenced using Agilent HaloPlex Exome (36 Mb; Illumina HiSeq 2000); S5 (N¼10) and S6 (N¼10) are

control samples sequenced using Roche NimbleGen N250 targeted panel (3.2 Mb; Illumina HiSeq 2000). (B) Correlation among locus-specific sequencing error probabilities

when computed using same sets of control samples sequenced on different platforms. S7 (N¼3) and S8 (N¼3) loci shared (7 kb) between targeted custom Ion AmpliSeq

Targeted Custom Amplicon panel and Illumina True Seq Custom Amplicon; S9 (N¼40) and S3 þ S4 (N¼ 40) loci shared (26 Mb) between Roche NimbleGen SeqCap Exome

v3 (64 Mb; Illumina HiSeq 2000) and Agilent HaloPlex Exome. (C) Proportion of concordant and discordant pbems when comparing samples profiled using the same (yellow

polygons) or different platforms (light blue polygons). R1 and R4 axes indicate the proportion of loci characterized by two concordant pbems since they are both equal and

greater than zero, respectively. R2 and R3 axes indicate the proportion of genomic loci with discordant pbems: a genomic locus showing the first pbem equal to zero and the se-

cond one greater than zero, or vice versa
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lower the optimal R required to get a desired F1 score.
Conversely, for the same combination of target size and coverage,
lower admixtures require a greater R (Fig. 4 and Supplementary
Fig. S2).

Since the ctDNA level information might not be available up-
front for a plasma sample, we also defined the optimal scaling factor
R maximizing precision and recall across a set of admixtures only

based on target size and coverage. Using a set of thresholds for the
F1 score (N¼11, min ¼ 0.9, max ¼ 1, step 0.01), we selected
the minimum R generating an F1 score greater than the highest
observed threshold in the greater number of ctDNA levels consid-
ered (N¼9).

Using these optimization results, ABEMUS enables the selection
of the R factor that best fits the sample’s target size, mean coverage

Fig. 3. Estimation of coverage-dependent AF thresholds. Estimation of coverage-dependent AF thresholds (AFth cov bin) at different detection specificities s across multiple target

sizes (left) and depths of coverage (right). Samples with depth of coverage of 1000� (left) and target size of 18 Mb (right) are considered. (A) Original AFth cov bin estimations are

affected by high variability in poorly populated coverage bins (cov bin) (see Supplementary Fig. S1). (B) AFth cov bin estimations after ad hoc procedure is applied resulted in a sta-

ble trend. Labels: ‘tx’ denotes the genomic fraction ‘x’ of original HaloPlex panel covered (i.e. t50 indicates that 50% of the base covered by the original HaloPlex panel has been

kept); ‘cx’ denotes the fraction ‘x’ of original depth of coverage (i.e. c10 indicates that 10% of the original total number of sequencing reads has been kept)

Fig. 4. Assessment of the optimal scaling factor R to maximize ABEMUS performances for combinations of target size, coverage and ctDNA level. The y-axis reports scaling

factors R and the x-axis indicates target sizes at four different coverage levels. Dots and lines refer to the ctDNA level tested. Given a combination of coverage, target size and

ctDNA level, each dot indicates the optimal R scaling factor to be applied to get a F1 score � 0.98. The wider the genomic target and the higher the mean coverage, the lower

the optimal R required to get the desired F1 score
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and when available ctDNA level; alternatively, the user can set a
preferred scaling factor R or disable the scaling factor (R¼1).

3.5 SNVs detection precision and recall on synthetic

data
ABEMUS performances at different target sizes, mean coverages and

ctDNA levels were assessed using Synthetic Dataset #2 and were
compared to performances of four tools commonly used in tumor
tissue-based analysis: SomaticSniper (Larson et al., 2012), MuTect

(Cibulskis et al., 2013) (run both in standard mode and with cre-
ation and usage of a panel of normals), VarScan2 (Koboldt et al.,
2012) and Strelka2 (Kim et al., 2018). All tools were run following
developers’ instructions reported on the relevant websites. As
described previously, background sequencing error in Synthetic

Dataset #2 was introduced using a per-base error model computed
from real sequencing data and synthetic reads were generated using

two different base quality models. ABEMUS was run by exploiting
the optimized scaling factors result of the previous analysis. As
shown in Figure 5 and Supplementary Table S4, at the lowest

ctDNA level and lowest depth of coverage that we considered,
ABEMUS is the only tool reaching an F1 score of 0.1 with a preci-

sion above 60%; all other tools demonstrated extremely low F1

score, with Strelka2 being the only one with precision and recall
above zero. Increasing the depth of coverage, the performances of

all tools increase with ABEMUS being always among the best per-
forming tools for ctDNA level �10% and outperforming all other
tools for ctDNA levels <10%. Of note, performances reported in

the literature (Narzisi et al., 2018) for the tools used in this compari-
son are in line with our results.

3.6 Comparison on in silico dilutions of real cfDNA

samples
The performances of ABEMUS were further investigated using
Synthetic Dataset #3, which contains synthetic dilutions we com-
puted from real data generated at high coverage and for a small tar-
get (Carreira et al., 2014). ABEMUS was compared with Strelka2
and SomaticSniper—altogether the tools that in the previous ana-
lysis achieved reasonable results in a scenario that is similar to the
one described by Synthetic Dataset #3—and with SiNVICT, a tool
designed for the ultra-sensitive detection of SNVs and InDels in
cfDNA samples (Kockan et al., 2017). To measure the performances
of the four tools, we used as reference the overall set S of SNVs
reported in the original study (Carreira et al., 2014) that were manu-
ally reviewed and/or experimentally validated through ddPCR (i.e.
SNVs in AR, TP53, FOXA1 and PTEN genes). We defined the posi-
tive predictive value (PPV), calculated as the number of SNVs in S
that are detected over the total number of detected SNVs in AR,
TP53, FOXA1 and PTEN genes, the true positive rate (TPR), calcu-
lated as the number of SNVs in S that are detected over the total
number of SNVs in S and the product TPR*PPV. PPV, TPR and
TPR*PPV were computed considering the set of calls across the four
genes of interest performed by each tool across all set of 291 in silico
diluted samples. Although the optimal ABEMUS scaling factor R for
Synthetic Dataset #3 was 1.1 (for all synthetic samples), we also
tested R values around the optimal value, specifically from 0.5 to

Fig. 5. Comparative performance analysis among ABEMUS and other SNV callers based on synthetic data. Precision and recall measures are reported on x and y axes, respect-

ively. Gray curves represent F1 scores as annotated to the right. Shapes represent tools; colors denote base quality (‘BQ’) of 20 (yellow) and 30 (orange). Decreasing levels of

ctDNA (40%, 10%, 5% and 2.5%) are shown from left to right. Top: performances obtained on target size of 36 Mb (100% of original HaloPlex panel) and 200� mean

depth of coverage. Middle: performances on target size of 4.5 Mb (12% of original HaloPlex panel) and 1000� mean depth of coverage. Bottom: performances on target size

of 0.36 Mb (1% of original HaloPlex panel) and 2000� mean depth of coverage
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Fig. 6. Performance on cancer patient’s plasma data. (A) Barplot showing performances of ABEMUS applying scaling factors R from 0.5 to 1.5 (blue), SiNVICT (purple),

SomaticSniper (orange) and Strelka2 (green) on synthetically diluted cancer patient’s plasma samples. From top to bottom performances in terms of positive predictive value

(PPV), true positive rate (TPR) and the product PPV*TPR are shown on y-axes, respectively. Decreasing levels of ctDNA (10%, 7.5%, 5% and 2.5%) are shown in gray boxes

from left to right. (B) Overview of ABEMUS and Strelka2 calls on real plasma data. Only genomic positions annotated (green boxes in ‘List’ column) in relevant published

studies (Abida et al., 2019; Robinson et al., 2015) or in COSMIC are reported. For each patient, if an annotated genomic position is identified as SNV by ABEMUS or Strelka2

in at least one serial sample, all samples data are shown. TC: tumor content (ctDNA level); AF: allelic fraction; pbem: local per-base error measure. (Color version of this figure

is available at Bioinformatics online.)
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1.5. As shown in Figure 6A, SomaticSniper obtained the best results
in terms of PPV for most ctDNA levels, but failed in terms of TPR
and TPR*PPV, indicating very low sensitivity. SiNVICT, instead,
obtained reasonable TPR but failed in terms of PPV and TPR*PPV,
indicating a potential high fraction of false positives among the
detected somatic SNVs. ABEMUS performed better than Strelka2 in
terms of PPV for almost all the tested R values, with optimal scaling
factor R¼1.1, demonstrating better PPV than Strelka2 at all ctDNA
levels except for the lowest one, where PPV values resulted equal. In
terms of TPR values, ABEMUS and Strelka2 resulted in similar per-
formances, with better ABEMUS results at lower R values.
ABEMUS was the best tool in terms of TPR*PPV for most scenarios
and for the majority of R scaling factors, with optimal scaling factor
R¼1.1 performing better than Strelka2 in all conditions except for
ctDNA level equal to 2.5%, were the two TPR*PPV values resulted
equal. Overall, ABEMUS demonstrated the best performances
among the majority of tested conditions, especially when pre-
computed optimal scaling factor R was applied.

3.7 Performances on real cfDNA sequencing data
We finally compared ABEMUS and Strelka2 on a set of serial
plasma samples (Carreira et al., 2014). Performances of both tools
were tested relying on detection of SNVs annotated in previously
relevant studies (Abida et al., 2019; Robinson et al., 2015) or in
COSMIC (Forbes et al., 2017); for COSMIC only variants anno-
tated as confirmed somatic variants and with primary site Prostate
were considered. Scaling factors R optimized for mean coverage and
target size were used. As shown in Figure 6B we observed high con-
cordance between ABEMUS and Strelka2, but ABEMUS was able to
detect SNVs in positions at low AF were Strelka2 was not. Among
the three calls performed only by ABEMUS, two were also validated
in the original study and present in other samples from the same pa-
tient. These two SNVs were identified in patient V4023, the first in
TP53 gene with AF 0.014 and protein change Cys135* in sample
11-244-B with estimated ctDNA of 13.1%, while the second in gene
FOXA1 with AF 0.016 and protein change Asp226His in the sample
10-315-B with estimated ctDNA of 15.5%. The remaining SNV
identified at low AF only by ABEMUS was found in another sample
from the same patient V4012 by both tools, strongly supporting the
validity of the ABEMUS private call.

Considering that optimized scaling factors resulted in R¼1.1 for
all plasma serial samples, we also tested to what extent the know-
ledge of ctDNA level would have improved ABEMUS calls.
Considering ctDNA levels reported in the original study (Carreira
et al., 2014), ABEMUS was run again on all plasma samples with
results that were overall concordant. ABEMUS was in this case able
to identify in patient V4048 a further SNV with an AF concordant
with another SNV captured by both tools in the same sample and in
the same gene.

Overall, both ABEMUS and Strelka2 achieved good results but
ABEMUS demonstrated increased power in detecting low AF SNVs
in low ctDNA levels plasma samples. In addition, upfront know-
ledge of sample’s ctDNA levels could be used to further improve de-
tection sensitivity.

4 Discussion

Different approaches have been proposed in the past years to char-
acterize somatic mutations in cfDNA. While methods like optimized
quantitative PCR (Taly et al., 2012) or dPCR are highly sensitive
(Didelot et al., 2013; Yu et al., 2017), they are limited in the number
of mutations to test via multiplexing, while requiring up to 3 ng of
input DNA. NGS approaches can instead be used to screen a large
number of mutations with sensitivity that is limited by background
noise and dependent on the sequencing depth. Although recent stud-
ies (Mouliere et al., 2018) suggested that fragment size selection
might improve somatic SNVs detection sensitivity, highly sub-clonal
somatic SNVs due for instance to intra-patient heterogeneity or
treatment resistance would remain extremely difficult to detect. In
this challenging scenario, tools designed to detect low AF variants

(Carrot-Zhang and Majewski, 2017) or computational pipelines
specifically tailored for cfDNA data are necessary. So far, cfDNA-
specific approaches were either tuned for amplicon-based NGS-tar-

geted platforms (Kleftogiannis et al., 2019; Pécuchet et al., 2016) or
yet partially benchmarked against standard SNVs methods across

different scenarios of coverage depth and target size (Kockan et al.,
2017), potentially limiting their widespread applicability.

Here, we presented a new NGS-based computational method
named ABEMUS that uses control samples to build global and local
sequencing error reference models that are used to improve the de-

tection of SNVs in cfDNA samples.
We showed that local sequencing error, namely the per-base

error measure, is platform specific and that hence platform-specific
sequencing error reference models are needed to effectively discrim-

inate between true SNVs and artifactual signals in the challenging
cfDNA scenario. In this respect, ABEMUS provides an automatic
approach to build platform-specific reference models from NGS

control samples.
We showed that ABEMUS sequencing errors reference models

are stable across a broad range of depth of coverage and target size
scenarios and we optimized, across the same scenarios, the precision
and recall of ABEMUS SNVs detection engine.

ABEMUS performances were tested against tools commonly
used to identify SNVs in tumor tissue samples and against tools spe-

cifically designed for cfDNA samples using synthetic data, cancer
patients cfDNA data in silico diluted and cancer patients multi-

sample cfDNA data. Overall, we showed that ABEMUS improves
the detection of low AF SNVs in low ctDNA levels plasma samples
in scenarios spanning from whole-exome data (tens of Mb) to small

targeted panels data (tens of kb). Of note, a limitation of the current
version of ABEMUS is the absence of a module for the detection of
InDels. ABEMUS is easy to use, can be applied on any custom or

commercial platform or gene panel and can be integrated in any
NGS processing and analysis pipeline.
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