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Abstract

Motivation: In gene expression and genome-wide association studies, the identification of interaction effects is an
important and challenging issue owing to its ultrahigh-dimensional nature. In particular, contaminated data and
right-censored survival outcome make the associated feature screening even challenging.

Results: In this article, we propose an inverse probability-of-censoring weighted Kendall’s tau statistic to measure
association of a survival trait with biomarkers, as well as a Kendall’s partial correlation statistic to measure the rela-
tionship of a survival trait with an interaction variable conditional on the main effects. The Kendall’s partial correl-
ation is then used to conduct interaction screening. Simulation studies under various scenarios are performed to
compare the performance of our proposal with some commonly available methods. In the real data application, we
utilize our proposed method to identify epistasis associated with the clinical survival outcomes of non-small-cell
lung cancer, diffuse large B-cell lymphoma and lung adenocarcinoma patients. Both simulation and real data studies
demonstrate that our method performs well and outperforms existing methods in identifying main and interaction
biomarkers.

Availability and implementation: R-package ‘IPCWK’ is available to implement this method, together with a refer-
ence manual describing how to perform the ‘IPCWK’ package.

Contact: yhchen@stat.sinica.edu.tw

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Knowledge about interactions among genes plays a crucial role in
understanding the functional relationship of genes with gene-
pathways. Furthermore, Cordell (2009) indicated that the develop-
ment of a disease is a complex process that may result from joint
effects of multiple genes, that is, epistasis. In gene expression and
genome-wide association studies (GWAS), the number of potential
biomarkers is far greater than the sample size, hence the discovery
of the gene–gene interactions that account for the phenotype of
interest is crucial to develop a prediction model for the phenotype.
Accordingly, interaction identification has been a very important
and widely studied issue in bioinformatics literature (Fang et al.,
2017; Hao and Zhang, 2014; Stanislas et al., 2017; Wang and
Chen, 2018; Wang et al., 2011, 2012; Xu et al., 2018 and so on).

The traditional statistical methods for interaction screening may
not apply in the ultrahigh-dimensional setting of the gene expression
analysis and GWAS. Wu et al. (2009) proposed the two-stage selec-
tion method, where some important predictors are first selected
from all main predictors, then the relevance of the interactions

corresponding to the main effects selected in the first step are exam-
ined in the second step. The two-stage selection method is easy to
implement and hence popular. This method, however, tends to miss
interaction effects when the individual marginal main effects are
uncorrelated with the trait. Another common strategy is to fit a
penalized regression model with both main and interaction effects
penalized (see, e.g. Choi et al., 2010; Park and Hastie, 2008).
However, such methods are computational expensive and hence less
feasible in the ultrahigh-dimensional setting such as GWAS.

In this article, we would like to utilize a marginal statistic to con-
duct interaction screening. In the context of linear regression mod-
els, the Pearson correlation screening (Fan and Lv, 2008) has been
shown to be useful for ultrahigh-dimensional data. As indicated in
Niu et al. (2018), one intuitive idea for interaction screening is to
treat the main and interaction variables just as independent features
and rank all the features based on their absolute marginal correl-
ation. This naive method can be problematic in practice, since it
ignores the intrinsic relationship of main effects with interactions.
To improve the naive correlation ranking method for interaction
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screening, Niu et al. (2018) considered partial (Pearson) correlation
as a marginal statistic for interaction screening. Here, partial correl-
ation is used to measure the relationship between the response vari-

able and the interaction variable conditional on the main effects.
Namely, the influence of the parental main effects is removed by

using partial correlation when assessing the interaction effect. The
‘interaction screening by partial correlation (ISPC)’ procedure in
Niu et al. (2018) thus has some advantages: the ISPC approach does

not rely on specific modeling assumptions and is more flexible, and
the marginal statistic is easy and fast to calculate for big data with

ultrahigh-dimensional features. The ISPC approach can also be
extended to non-parametric correlation statistics, such as
Spearman’s and Kendall’s tau rank correlation (Kendall, 1942).

Kendall’s tau (Kendall, 1962) is a rank statistic used to measure
the ordinal association between two random variables. It has several

advantages compared to Pearson correlation. First, the measure is
not influenced by outliers, which is a major concern in gene expres-
sion data analysis where contaminated data are common. Second, it

is a model-free measure, so it is robust and flexible to modeling
assumptions. In this work, we use Kendall’s tau to measure the asso-

ciation between the survival trait and the covariates such as gene
expressions. Song et al. (2014) proposed a censored rank statistic for
screening ultrahigh-dimensional covariates with survival outcome,

which uses the inverse probability-of-censoring weighted (IPCW)
statistic to accommodate right-censored outcome data and is shown

to enjoy the sure screening property. However, as we will show
below, the IPCW Kendall’s tau (IPCW-tau) statistic proposed by
Song et al. (2014) has the tendency to miss the predictors with nega-

tive correlation with the survival outcome. We will propose the
IPCW-tau statistic that modifies the IPCW-tau proposed by Song

et al. (2014) to eliminate the drawback, and develop a new inter-
action screening procedure, termed ‘partial correlation IPCW-tau
(PC-IPCW-tau)’, using the partial correlation statistic derived from

IPCW-tau as a marginal interaction screening statistic.
In simulation studies, we first compare the performance of

IPCW-tau with the IPCW-tau proposed by Song et al. (2014) and
some other alternatives in the setting of main-effect selection, and
then compare the proposed PC-IPCW-tau procedure with some

existing methods in the context of interaction screening. In the real
data applications, we apply the proposed PC-IPCW-tau procedure

to identify epistasis that is associated with the clinical survival out-
come of non-small-cell lung cancer (NSCLC), diffuse large B-cell
lymphoma and The Cancer Genome Atlas lung adenocarcinoma

patients.

2 Materials and methods

We first define our proposed IPCW-tau to measure the association

of the survival trait with gene expression, and then utilize the pro-
posed rank statistic to define Kendall’s partial correlation and con-

duct screening for gene–gene interaction.

2.1 Inverse probability-of-censoring weighted Kendall’s

tau
Let T and C denote, respectively, the survival and censoring times of

a subject, V ¼ minðT;CÞ the censored survival time and D ¼ IðT �
CÞ the indicator of failure. Let x a p-dimensional covariate vector,
where p may be much larger than the cohort size n. Throughout the

article, we use X to denote a generic element in x, subindexed nota-
tion such as Xj denote the jth element in x (1 � j � p) and paren-

thesized subindices denote subjects in the sample.
The Kendall’s tau for survival trait T and covariate X is defined

as follows:

sT;X ¼ E½sgnfðTðiÞ � TðjÞÞðXðiÞ �XðjÞÞg�

¼ PfðTðiÞ � TðjÞÞðXðiÞ �XðjÞÞ > 0g

�PfðTðiÞ � TðjÞÞðXðiÞ �XðjÞÞ < 0g

¼ PðTðiÞ > TðjÞ;XðiÞ > XðjÞÞ þ PðTðiÞ < TðjÞ;XðiÞ < XðjÞÞ

�PðTðiÞ > TðjÞ;XðiÞ < XðjÞÞ � PðTðiÞ < TðjÞ;XðiÞ > XðjÞÞ

¼ 2PðTðiÞ > TðjÞ;XðiÞ > XðjÞÞ � 2PðTðiÞ > TðjÞ;XðiÞ < XðjÞÞ

¼ 4PðTðiÞ > TðjÞ;XðiÞ > XðjÞÞ � 1;

where the fourth equality follows from the exchangeability of ran-
domly selected subjects, and the last equality follows from that the
concordant and disconcordant events are complementary and hence
their probabilities sum to one. Since the survival time T may be
right-censored and incompletely observed, Song et al. (2014) devel-
oped the IPCW statistic and showed that:

E
DðjÞ

S2
CðVðjÞÞ

IðVðiÞ > VðjÞ;XðiÞ > XðjÞÞ
( )

¼ PðTðiÞ > TðjÞ;XðiÞ > XðjÞÞ;

E
DðjÞ

S2
CðVðjÞÞ

IðVðiÞ > VðjÞ;XðiÞ < XðjÞÞ
( )

¼ PðTðiÞ > TðjÞ;XðiÞ < XðjÞÞ;

where SCð�Þ is the survival function of the censoring time C, which

can be estimated by the Kaplan–Meier estimate ŜCð�Þ. The proofs of
the above two expressions can be seen in the Supplementary
Material. Song et al. (2014) then proposed the IPCW-tau statistic

ŝT;X ¼ 4
n
2

� ��1P
i< j

DðjÞ

Ŝ
2

CðVðjÞÞ
IðVðiÞ > VðjÞ;XðiÞ > XðjÞÞ � 1 (or the

equivalent statistic ŝT;X=4) for assessing the association between a

censored survival outcome and a covariate.
We, however, observe that the IPCW-tau statistic ŝT;X in Song

et al. (2014) has the tendency to omit covariates with negative asso-
ciation with the survival outcome. The reason is that, owing to the
inverse probability-of-censoring weighting, the estimated concord-

ance probability, 2
n
2

� ��1P
i< j

DðjÞ

Ŝ
2

CðVðjÞÞ
IðVðiÞ > VðjÞ;XðiÞ > XðjÞÞ, and

the estimated disconcordance probability, 2
n
2

� ��1P
i< j

DðjÞ

Ŝ
2

CðVðjÞÞ
I

ðVðiÞ > VðjÞ;XðiÞ < XðjÞÞ, are not symmetric (about one), that is,

their sum is not a constant (one); in fact, their sum is data dependent
and not a constant. The IPCW-tau statistic ŝT;X, which considers

only the concordance probability, is valid for association screening
only when the concordance and disconcordance probabilities are
symmetric.

To eliminate the drawback of omitting covariates with negative
association with the survival outcome, we modify the IPCW-tau
statistic using directly the difference between the estimated concord-
ance and disconcordance probabilities:

~sT;X ¼ 2
n
2

� ��1X
i< j

DðjÞ

Ŝ
2

CðVðjÞÞ
IðVðiÞ > VðjÞ;XðiÞ > XðjÞÞ

� 2
n
2

� ��1X
i< j

DðjÞ

Ŝ
2

CðVðjÞÞ
IðVðiÞ > VðjÞ;XðiÞ < XðjÞÞ;

where 0=0 � 0 such that ~sT;X is well-defined. We term ~sT;X the
IPCW-tau statistic and suggest using it for association screening
with right-censored outcome data. Specifically, for a prespecified
threshold value cn, we define

Mcn
¼ fk : j~sT;Xk

j � cng;k ¼ 1; . . . ; p;

as the selected set of predictors for the survival outcome.
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2.2 Kendall’s partial correlation with survival trait
In this work, we are interested in the second-order effects on sur-
vival outcome from the quadratic and two-way interaction
predictors

z ¼ ðX2
1;X1X2; . . . ;X1Xp;X

2
2;X2X3; . . . ;X2

pÞ01�d;

where d ¼ p
2

� �
þ p.

Kendall (1942) defined the partial rank correlation in the
Kendall’s correlation context and showed that the Pearson’s partial
correlation formulas still hold for Kendall’s correlation. For ex-
ample, for three random variables K1;K2;K3, the Kendall’s partial
correlation

s12�3 ¼
s12 � s13s23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
13

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

23

q
gives Kendall’s partial correlation between K1 and K2 conditional
on K3, where sij is the Kendall’s tau correlation between Ki and Kj.
Moreover, the higher order Kendall’s partial correlation can be it-
eratively calculated by the above formula. For example, for four ran-
dom variables K1;K2;K3;K4, the Kendall’s partial correlation
computed by

s12�34 ¼
s12�3 � s14�3s24�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

14�3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

24�3

q
gives the Kendall’s partial correlation between K1 and K2 condition-
al on K3 and K4.

Therefore, the Kendall’s partial correlation of the survival trait
with the second-order covariate variables (quadratic and two-way
interaction terms) can be obtained as follows:

sT;X2
j
�Xj
¼

sT;X2
j
� sT;Xj

sX2
j
;Xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
T;Xj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

X2
j
;Xj

q ; 1 � j � p;

sT;XjXk �Xj ;Xk
¼

sT;XjXk �Xj
� sT;Xk �Xj

sXjXk ;Xk �Xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

T;Xk �Xj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

XjXk ;Xk �Xj

q ;

for 1 � j < k � p. To accommodate right-censored survival time
data, we utilize the IPCW-tau statistic proposed in Section 2.1 and
consider the resulting partial correlation statistics:

~sT;X2
j
�Xj
¼

~sT;X2
j
� ~sT;Xj

sX2
j
;Xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~s2
T;Xj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

X2
j
;Xj

q ; 1 � j � p;

~sT;XjXk �Xj ;Xk
¼

~sT;XjXk �Xj
� ~sT;Xk �Xj

sXjXk ;Xk �Xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2

T;Xk �Xj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

XjXk ;Xk �Xj

q ;

for 1 � j < k � p. We then propose the interaction screening pro-
cedure based on the PC-IPCW-tau statistic, as follows:

1. Standardize the second-order variables:

z ¼ ðX2
1;X1X2; . . . ;X1Xp;X

2
2;X2X3; . . . ;X2

pÞ1�d

0
:

2. Calculate the Kendall’s partial correlation as:

pcorrjk ¼
~sT;X2

j
�Xj
; 1 � j ¼ k � p

~sT;XjXk �Xj ;Xk
;1 � j < k � p:

(

3. Determine a data-dependent threshold value kn and obtain a

selected set of second-order (quadratic and two-way interaction)

predictors for the survival outcome:

Ikn
¼ fðj;kÞ : jpcorrjkj � kng:

In Step 3, when both main and second-order predictors are to be
selected simultaneously, the selected set of predictors for the survival
outcome is replaced by

MIxn
¼ f‘ : jcorr‘j � xng;

where corr‘ ¼ ~sT;X‘
when ‘ corresponds to a first-order covariate,

and corr‘ ¼ pcorr‘ (obtained in Step 2) when ‘ corresponds to a
second-order covariate; xn is a data-dependent threshold value.

2.3 Evaluation of survival prediction performance

In order to assess the performance of survival prediction, let b̂ be the
estimate of the penalized Cox’s regression parameter in a prediction

model obtained from the training data, and
�

V	ðiÞ;D
	
ðiÞ; z

	
ðiÞ

�
the sur-

vival and predictor data of subject i in the test data. We consider the
Cox’s regression with the MCP penalty (Zhang, 2010) as the predic-

tion model in the following simulations and analysis. Define z	0ðiÞb̂ as

the prognosis index (PI) value for subject i. We consider three
prediction accuracy measures. The prediction accuracy measure
Cox-test is the P-value of PI when PI is used as the covariate in the
univariate Cox model for the survival outcome in the test data. The
prediction accuracy measure LR-test is the P-value of the log-rank
test for the null hypothesis of equality of the survival function be-
tween the ‘poor’ and ‘good’ prognosis groups in the test data, which
are formed according to whether the PI value is higher or lower than
the median PI value in the test data. Smaller values of the Cox-test
and LR-test measures would suggest better prediction accuracy. In
addition, the prediction accuracy measure c-index proposed by
Harrell et al. (1996) is considered, and a larger c-index corresponds
to better prediction accuracy.

3 Results

3.1 Comparison with alternative methods in identifying

true predictors
We first perform a series of simulations to investigate the perform-
ance of the proposed IPCW-tau statistic in identifying true predic-
tors for survival trait, and compare the IPCW-tau method with the
‘PL’, ‘IPCW(S)’ and ‘Kendall’s tau’ methods. The PL method is the
partial-likelihood screening, which fits a marginal Cox’s regression
model for each predictor and takes the corresponding partial likeli-
hood value as the screening measure; this method is commonly
adopted in practice (Fan et al., 2010; Zhao and Li, 2012). The
IPCW(S) method is the IPCW-tau statistic proposed by Song et al.
(2014). The Kendall’s tau method is the naive method treating cen-
sored survival time observations as exact ones and using the conven-
tional unweighted Kendall’s tau statistic.

We generate three cohorts comprising 100, 300 and 500 sub-
jects, respectively. Each subject in the cohorts has his/her survival
time T following the linear transformation model:

HðTÞ ¼ �x0b0 þ e;

where HðtÞ ¼ log f0:5ðe2t � 1Þg, the covariates x jointly follow a
10 000-dimensional multivariate standard normal distribution with
correlation corrðXj;XkÞ ¼ 0:5jj�kj. The distribution of e is given by a
standard extreme value distribution, which corresponds to a propor-
tional hazards model. The true regression coefficient vector
is sparse: b0 ¼ ð�1:52; 1:53; 05;1:52;�1:53;05;�1:5; 1:52;�1:52;
09;975Þ0, where bk stands for a constant row-vector of length k with
elements equal to b; the underlying survival model has 15 true
predictors.

The censoring time distribution follows a uniform distribution
U(0, c), where c is chosen so that the censoring rate is 
25%, 50%
or 80%, respectively. Moreover, the covariates might be contami-
nated by outliers generated from a t distribution with two degrees of
freedom with a probability of 0.1. Such an error distribution repre-
sents the case where the expression data can be contaminated by
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errors with large variation, which is common in gene expression
studies. For each simulation scenario, we conduct 200 replications
to examine the numerical performances of different methods.

We report the mean numbers of true predictors included by
the top 15, 30, 45, 60, 75, 90, 120 and 150 selected variables for
each method among 200 replications. The numerical results are
summarized in Figure 1 (for cohort size of 100), and
Supplementary Figures S1 and S2 (for cohort sizes of 300 and
500). From these figures, we see that the IPCW-tau approach is
superior to all alternative methods in variable screening, in that
the IPCW-tau approach has the highest mean numbers of true pre-
dictors included by the selected set of variables with a given set
size. In particular, the IPCW-tau method performs substantially
better than all the other methods when the censoring rate is high.
The accuracy of the variable screening, as reflected by the mean
numbers of true predictors included by the selected variables, for
the IPCW-tau method increases when the cohort size increases or
the censoring rate decreases.

To assess the impacts of different screening methods on survival
prediction, we simulate training and test data from the same survival
time/covariate distributions as above, with the training sample size
equal to 100 or 300 and the test sample size fixed at 50. We report
in Table 1 the proportions of significant LR-test (LR-test P-value
<0.05) over 200 simulation replications, which reflect the abilities
of distinguishing good and poor prognosis groups for different
methods. We can see that the proposed IPCW-tau method performs
better in this regard than the other methods.

In Supplementary Section B, we provide further simulation
results for the settings with uncontaminated covariates, and with al-
ternative covariate distributions and dependence structures. All
these further simulations reveal consistent results about the advan-
tage of the proposed IPCW-tau method in variable screening and
survival prediction.

3.2 Comparison with alternative methods in identifying

second-order effects
Xu et al. (2018) developed the censored quantile partial correlation
(CQpcorr) to identify interaction effects, which applies the quantile
regression technique with weights accommodating censoring. We

are interested in comparing the CQpcorr approach with our pro-
posed PC-IPCW-tau method in the accuracy of second-order pre-
dictor selection. Besides, we consider the IPCW-tau and PL
approaches as in Section 3.1, which view each second-order variable
as an independent predictor, and apply the IPCW-tau statistic and
the partial likelihood value, respectively, to assess the association be-
tween each second-order variable and the survival trait without
adjusting for the main effects.

We generate the cohort with 300 subjects, with each subject’s
survival time T following the linear transformation model:

HðTÞ ¼ �ðb10X10 þ b40X40 þ b80X80 þ b510X2
10 þ b580X2

40

þ b5485X10X80 þ b5545X40X80 þ b19760X80X90Þ þ e;

where HðtÞ ¼ log f0:5ðe2t � 1Þg; Xj ¼W2
j � 1, w jointly follows a

500-dimensional multivariate standard normal distribution with
correlation corrðWj;WkÞ ¼ 0:5jj�kj, and the distribution of e is a
standard extreme value distribution, which corresponds to a propor-
tional hazards model. The true regression coefficient vector
ðb10; b40; b80;b510;b580; b5485; b5545; b19760Þ ¼ ð�2:4; 3:0; 3:6; 3:0;
�3:6;3:0;�3:6; 3:0Þ, so the underlying survival model has 2 quad-
ratic and 3 two-way interaction predictors among the
125 250 second-order predictors.
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Fig. 1. Mean numbers (SDs in gray lines) of true predictors included by the top 15, 30, 45, 60, 75, 90, 120 and 150 selected variables under the scenario with cohort size equal

to 100 and contaminated covariates

Table 1. Proportions of significant LR-test (LR-test P-value <0.05)

over 200 simulation replications for different variable screening

methods

Training.s/cen.r (%) PL Kendall’s tau IPCW(S) IPCW-tau

100/25 0.265 0.340 0.325 0.325

100/50 0.245 0.215 0.085 0.285

100/80 0.115 0.065 0.080 0.120

300/25 0.945 0.990 0.985 0.985

300/50 0.870 0.905 0.190 0.915

300/80 0.350 0.230 0.135 0.400

Note: The test sample size is fixed at 50.

training.s, training sample size; cen.r, censoring rate.
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The censoring time distribution follows a uniform distribution
Uð0; c	Þ, where c	 is chosen to control the censoring rate 
30%,
45%, 60% or 75%, respectively. The covariates might be contami-
nated by outliers generated from a t distribution with two degrees of
freedom with a probability of 0.1. For each simulation setting, we
conduct 200 replications to examine the performances of different
methods.

In Figure 2, we display the mean numbers of true second-order
(quadratic and two-way interaction) predictors included by the top
15; 30; . . . ; 1485;1500 selected variables among 200 replications.
From Figure 2, we see that the proposed PC-IPCW-tau approach is
superior to all the alternative methods for identifying second-order
predictors; in that, the PC-IPCW-tau has the highest mean number
of true second-order predictors in the selected variable set with a
given set size. In Table 2, we report the median of the minimum
model size (MMS) statistic over 200 simulation replications, where
the MMS is the minimum size of the selected set of second-order
variables that includes all the true active predictors. The MMS stat-
istic is used to assess the resulting model complexity and hence pre-
cision for a screening procedure, with a smaller MMS value
indicating higher accuracy of variable screening. From Table 2, we
can see that the PC-IPCW-tau approach is superior to all the alterna-
tive methods for screening second-order predictors. In particular,
the PC-IPCW-tau method is more efficient in screening second-order
predictors than the IPCW-tau method, showing the advantage of
accounting for the relationship between the second- and first-order
effects in identifying the second-order effects.

The survival prediction accuracy resulting from different second-
order screening methods is evaluated by the proportion of signifi-
cant LR-test (LR-test P-value <0.05) over 200 simulation

replications, where the training sample (of size 300) and test sample
(of size 100) are simulated from the same survival time/covariate
distributions as above. As we can see from Table 3, the PC-IPCW-
tau method has the highest survival prediction accuracy, followed
by the IPCW-tau method.

Moreover, we examine the performances of the PC-IPCW-tau
approach under the settings with small effect sizes, with alternative
covariate dependence structure and with alternative survival time
distributions. These additional simulations show that the PC-IPCW-
tau and IPCW-tau methods outperform alternative methods. Please
see Supplementary Section B for these additional simulations.

3.3 Real data analysis: NSCLC data
The NSCLC data of Chen et al. (2007) are available from NCBI
with accession number GSE4882. The data contain censored sur-
vival outcomes from 125 lung cancer patients and their gene expres-
sion profiles for 672 genes. The censoring rate is 65%. Following
Emura et al. (2012), we consider the subset consisting of 473 genes,
which lead to a total of 112 574 main and second-order (quadratic
and two-way interaction) predictors. Following Chen et al. (2007),
we divide the patients into 63:62 training/test sets.

We apply four screening methods [‘IPCW(S)’, ‘IPCW-tau’, ‘PL’
and ‘PC-IPCW-tau’] to the NSCLC data, where the former three
screening methods treat the second-order covariates as independent
predictors without adjusting for their dependence on the main cova-
riates. After a grid search from 20 to 160 with step size 5, the num-
ber of candidate covariates, including both first- and second-order
covariates, that yields the best overall performance for all methods
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Fig. 2. Mean numbers (SDs in gray lines) of true second-order predictors included by the top 15, 30, . . ., 1485, 1500 selected variables under the scenario with cohort size equal

to 300

Table 2. The median of the minimum model size out of 200 replica-

tions under the scenario with cohort size equal to 300

cen.r (%) PL IPCW-tau PC-IPCW-tau CQpcorr

30 28 684 6149 633 80 817

45 30 412 15 797 3108 78 505

60 45 582 27 477 5769 87 657

75 62 944 58 980 19 451 81 369

cen.r, censoring rate.

Table 3. Proportions of significant LR-test (LR-test P-value <0.05)

over 200 simulation replications for different interaction screening

methods

cen.r (%) PL IPCW-tau PC-IPCW-tau CQpcorr

30 0.205 0.340 0.315 0.200

45 0.280 0.290 0.350 0.260

60 0.360 0.470 0.510 0.220

75 0.560 0.630 0.685 0.320

Note: The training and test sample sizes are 300 and 100, respectively.

cen.r, censoring rate.
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is 140, so the top 140 predictors ranked by each method are selected
as the candidate covariates, and the Cox’s regression model with the
candidate covariates and the MCP penalty (Zhang, 2010) is applied
to the training data to establish the final prediction model. We final-
ly identify no main predictor, but 11, 11, 11 and 3 two-way inter-
action predictors by the PL, IPCW(S), IPCW-tau and PC-IPCW-tau
approaches, respectively, together with the MCP-penalized regres-
sion. In addition, the Cox model with the whole 112 574 main and
second-order predictors and the MCP penalty is applied directly to
the training data to build the prediction model. This ‘Ordinary
MCP’ approach finally selects 1 main and 12 two-way interaction
predictors as the final prediction model. The penalized Cox’s regres-
sion with the MCP penalty can be performed by the R function
‘ncvsurv’ of the R-package ‘ncvreg’ (Breheny and Huang, 2011).
The complete lists of the predictors selected by these methods are
shown in Supplementary Section C.

Table 4 shows the prediction accuracy performances of different
methods in the test set of the NSCLC data, where the three predic-
tion accuracy measures in Section 2.3 are considered. Figure 3 dis-
plays the Kaplan–Meier survival curves for the two prognosis
groups, ‘poor’ (red) and ‘good’ (blue) prognosis groups classified
according to whether the PI value exceeds the median PI value, in
the test set of the NSCLC data for each variable screening method.

From Table 4, in two (LR-test, c-index) of the three prediction
accuracy measures, the PC-IPCW-tau method with the MCP penalty
has better performances in the NSCLC test data compared to the
other methods. From Figure 3, we see that the survival curves for
the good and poor prognosis groups are better separated by the PC-
IPCW-tau than by the other methods, and the corresponding LR-
test P-value is highly significant (P¼0.0027), even higher than the

corresponding results from the compound shrinkage (P¼0.179;
Emura et al., 2012) and the overlapping group screening (P¼0.325;
Wang and Chen, 2018) methods.

The 3 two-way interaction biomarkers identified by the PC-
IPCW-tau method with the MCP penalty are ‘PDCD2-EMP1’,
‘IRF4-WDTC1’ and ‘STAT2-JMJD1A’. The three interaction effects
(coefficients) are similar in magnitude, although the PDCD2-EMP1
effect is negative (i.e. beneficial for survival), while the other two are
positive (detrimental for survival). We note that the IRF4-WDTC1
interaction is also identified by the IPCW-tau and the ordinary MCP
methods. The IRF4 and WDTC1 genes belong to the EGR1 gene set
(Brown et al., 2015), which has been shown to function as a tumor
suppressor in NSCLC (Zhang et al., 2014). The STAT2 and JMJD1A
genes are both found to be associated with NSCLC (Yang et al.,
2019; Zhan et al., 2016), and are two common interactors between
PCBP2 and ZCCHC3 proteins (McDowall et al., 2009; Scott and
Barton, 2007). The PDCD2 and EMP1 genes have co-occurred with
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Fig. 3. Kaplan–Meier survival curves for the two prognosis groups [‘good’ (blue), ‘poor’ (red) groups according to the median of the PI values] in the test sample of the NSCLC

data

Table 4. Results of prediction accuracies of different methods in

NSCLC data (using the training and test sets as in Chen et al., 2007)

PL IPCW(S) IPCW-tau PC-IPCW-tau Ordinary

Cox-test 0.1632 0.9189 0.4942 0.3451 0.3347

LR-test 0.7599 0.6670 0.1851 0.0027 0.1266

c-index 0.5972 0.4549 0.5858 0.6029 0.5832

Note: All methods are applied together with the MCP-penalized Cox

regression.
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the NSCLC tissue in abstracts of biomedical publications from the
TISSUES database (Palasca et al., 2018; Santos et al., 2015). Further,
using the SCAD (Fan and Li, 2001) instead of the MCP penalty to-
gether with the PC-IPCW-tau method identifies the same 3 two-way
interaction predictors (see the Supplementary Material for the predic-
tion performance results using the SCAD penalty).

In Supplementary Section C, we provide the analysis results for
the diffuse large B-cell lymphoma (Lenz et al., 2008) and The
Cancer Genome Atlas lung adenocarcinoma (Chang et al., 2015)
data. The proposed PC-IPCW-tau approach consistently performs
well in these datasets.

4 Conclusion and discussion

There has been a long-lasting interest for detecting pairwise gene–
gene interactions in the bioinformatics field. In this article, we have
proposed an IPCW-tau statistic to measure the association of a
right-censored survival trait with biomarkers, and the associated
Kendall’s partial correlation to reflect the relationship of the survival
trait with second-order variables conditional on the main effects. In
simulation and real data studies, we demonstrate that the newly pro-
posed method can provide substantially higher accuracy of gene and
gene–gene interaction selection and hence lead to more accurate sur-
vival prediction than existing methods. We provide the R-package
‘IPCWK’ to compute the proposed IPCW-tau and the Kendall’s par-
tial correlation statistics, together with a reference manual describ-
ing how to perform the ‘IPCWK’ package.

In this article, for simplicity, we focus specifically on second-
order interactions that contain quadratic and two-way interactions.
Although the same idea may be applied to the issue of the assess-
ment of higher order interactions, the associated computational
complexity seems challenging and will be studied in detail in our fu-
ture work. In addition, as gene–environment (G–E) interactions
have important implications for the etiology and progression of
many complex diseases (Xu et al., 2018), the application of the PC-
IPCW-tau procedure in the G–E interaction context is promising
and deserves further research.

An important practical issue in a variable screening procedure is
to determine the threshold value for screening. In this article, we
adopt a hard thresholding rule proposed by Fan and Lv (2008) to se-
lect the candidate covariate set; that is, picking a fixed number of
top significant predictors as our candidate set of predictors after
ranking the covariates. Several alternative strategies for determining
the threshold value have also been discussed, such as the soft thresh-
olding rule proposed by Zhu (2011) that incorporates auxiliary vari-
ables for thresholding, and the method based on the control of the
false-positive rate or false-discovery rate by Zhao and Li (2012).
Comparison of the different ways of threshold value determination
in the context of interaction screening would be of practical interest
and importance. We will also study this issue in our future work.
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