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Abstract
Summary: Machine learning feature selection methods are needed to detect complex interaction-network effects in
complicated modeling scenarios in high-dimensional data, such as GWAS, gene expression, eQTL and structural/
functional neuroimage studies for case–control or continuous outcomes. In addition, many machine learning meth-
ods have limited ability to address the issues of controlling false discoveries and adjusting for covariates. To address
these challenges, we develop a new feature selection technique called Nearest-neighbor Projected-Distance
Regression (NPDR) that calculates the importance of each predictor using generalized linear model regression of dis-
tances between nearest-neighbor pairs projected onto the predictor dimension. NPDR captures the underlying inter-
action structure of data using nearest-neighbors in high dimensions, handles both dichotomous and continuous out-
comes and predictor data types, statistically corrects for covariates, and permits statistical inference and penalized
regression. We use realistic simulations with interactions and other effects to show that NPDR has better precision-
recall than standard Relief-based feature selection and random forest importance, with the additional benefit of
covariate adjustment and multiple testing correction. Using RNA-Seq data from a study of major depressive dis-
order (MDD), we show that NPDR with covariate adjustment removes spurious associations due to confounding. We
apply NPDR to eQTL data to identify potentially interacting variants that regulate transcripts associated with MDD
and demonstrate NPDR’s utility for GWAS and continuous outcomes.
Availability and implementation: Available at: https://insilico.github.io/npdr/.
Contact: brett-mckinney@utulsa.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Pairwise epistasis is a measure of the effect of two genetic variants on
a phenotype beyond what would be expected by their independent
effects. There is evidence that these non-independent effects are perva-
sive (Breen et al., 2012) and that higher-order interactions also play
an important role in genetics (Weinreich et al., 2013). A similar inter-
action effect can be observed in differential co-expression, where the
phenotypic effect of one gene is modified depending on the expression
of another gene (De la Fuente, 2010; Lareau et al., 2015). The embed-
ding of these interactions in a regulatory network may lead to, not
only pairwise interactions, but also higher-order epistasis network
effects. Explicit modeling of these higher-order interactions would be
computationally and statistically intractable (Riesselman et al., 2018).
Thus, computationally scalable feature selection methods are needed
to capture these higher-order effects in high-dimensional data, such as

genome-wide association studies (GWAS) (Arabnejad et al., 2018)
and RNA-Seq studies (Le et al., 2018b).

Relief-based algorithms are efficient nearest-neighbor feature se-
lection methods that are able to detect epistasis or statistical inter-
action effects in high-dimensional data without resorting to pairwise
modeling of attributes (Kononenko et al., 1997; McKinney et al.,
2009; Robnik-�Sikonja and Kononenko, 2003; Urbanowicz et al.,
2018b). We recently introduced the STatistical Inference Relief
(STIR) formalism (Le et al., 2018b) to address the lack of a statistic-
al distribution for hypothesis testing and the related challenge of
controlling the false positive rate of Relief-based scores. STIR
extended Relief-based methods to compute statistical significance of
attributes in dichotomous outcome data (e.g. case–control) by refor-
mulating the Relief weight (McKinney et al., 2013) as a pseudo
t-test for the difference of means between projected distances onto a
given attribute. STIR is an effective approach with high power and
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low false positive rate for data with main and interaction effects and
is applicable to any predictor data type (continuous/gene expression
or nominal/genetic variants). However, being based on a t-test,
STIR does not apply to data with a continuous outcome (e.g. quanti-
tative trait) and, like predecessor Relief-based methods, it does not
correct for covariates.

In this study, we introduce a new Nearest-neighbor Projected-
Distance Regression (NPDR) approach that extends the STIR for-
malism to regression of nearest-neighbors with the generalized linear
model (GLM). The set of all nearest-neighbor pairs is determined in
the space of all attributes. Then, for a given attribute, all pairs of
neighbor instances are projected onto the attribute dimension and
the 1D distances (projected distances) become the observations in a
GLM. The regression model of an attribute’s projected distances is
linear for continuous outcomes and logistic for dichotomous out-
comes, and either model may include corrections for covariates. The
NPDR attribute importance score is given by its standardized regres-
sion coefficient and the statistical significance by its P-value.

This NPDR framework also provides a natural way to control for
covariates by including additional terms for the between-neighbor
projected differences for each covariate within the GLM. Covariate
adjustment is often neglected in machine learning, yet many biologic-
al and clinical omic studies involve potentially confounding covari-
ates, such as sex, BMI and age (Le et al., 2018a) or population
stratification (Chen et al., 2016). Some proposed methods for cor-
recting machine learning algorithms include restricted permutation
(Rao et al., 2017), inverse probability weighting of training samples
(Linn et al., 2016) and penalized support-vector machines (Li et al.,
2011). We demonstrate the effectiveness of NPDR to correct for con-
founding in an RNA-Seq study of major depressive disorder (MDD)
in which there is a strong signal in the expression data due to the sex
of study participants (Mostafavi et al., 2014).

The flexible GLM formalism of NPDR opens nearest-neighbor
feature selection to statistical inference for a broad class of prob-
lems. It can detect main effects and interactions for dichotomous
and continuous outcome studies while adjusting for covariates and
multiple hypothesis testing. The models allow any predictor data
type, such as variants in GWAS or RNA-Seq expression levels.
NPDR also improves attribute importance estimation compared to
other Relief methods because NPDR includes the error or dispersion
of the projected distances. The projected-distance model gives the
appearance of being univariate but implicitly accounts for interac-
tions with all other attributes via the neighborhood calculation in
the space of all attributes (omnigenic). Further, we extend the
NPDR formalism to Lasso-like penalized feature selection.

This article is organized as follows. In Section 2, we develop the
new formalism of NPDR to reformulate Relief-based scores as coef-
ficients in a distance-based GLM. We use the projected-distance re-
gression formalism to implement a penalized version of NPDR. In
Section 3, we assess the performance of NPDR with simulations of
main effects and network interactions, dichotomous outcomes with
balanced and imbalanced classes, continuous outcomes and continu-
ous and genotypic predictors. We demonstrate improved precision
and recall in comparison with standard Relief-based feature selec-
tion and random forest importance. We then apply NPDR to an
RNA-Seq and GWAS study of MDD. From the RNA-Seq data, we
show that NPDR removes spurious associations with MDD due to
confounding by sex and identifies biologically relevant genes.
Combining the RNA-Seq with the GWAS data, we perform an
eQTL analysis with NPDR to identify potentially interacting var-
iants that regulate transcripts associated with MDD and demon-
strate NPDR’s utility for GWAS and continuous outcomes.

2 Materials and methods

In this section, we develop the mathematical formalism needed to
describe the projected-distance regression in NPDR. We then con-
struct the NPDR GLM models for common analysis situations,
including continuous and dichotomous outcomes and adjustment
for covariates. We also describe the simulation approach and real
datasets for method validation.

2.1 Distance metrics and nearest-neighbors
Because NPDR and other Relief-based feature selection methods are
based on distances between instances, we first describe the algo-
rithms and notation for identifying nearest-neighbors in the space of
all attributes. We use the term attribute to refer to predictor varia-
bles, which may be continuous (e.g. expression) or categorical (e.g.
variants). We use the term instance to refer to samples or subjects in
a dataset.

2.1.1 Distances and projections onto attributes

The distance between instances i and j in the dataset Xm�p of m
instances and p attributes is calculated in the space of all attributes
(a 2 A; jAj ¼ p) using a metric, such as

D
ðqÞ
ij ¼

�X
a2A

jdijðaÞjq
�1=q

; (1)

which is typically Manhattan (q ¼ 1) in Relief but may also be
Euclidean (q ¼ 2). The quantity dijðaÞ, known as a ‘diff’ in Relief lit-
erature, is the projection of the distance between instances i and j
onto the attribute a dimension. The function dijðaÞ supports any
type of attribute (e.g. numeric/continuous versus categorical). For
example, the projected difference between two instances i and j for a
continuous numeric attribute, a, may be defined as

dnum
ij ðaÞ ¼ diffða; ði; jÞÞ

¼ jX̂ia � X̂jaj;
(2)

where X̂ represents the standardized data matrix X. We use a sim-
plified dijðaÞ notation in place of the diffða; ði; jÞÞ notation that is
customary in Relief-based methods. We also omit the division by
maxðaÞ �minðaÞ that is used by Relief to constrain scores to the
interval from �1 to 1. As we show in subsequent sections, NPDR at-
tribute importance scores are standardized regression coefficients
with corresponding P-values, so any scaling of the projected distan-
ces is unnecessary for comparing attribute scores. Thus, for the
numeric-data projection, dnum

ij ðaÞ, we simply use the absolute differ-
ence between row elements i and j of the data matrix Xm�p for the
attribute column a.

The numeric projection function in Equation (2) is appropriate
for gene expression and other quantitative predictors and out-
comes. For GWAS data, where attributes are categorical, one sim-
ply modifies the type in the projection function from numeric to a
discrete difference (Arabnejad et al., 2018), but the projected-
distance regression methods will be otherwise unchanged. The
dijðaÞ quantity is typically part of the metric to define the neighbor-
hood, but it is also essential for computing the importance coeffi-
cients (Section 2.2.1). The projected-distance regression models
below [Equations (8), (11), (14) and (15)] will be fit for all nearest-
neighbors i and j in the defined neighborhood [discussed next in
Equation (3)].

2.1.2 Nearest-neighbor ordered pairs

For NPDR, a single neighborhood is computed, regardless of
whether the problem is classification or regression and regardless of
whether a fixed-k or adaptive-radius neighborhood method is used
(Greene et al., 2009; McKinney et al., 2013; Urbanowicz et al.,
2018a). The NPDR neighbors are chosen blind to the outcome vari-
able and then pairs of instances are assigned to hit or miss groups
for dichotomous outcome data and assigned numeric differences for
quantitative outcome data.

We define the NPDR neighborhood setN of ordered-pair indices
as follows. Instance i is a point in p dimensions, and we designate
the topological neighborhood of i as Ni. This neighborhood is a set
of other instances trained on the data Xm�p and depends on the type
of Relief neighborhood method (e.g. fixed-k or adaptive radius) and
the type of metric (e.g. Manhattan or Euclidean). If instance j is in
the neighborhood of i (j 2 Ni), then the ordered pair is in the overall
neighborhood (ði; jÞ 2 N ) for the projected-distance regression
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analysis. The ordered pairs constituting the overall neighborhood
can then be represented as nested sets:

N ¼ ffði; jÞgmi¼1gfj6¼i:j2Nig: (3)

The cardinality of the set fj 6¼ i : j 2 Nig is ki, the number of
nearest-neighbors for subject i.

2.1.3 Adaptive-radius and fixed-k neighborhoods

The NPDR algorithm applies to any Relief neighborhood algorithm.
In the NPDR analysis of real data, we use the multiSURF
(Urbanowicz et al., 2018a) adaptive-radius neighborhood, which
uses a different radius for each instance. In the simulation analysis,
we use a fixed-k neighborhood that well-approximates multiSURF
for Relief and NPDR comparisons. The adaptive radius for an in-
stance may be defined as the mean of its distances to all other instan-
ces subtracted by the fraction a of the standard deviation (SD) of
this mean. More precisely, an instance j is in the adaptive a-radius
neighborhood of i (j 2 Na

i ) under the condition

Dij � Ra
i ) j 2 Na

i ; (4)

where the threshold radius for instance i is

Ra
i ¼ �Di � ar �Di

(5)

and

�Di ¼
1

m� 1

X
j 6¼i

D
ð�Þ
ij (6)

is the average of instance i’s pairwise distances [using Equation (1)]
with SD r �Di

. MultiSURF uses a ¼ 1=2 (Granizo-Mackenzie and
Moore, 2013).

Previously, we showed empirically for balanced dichotomous out-
come datasets that a good constant-k approximation to the expected
number of neighbors within the multiSURF (a ¼ 1=2) radii is k ¼
m=6 (Le et al., 2018b), where m is the number of samples. A more
exact theoretical mean that shows the mathematical connection be-
tween fixed-a and fixed-k neighbor-finding methods is given by

�ka ¼
�

m� 1

2
1� erf

affiffiffi
2
p
� �� ��

; (7)

where we apply the floor to ensure the number of neighbors is inte-
ger. For data with balanced hits and misses in standard fixed-k
Relief, one further divides this formula by 2, and then for
multiSURF (a ¼ 1=2), we find �k

hit=miss

1=2 ¼ 1
2

�k1=2 ¼ 0:154ðm� 1Þ,
which is very close to our previous empirical estimate m=6. In this
study, when we compare multiSURF neighborhood methods with
fixed-k neighborhoods, we use �k1=2. Using this a ¼ 1=2 value has
been shown to give good feature selection performance by balancing
power for main effects and interaction effects. However, the best
value for a or k is likely data-specific and may be determined
through nested cross-validation parameter tuning or other adaptive
methods (McKinney et al., 2013).

2.2 NPDR with the GLM
Once the neighborhood N [Equation (3)] is determined by the dis-
tance matrix Dij [Equation (1)] and the neighborhood method is
chosen (e.g. fixed number of neighbors k or adaptive radius), we can
compute the NPDR test statistic and P-value for the association of
an attribute with the phenotype. The NPDR model predictor vector
is the attribute’s projected distances (dijðaÞ) between all pairs of
nearest-neighbor instances (ði; jÞ 2 N ) (Fig. 1).

2.2.1 Continuous outcomes: linear regression NPDR

For continuous outcome data (quantitative phenotypes), the NPDR
model outcome vector is the numeric difference [Equation (2)] be-
tween all nearest-neighbors i and j. We find the parameters of the

following model that minimize the least-squares error over
8ði; jÞ 2 N :

dnum
ij ðyÞ ¼ bo þ badijðaÞ þ �ij: (8)

The dnum
ij ðyÞ term on the left is the projected-distance (diff) between

instances i and j for a numeric phenotype y [Equation (2)] and �ij is the
error term for this random variable. The predictor attribute a may be
numeric or categorical, which determines the ‘type’ used in the diff
function on the right-hand side of Equation (8). The NPDR test statistic
for attribute a is the ba estimate with a one-sided hypothesis

H0 : ba < 0
H1 : ba � 0:

(9)

The ba can be interpreted as the predicted change in the differ-
ence of the quantitative outcome between a pair of subjects when
the projected-distance of the attribute, a, changes by one unit. The
attribute weights in the original RRelief algorithm (Robnik-�Sikonja
and Kononenko, 2003) can be described as a weighted covariance
between the attribute-neighbor projected distances, dijðaÞ, and the
outcome-neighbor differences, dnum

ij ðyÞ. The extra weighting in
RRelief is an exponentially decaying function of the rank of the dis-
tance between neighbors. The NPDR attribute weight is the standar-
dized regression coefficient, b0a, which is the covariance of the
projected distances divided by the variance of the outcome-projected
distances. When the regression contains no additional covariates,
the NPDR attribute weight can be written as the correlation be-
tween outcome- and attribute-neighbor projected distances:

b0a ¼ corr
�

dðyÞ; dðaÞ
�
: (10)

Thus, in the case of no covariates, NPDR for regression and
RRelief have similar structure, but, as we show shortly, NPDR pro-
vides an improved attribute estimation, and the flexible NPDR
framework can include additional sources of variation (i.e. adjust
for confounding covariates).

2.2.2 Linear regression NPDR with covariates

Previous Relief-based methods do not include the ability to adjust
for covariates. The regression formalism of NPDR makes adding
covariates straightforward. We simply compute the projected differ-
ence values dijð~ycovsÞ for the covariate attribute(s) between subjects
on the neighborhood ð8ði; jÞ 2 N Þ and include this as an additional
projected-distance term in the regression model:

dnum
ij ðyÞ ¼ b0 þ badijðaÞ þ~b

T

covsdijð~ycovsÞ þ �ij: (11)

The above vector notation for the regression coefficients of the
pc covariates can be expanded as

~b
T

covs ¼ ðbcov1
;bcov2

; . . . ; bcovpc
Þ (12)

and the projection differences between instances i and j for each of
the pc covariates can be expanded as

Fig. 1. Pseudo-code of the NPDR algorithm. Attributes and outcome may be conti-

nous or categorical. Option for covariates included
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dijð~ycovsÞ¼
�

d
type1

ij ðycov1
Þ;dtype2

ij ðycov2
Þ; . . . ;dtypepc

ij ðycovpc
Þ
�T
: (13)

The superscripts in the projection operators above indicate the ap-
propriate operator type for each covariate data type (e.g. numeric or
categorical). In addition, the predictor attribute a may be numeric or
categorical, which determines the type used in dijðaÞ. The NPDR test
statistic is again ba with alternative hypothesis ba � 0 as in Equation
(9), and the standardized b0a is the attribute importance score.

2.2.3 Dichotomous outcomes with covariates: logistic regression

NPDR

The STIR method was designed for statistical testing in dichotomous
data, but as we have seen NPDR can also handle continuous out-
comes and adjust for covariates. Here, we show that the GLM for-
malism also enables NPDR to handle dichotomous outcome data
(e.g. case–control phenotype). For dichotomous outcomes, NPDR
models the probability pmiss

ij that subjects i and j are in the opposite
class (misses) versus the same class (hits) from the neighbor pro-
jected distances with a logit function. We estimate the parameters of
the following model for neighbors 8ði; jÞ 2 N :

logitðpmiss
ij Þ ¼ b0 þ badijðaÞ þ �ij; (14)

or if there are covariates,

logitðpmiss
ij Þ ¼ b0 þ badijðaÞ þ~b

T

covsdijð~ycovsÞ þ �ij; (15)

where pmiss
ij is the probability that subjects i and j have different phe-

notypes given the difference in their values for the attribute, a, and
given the covariate differences. The outcome variable that is mod-
eled by probability pmiss

ij is a binary difference between subjects for
the phenotype (~y):

dmiss
ij ð~yÞ ¼

n
0; yi ¼¼ yj

1; else:
(16)

The ba statistic can be interpreted in the following way. For a
unit increase in the difference in the value of the attribute between
two neighbors, we predict a change of eba in the odds of the neigh-
bors being in opposite classes. For dichotomous outcome data, we
are interested in the alternative hypothesis that ba > 0 because nega-
tive ba values represent attributes that are irrelevant to classification.
Thus, like NPDR linear regression, we are interested in testing one-
sided hypotheses

H0 : ba � 0
H1 : ba > 0:

(17)

Nominal outcomes can be analyzed (similar to multi-state Relief-
F) with NPDR by grouping all misses of an instance as one group.

2.2.4 Regularized NPDR

One of the advantages of NPDR is its ability to estimate the confi-
dence in the score of each attribute and provide a pseudo P-value.
This also allows NPDR to control for multiple testing by applying a
false discovery rate adjustment to the collection of NPDR P-values for
all attributes. Here, we develop a complementary feature selection
method called regularized NPDR that combines all of the attribute
difference vectors into one design matrix and constrains the coeffi-
cients to be non-negative, similar to the one-tailed test we use in stand-
ard NPDR. Specifically, we minimize the vector of regression
coefficients, ~bA ¼ ðba1

; ba2
; . . . ; bap

Þ, simultaneously for all attribute
projections a 2 A, subject to the coefficients being non-negative:

minbo ;
~bA

1

jN j
P

i;j2N L
�

dmiss
ij ðyÞ;b0 þ~b

T

AdijðAÞ
�
þ kjj~bAjj1

bak
� 0; k ¼ 1; . . . ; p:

(18)

L is the negative log-likelihood for each pair of instances i and j in
neighborhood N , and dijðAÞ represents the vector of diffs for fixed i
and j for all attributes a 2 A:

dijðAÞ ¼
�

d
type1

ij ða1Þ; dtype2

ij ða2Þ; . . . ;d
typep

ij ðapÞ
�T
: (19)

Our implementation uses a zero lower limit for the coefficients
and the penalty strength k > 0 is chosen by cross-validation (Zou
and Hastie, 2005). For dichotomous outcomes, we use the binomial
link function for the hit/miss projected distances in the likelihood
optimization.

2.3 Properties of NPDR and existing Relief-based

methods
Here, we summarize the properties and capabilities of standard
Relief-based methods (Urbanowicz et al., 2018b) and the generaliza-
tions STIR (Le et al., 2018b) and NPDR (Table 1). When there are
no covariates for dichotomous outcome data, STIR (based on a
pseudo t-test) and NPDR (based on regression with a logit model)
are approximately equivalent given reasonable distribution assump-
tions (see Supplementary Fig. S1). However, by design, the NPDR
framework is more flexible and able to handle covariate adjustment
and continuous outcomes. In the current notation, the STIR null and
alternative hypotheses would be

Hstir
0 : lMðaÞ � lHðaÞ � 0

Hstir
1 : lMðaÞ � lHðaÞ > 0;

(20)

where

lMðaÞ ¼ �Ma ¼ E
�

dijðaÞ �
�

1� dmiss
ij ðyÞ

��
lHðaÞ ¼ �Ha ¼ E

�
dijðaÞ � dmiss

ij ðyÞ
� (21)

and dmiss
ij ðyÞ is given by Equation (16). The STIR test statistic is a

pseudo t-test (see Le et al., 2018b).
For dichotomous outcomes, STIR improves attribute estimates

over Relief weights ( �Ma � �Ha) by incorporating sample variance of
the nearest-neighbor distances in the denominator, which also ena-
bles STIR to estimate statistical significance with the assumptions of
a t-test (Table 1). NPDR assumes intra- and inter-class differences
are randomly sampled from one distribution and computes the im-
portance score from a logistic regression b0a. This regression-based
generalization improves NPDR’s attribute estimates over Relief
weights and enables statistical significance estimation for a wider
range of problems than STIR.

2.4 Real and simulated datasets
2.4.1 Simulation methods

To compare true positive and false positive performance for NPDR
and other feature selection methods, we use the simulation tool
from our private Evaporative Cooling (privateEC) software (Le
et al., 2017) that was designed to simulate realistic main effects,

Table 1. Properties of standard Relief-based methods and general-

izations STIR and NPDR

Standard

Relief-based

STIR NPDR

Importance score

(dichotomous)

�Ma � �Ha
�Ma� �Ha

SpðM;HÞ
ffiffiffiffiffiffiffiffiffiffi
1
jMjþ

1
jHj

p b0a
coefficient

Score has a null distribution No Yes Yes

Supports continuous outcome Yes No Yes

Supports covariates No No Yes

Supports regularization No No Yes

Note: The NPDR score is the standardized regression coefficient b0a from a

logistic model of projected distances [Equation (14)] for dichotomous out-

comes and from a linear model [Equation (8)] for continuous outcomes. The

quantity Sp in STIR is the pooled SD of the hit and miss means. Only the score

for dichotomous (hit/miss) Relief is shown and STIR is limited to dichotom-

ous outcomes (Le et al., 2018b).
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correlations and interactions found in gene expression or resting-
state fMRI correlation data. We simulate data with m ¼ 200 sub-
jects and p ¼ 1000 real-valued attributes with 10% functional (true
positive association with outcome). We simulate both balanced and
imbalanced (75:25) dichotomous outcomes as well as continuous
outcome data, and we simulate multiple main effects and interaction
effects. We choose a sample size consistent with real gene expression
data but on the smaller end to demonstrate a more challenging scen-
ario. Likewise, the main effect size parameter (b ¼ 0.8) was selected
to be sufficiently challenging with power �40% (Le et al., 2017).

For interactions in dichotomous outcome data, we simulate net-
work interactions using the differential co-expression network-
based simulation tool in privateEC, which is described in Le et al.
(2017) and Lareau et al. (2015). Briefly, first create a co-expression
network on an Erd}os–Rényi random graph with 0.1 attachment
probability, which is the critical value for a giant component. We
give connected genes a higher average correlation, approximately
rconnected ¼ 0:8. This correlation between variables also controls the
interaction effect size because we disrupt the correlation of target
genes in cases but maintain correlation within controls, thereby cre-
ating a final differential correlation network. For GWAS simula-
tions, we use benchmark simulated epistatic data from Urbanowicz
et al. (2018a). Specifically, we use data with 20 variants [0.2 max-
imum minor allele frequency (MAF)] and containing one pair of epi-
static variants with a heritability of 10%. To make functional
detection more challenging, we randomly select a small sample size
of m ¼ 200, including balanced and imbalanced (75 : 25) cases and
control datasets.

We assess the feature selection performance of each method by
averaging the area under the recall curve (auRC) and the area under
the precision-recall curve (auPRC) across 100 replicate simulations
for continuous predictors and 30 replicates for GWAS (genotypic)
predictors. The auRC and auPRC metrics are good comparison tools
for feature selection methods that, unlike NPDR, do not have a stat-
istical significance threshold. The recall curve for a method is com-
puted by sweeping across all score thresholds (from 0% to 100%
selected) for a given dataset and calculating the recall (true positive
rate) for each threshold. The auRC gives an overall measure of a
method’s ability to detect functional attributes; however, in addition
to detecting true positives, researchers are also interested in the false
positive rate of a method. Thus, we also sweep across thresholds
and compute the auPRC. The auPRC measures how well the method
balances the ability to detect true positives versus including too
many false positives across all thresholds.

2.4.2 RNA-Seq data and NPDR adjustment for confounding factors

To test the ability of NPDR to correct for confounding, we apply
NPDR to the RNA-Seq study in Mostafavi et al. (2014) that consists
of 15 231 genes for 463 MDD cases and 452 controls. Of the 915
subjects, 641 are female and 274 are male. The chi-square between
MDD and sex is 25.75 (p ¼ 3:89e� 7), and there are 485 genes sig-
nificantly associated with sex. Thus, there is high risk for confound-
ing effects due to sex differences. We apply NPDR with a
multiSURF neighborhood and compute importance scores of all
genes with and without sex as a covariate to isolate confounding
genes. All resulting P-values (from STIR and NPDR) are adjusted
for multiple testing. Attributes with adjusted P-values <0.05 are
counted as a positive test (null hypothesis rejected), else the test is
negative.

2.4.3 eQTL data and NPDR for GWAS and quantitative outcomes

We perform an eQTL analysis with NPDR feature selection to iden-
tify potentially interacting variants that regulate transcripts associ-
ated with MDD and demonstrate NPDR’s utility for GWAS and
continuous outcomes. The MDD RNA-Seq study described above
includes 915 GWAS subjects genotyped with the Illumina Omni1-
Quad microarray (Mostafavi et al., 2014). We use NDPR to test for
the cis- (1 Mb from the gene’s transcription start site) and trans-
eQTL influence on one of the gene expression levels associated with
MDD [suppressor of cancer cell invasion (SCAI) gene]. We included

281 648 variants following GWAS filtering. We remove variants
with a deviation from Hardy–Weinberg equilibrium (P < 0.0001 in
controls) and a MAF < 0.01, and we use linkage disequilibrium

(LD) pruning to reduce the potential bias of correlation on inter-
action and distance calculations. Single-nucleotide polymorphisms

(SNPs) are recursively removed within a sliding window along a
given chromosome based on a pairwise LD of 0.5. We control for
MDD status in the NPDR models to isolate more direct influence of

variants on expression rather than MDD association. We use the
Equation (11) NPDR model and an allele mismatch operator for the

SNP attribute projections (Arabnejad et al., 2018).

2.5 Software availability
Detailed simulation and analysis code needed to reproduce the
results in this study is available at https://github.com/lelaboratoire/
npdr-paper (R version 3.5.0). The npdr R package is available at

https://insilico.github.io/npdr/.

3 Results

3.1 Simulation results
Because Relief scores do not have a distribution for statistical signifi-
cance, we compare score quality of methods by calculating the
auRC (true positive rate) for a grid of score thresholds (Fig. 2). For

simulated genotype data with epistasis (Fig. 2A), Relief and NPDR
have similar recall for detecting the two interacting variants and

higher recall than random forest. NPDR has a higher recall than
Relief and random forest for simulated continuous-valued attributes
with 100 network interactions in a background 1000 total attributes

(Fig. 2B). The performance of all methods decreases when there is
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Fig. 2. Recall (true positive rate) for detection of interaction effects in case–control

data. For 30 replicate genotype simulations with epistasis (A, top row), the auRC is

compared for NPDR, Relief and random forest for balanced (left 50:50) and imbal-

anced (right 75:25) case–control data. The auRC measures the ability of each

method to detect the pair of interacting variants with heritability 0.1 in p ¼ 20 total

attributes. For 100 replicate continuous-attribute simulations with a network of

interactions (B, bottom row), the auRC is compared for the three methods for bal-

anced (left 50:50) and imbalanced (right 75:25) case–control data. The auRC meas-

ures the ability of each method to detect the 100 interacting attributes in p ¼ 1000

total attributes. All simulations use m ¼ 200 samples
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imbalance (Fig. 2, right panels), but the relative performance be-
tween methods is the same.

A high true positive rate is an important consideration, but this
could come with a risk of a higher false positive rate, which can be
measured by the feature selection precision. For one simulation with
continuous-valued attributes, we illustrate the precision-recall curve
(PRC) for a grid of attribute importance thresholds (Fig. 3A) for
each method. NPDR shows higher auPRC than Relief and random
forest for continuous outcomes with main effects (left) and dichot-
omous outcomes with network interaction effects (right). Across
100 replicate simulations for each simulation type, NPDR shows
significantly higher auPRC than random forest and Relief (both
P < 0.0001, Fig. 3B).

We use auPRC to compare other machine learning methods with
NPDR because Relief and random forest lack a null distribution,
whereas NPDR has an approximate distribution for hypothesis test-
ing. NPDR correctly detects 57 out of 100 functional attributes in a
continuous outcome main effect simulation (Supplementary Fig.
S2A) and 86 out of 100 functional attributes in a dichotomous-
outcome interaction simulation (Supplementary Fig. S2B) using an
adjusted P-value threshold. Given any vertical score cutoff
(Supplementary Fig. S2), it is difficult for Relief or random forest to
detect most of the functional attributes without including many
more false positives than NPDR. As shown by the auPRC (Fig. 3),
NPDR includes fewer false positives than the other methods as it
also detects more functional attributes.

NPDR importance scores are highly correlated with Relief-F
scores with r ¼ 0.869 for continuous outcome main effects and
0.848 for dichotomous outcome interaction effects (Supplementary
Fig. S2). This correlation is expected because both methods are
nearest-neighbor based. The correlation of NPDR with random for-
est scores is lower than with Relief-F, where r ¼ 0.692 for continu-
ous outcome main effects and 0.578 for dichotomous outcome
interaction effects. The correlation for interaction effect simulations

is lower than main effects because random forest underestimates the
importance of interacting attributes as the attribute dimensionality
becomes large compared to the number of functional attributes
(McKinney et al., 2009; Winham et al., 2012).

In addition to auRC and auPRC performance metrics, we also
use the area under the receiver operating characteristics curve, which
also shows NPDR has statistically significant higher feature selec-
tion performance than random forest and Relief (both P < 0.0001,
see Supplementary Fig. S3). We also compare NPDR (using a logis-
tic model) with STIR (based on a t-test) for the dichotomous out-
come data with interaction effects (Supplementary Fig. S1).
Although standard logistic regression and the t-test have slightly dif-
ferent assumptions on the distribution of samples, NPDR and STIR
yield highly correlated scores for dichotomous data with interaction
effects, where the correlation between the P-values produced from
the two methods ranges from 0.9827 to 0.9994 in 100 replicate
simulations.

In the simulations for continuous and dichotomous outcomes,
respectively, we use NPDR with a linear model [Equation (8)] and
logistic model [Equation (14)] to compare with standard RRelief
and Relief-F (R package CORElearn) and with random forest re-
gression and classification (permutation importance, R package ran-
domforest). To provide a fair comparison of Relief and NPDR
scores, we control for the neighborhood method by using the same
fixed-k neighborhood N �k1=2

for all methods. The value �k1=2 ¼ 30
[Equation (7)] is the expected number of nearest-neighbors corre-
sponding to a multiSURF neighborhood for the simulated sample
size m ¼ 200. In the simulation analysis, this k value is used for
NPDR nearest-neighbors, and one half of this value is used for
ReliefF because its k represents nearest hits and misses separately.
For a dataset of the size simulated in this study (m ¼ 200 samples
and p ¼ 1000 attributes with 100 functional), on a desktop with an
Intel Xeon W-2104 CPU and 32 GB of RAM, NPDR has a 24- and
3-s runtime for dichotomous and continuous outcome data,
respectively.

3.2 RNA-Seq NPDR analysis for MDD with confounding
NPDR with covariate adjustment effectively removes sex-related
confounding genes in the RNA-Seq study of MDD in Mostafavi
et al. (2014). We apply NPDR with the multiSURF neighborhood
N a¼1=2 and an adjustment for the sex covariate [Equation (15)].
This study contains numerous genes that are potentially confounded
by sex differences. The sex variable is significantly associated with
MDD, and 485 out of the 15 231 genes are associated with sex
(Bonferroni-adjusted P-value < 0.0001). The NPDR adjustment
removes the genes that are most likely spurious MDD associations
due to confounding (dark points below the horizontal 0.05 adjusted
significance line in Fig. 4) compared to NPDR without adjustment.
Not only do these removed genes have strong differential expression
based on sex, but many of these genes, such as PRKY, UTY and
USP9Y, are Y-linked and mainly expressed in testis. For example,
the RPS4Y2 ribosomal protein S4 Y-linked 2 has been shown by tis-
sue specific studies to mainly express in prostate and testis (Lopes
et al., 2010) while RPS4X (also associated with sex in the data) is
most expressed in the ovary. The NPDR runtime for this RNA-Seq
dataset (m ¼ 915 samples and p ¼ 15 231 attributes) was �2.3 h on
a desktop with an Intel Xeon W-2104 CPU and 32 GB of RAM.

3.3 eQTL analysis using NPDR with GWAS and

quantitative outcomes
We perform an eQTL analysis with NPDR to demonstrate its ability
to analyze continuous outcomes and SNP predictors from GWAS.
We choose to test for eQTLs that influence the expression of SCAI
(involved in cell migration and regulation of cell cycle on chromo-
some 9), which was one of the stronger NPDR associations with
MDD (Fig. 4) and was found previously to have a modest cis-eQTL
effect in this dataset (Mostafavi et al., 2014). One of the eQTLs
found by NPDR (rs10997355) is an intron variant in CTNNA3 (cat-
enin alpha-3 mediates cell–cell adhesion) on chromosome 10. In a
study of schizophrenia, an intron variant near rs10997355 showed
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Fig. 3. Precision-recall for detection of simulated functional variables. For one repli-

cate simulation (A, top row), PRCs are displayed for continuous outcome data with

main effects (left) and dichotomous outcome data with interaction effects (right).

The auPRC value is reported next to each method’s curve: NPDR, Relief-based and

random forest. The * indicates the NPDR 0.05 adjusted cutoffs (scores shown in

Supplementary Fig. S2). For 100 replicate simulations (B, bottom row), the distribu-

tions of the auPRC values are compared for the methods. NPDR yields statistically

significant higher auPRC than Relief or random forest (� � � indicates P<0.0001).

All simulations use m ¼ 200 samples and p ¼ 1000 attributes with 100 functional
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an interaction with maternal cytomegalovirus (CMV) status
(Børglum et al., 2014). Other studies of CTNNA3 and its nested
gene LRRTM3 (encoding the Leucine-rich repeat transmembrane
neuronal protein 3) have found associations with Alzheimer’s dis-
ease (Miyashita et al., 2007) and autism spectrum disorder (Wang
et al., 2009). The top 100 NDPR eQTLs for SCAI are provided as
Supplementary Material. The NPDR runtime was 7.06 h (on a high
performance computing environment with an Intel Xeon E5-2650v3
CPU, 20 nodes and 32 GB of RAM).

4 Discussion

NPDR is the first method to our knowledge to combine projected
distances and nearest-neighbors into a GLM regression framework
to perform feature selection. The use of nearest-neighbors enables
the detection of interacting attributes, which NPDR shares with
Relief-based methods. NPDR extends Relief in the following ways.
(i) For feature selection with dichotomous outcomes, NPDR uses a
logistic model to fit pairwise projected-distance predictors onto hit
and miss class differences. (ii) This regression formalism provides a
simple mechanism for the projected-distance-based NPDR to correct
for covariates, which is often neglected in machine learning and has
been a limitation of Relief-based methods. (iii) For continuous out-
come data, NPDR simply performs a linear regression between the
outcome- and attribute-projected distances between neighbors. The
NPDR regression coefficient is an effective importance score and
has an interpretation of variation explained in the outcome variable
distances between subjects. (iv) For any outcome data type (dichot-
omous or continuous) and any predictor data type, the NPDR score
of an attribute includes the error of the estimate via the standardized
regression coefficient, which enables statistical inference, signifi-
cance testing of attribute scores and adjustment for multiple testing.
This additional variation is neglected by Relief-based methods. (v)
We introduced a regularized NPDR that adds another layer of multi-
variate modeling to an already multi-dimensional nearest-neighbor
method to shrink correlated projected attribute differences.

We assessed NPDR’s true positive rate and ability to control
false positives using realistic simulations with main effects, network
interactions, continuous outcomes, dichotomous outcomes with

balanced and imbalanced classes and categorical (genotypes) and
continuous (expression) predictors. We showed that the statistical
performance using NPDR P-values is the same as STIR, where STIR
is limited to dichotomous outcome data. In other words, by model-
ing hit/miss differences between neighbors with a logit link, NPDR
can be used safely instead of STIR with the added benefit of covari-
ate correction and the analysis of quantitative traits. The simulations
provided empirical evidence for the improved recall and precision of
NPDR over Relief-based and Random Forest feature selection.

A related distance-based regression method is Multivariate
Distance Matrix Regression (MDMR) (Schork and Zapala, 2012).
The MDMR approach uses an F-statistic to test for the association
of distance matrices between two sets of factors. The MDMR re-
gression is performed for the distance matrix for all pairs of instan-
ces, not a subset of nearest-neighbors like NPDR, which makes
MDMR susceptible to missing interactions. The use of local neigh-
borhoods allows NPDR to remove imposter/irrelevant instances
from the neighborhood and detect interactions in the higher dimen-
sional space. Another distinction between methods is that NPDR
projects distances onto each attribute, allowing for hypothesis test-
ing of individual attributes (i.e. perform feature selection), whereas
MDMR uses specified sets of attributes. NPDR uses the context of
all attributes to compute nearest-neighbors, but it focuses on the
projected regression of each attribute at a time and uses the nearest-
neighbors to allow for detection of interactions. However, NPDR
can also be used to compute the importance of sets of factors, simi-
lar to MDMR. An example of this is the penalized version of NPDR
that uses the set of all attributes in a nearest-neighbor projected-
distance multiple regression.

The NPDR implementation can use fixed-k, fixed radius or
adaptive-radius neighborhood methods. To provide a fair compari-
son between Relief and NDPR methods, we used the same fixed-k
for all simulation analyses. Power for detecting main effects is high-
est with the myopic maximum N kmax

(kmax ¼ bðm� 1Þ=2c for bal-
anced data). However, real biological data will likely contain a
mixture of main effects and interaction-network effects (McKinney
and Pajewski, 2012). Thus, for all simulation analyses, we used a
fixed-k that has been shown to balance main effects and interactions
[Equation (7) with a ¼ 1=2] (Le et al., 2018b). NPDR feature selec-
tion can be embedded in the backwards elimination of privateEC or
in a nested cross-validation for feature selection and classification
(Le et al., 2017) or tuning a or k to balance main effect and inter-
action detection.

The ability to incorporate covariates into NPDR models
addresses the important but often neglected issue of confounding
factors in machine learning. We applied NPDR to a real RNA-Seq
dataset for MDD to demonstrate the identification of biologically
relevant genes and the removal of spurious associations by covariate
correction. NPDR with sex as a covariate adjustment successfully
removed X and Y-linked genes and genes highly expressed in sex
organs. However, it is important to note that some genes removed
due to a shared association with sex may be important for the patho-
physiology of MDD or for classification accuracy. Thus, covariate
adjustment in NPDR is a useful option to inform a holistic analysis
of a given dataset.

Application to GWAS data required no additional modifications
of the algorithm other than specification of a different diff projec-
tion operator for categorical variables (Arabnejad et al., 2018), and
the covariate option allows principal components to be included to
adjust for population structure. One of the trans-eQTLs found by
NPDR in CTNNA3 (rs10997355) for SCAI may suggest a gene–
environment interaction due to maternal CMV infection. In add-
ition, it has been suggested that exposure to CMV may increase
mood disorder risk through interactions with susceptibility variants
(Kim et al., 2007).

To expand variant discovery and demonstrate the ability of
NDPR to analyze large GWAS data, we performed a conservative
LD pruning that removes some correlation between variants while
still leaving a substantial number of informative variants. Our simu-
lations for continuous predictors included correlation as well as
interactions, but because of the omnigenic nature of NPDR, further
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Fig. 4. Comparison of NPDR MDD associations with and without covariate adjust-

ment. Gene scatter plot of � log 10 significance using NPDR without correction for

sex (horizontal axis) and with correction for sex (vertical axis). Genes with adjusted

pmdd < 0:001 by either method are labeled. NPDR without sex correction finds 87

genes associated with MDD at the Bonferroni-adjusted 0.05 level (right of vertical

dashed line), 53 of which are also significantly correlated with sex (adjusted

psex < 0:05). NPDR with adjustment for sex finds 56 genes associated with MDD
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are significantly correlated with sex. The most highly associated genes with sex are
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in the non-adjusted set (right of dashed vertical line)
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investigation is needed to understand the effect of correlation on the
relative ranking of variants and the effect on nearest-neighbor calcu-
lations. A challenge in NPDR analysis is the inherent dependence be-
tween neighbors in the models, which violates distribution
assumptions of regression and leads to artificially lower P-values.
Our results indicate that the Bonferroni procedure effectively con-
trols type I error despite deflated P-values. However, future studies
are needed to investigate strategies to account for dependence be-
tween neighbor-pair observations.
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