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Abstract

Motivation: Identification of differentially expressed genes is necessary for unraveling disease pathogenesis. This
task is complicated by the fact that many diseases are heterogeneous at the molecular level and samples represent-
ing distinct disease subtypes may demonstrate different patterns of dysregulation. Biclustering methods are capable
of identifying genes that follow a similar expression pattern only in a subset of samples and hence can consider dis-
ease heterogeneity. However, identifying biologically significant and reproducible sets of genes and samples remain
challenging for the existing tools. Many recent studies have shown that the integration of gene expression and pro-
tein interaction data improves the robustness of prediction and classification and advances biomarker discovery.

Results: Here, we present DESMOND, a new method for identification of Differentially ExpreSsed gene MOdules iN
Diseases. DESMOND performs network-constrained biclustering on gene expression data and identifies gene mod-
ules—connected sets of genes up- or down-regulated in subsets of samples. We applied DESMOND on expression
profiles of samples from two large breast cancer cohorts and have shown that the capability of DESMOND to incorp-
orate protein interactions allows identifying the biologically meaningful gene and sample subsets and improves the
reproducibility of the results.

Availability and implementation: https://github.com/ozolotareva/DESMOND.

Contact: ozolotareva@techfak.uni-bielefeld.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since the development of any disease is thought to be due to dysre-
gulation of certain molecular processes, the detection of genes differ-
entially expressed in disease is necessary for understanding its
pathogenesis. Many existing methods (Love et al., 2014; Ritchie
et al., 2015) are aimed at detecting genes, which are significantly dif-
ferentially expressed in the disease group compared to the control
group. However, the reproducibility of differentially expressed gene
discoveries is rather low (Sweeney et al., 2017; Zhang et al., 2008)
because of high levels of noise and large technical variation. One
possible way to improve reproducibility and consistency between

dysregulated genes detected in independent studies is to group indi-
vidual genes demonstrating a similar pattern of dysregulation to-
gether. Aggregating expressions of multiple genes into single values
reduces the dimensionality of the data and facilitates the subsequent
analysis. The resulting groups of coordinately expressed genes, also
called gene modules (Mitra et al., 2013; Saelens et al., 2018), are
likely to be functionally related and easier to interpret than the
whole list of differentially expressed genes. These gene modules may
be known apriori or detected from the data when gene expression
profiles are mapped on the interaction network. For example, active
subnetwork detection methods search for sets of differentially
expressed genes connected in the interaction network. These
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methods search for active subnetworks in a supervised manner,
when class labels, e.g. disease and control or disease subtypes, are
known (Batra et al., 2017; Chowdhury and Koyutürk, 2009; Dao
et al., 2011; Ideker et al., 2002). However, class labels are not al-
ways available, and even if they are provided, some classes may be
internally heterogeneous and consist of several latent molecular sub-
types (McClellan and King, 2010; Perou et al., 2000).

Biclustering methods (Padilha and Campello, 2017; Pontes et al.,
2015; Xie et al., 2018) perform an unsupervised search for subsets
of genes demonstrating similar expression patterns in a subset of
samples, given a matrix of genes profiled in these samples. Since
biclustering is a much more complex problem than clustering due to
the much larger size of the search space, many biclustering methods
put additional constraints on the input data or the biclustering re-
sult, e.g. they assume a hidden checkerboard data structure
(Hochreiter et al., 2010) or binary expression values (Serin and
Vingron, 2011). Although most of the biclustering methods work on
expression or other omics data matrices (Khakabimamaghani and
Ester, 2015), some of them can additionally incorporate orthogonal
biological data to improve biclustering results. For example,
COALESCE can optionally accept sequences and perform de novo
motif search jointly with biclustering (Huttenhower et al., 2009). It
searches for biclusters composed of genes whose regulatory regions
are enriched by the same motifs. Another biclustering method,
cMonkey2, in addition to motif enrichment data, considers func-
tional associations between genes in its scoring function (Reiss et al.,
2015). As well as many other biclustering methods, cMonkey2 is
more suitable for the detection of differentially co-expressed biclus-
ters, rather than differentially expressed. The new version of QUBIC
can utilize the data on known gene relationships when ranks gene
pairs before constructing biclusters (Li et al., 2009).

Indeed, taking into account the known interactions between the
genes may reduce the complexity of the problem. Instead of consid-
ering all possible gene subsets, in network-constrained biclustering,
the solution is searched among interacting genes, which guides the
method to more biologically reliable results. These considerations
motivated us to develop DESMOND, a new method for identifica-
tion of Differentially ExpreSsed gene MOdules iN Diseases. The ad-
vantage of DESMOND in comparison with most existing
biclustering methods is its ability to incorporate prior knowledge
about gene interactions, which promises to improve the quality of
the results. Another advantage of DESMOND is that instead of set-
ting a hard binarization threshold, it applies flexible thresholds for
identification of samples in which genes are differentially expressed.

We conducted experiments on synthetic data and on real expres-
sions from two large breast cancer cohorts, comprising tumor sam-
ples obtained from 1093 to 1904 unrelated individuals. Breast
cancer was chosen as an example of a heterogeneous disease with
multiple characterized molecular subtypes. Various classifications of
breast tumors that take into account various tumor characteristics
and result in different numbers of breast cancer subtypes include the
classification based on ER, PR and Her2 expression (Gradishar
et al., 2017), intrinsic subtypes classification (Perou et al., 2000),
WHO histopathological classification (International Agency for
Research on Cancer, 2012), etc. We compared DESMOND with
nine state-of-the-art biclustering methods (Bergmann et al., 2003;
Cheng and Church, 2000; Hochreiter et al., 2010; Huttenhower
et al., 2009; Lazzeroni and Owen, 2000; Li et al., 2009; Murali and
Kasif, 2003; Rodriguez-Baena et al., 2011; Serin and Vingron,
2011) (Supplementary Table S1) chosen based on their good per-
formance on synthetic datasets with differentially expressed biclus-
ters (Padilha and Campello, 2017). Among those, only QUBIC was
able to take into account network data.

2 Materials and methods

2.1 Problem definition
The problem addressed in this article is the discovery of connected
groups of genes differentially expressed in an unknown subgroup of
samples, given a network of gene interactions and a matrix of gene

expression profiles. This problem can be classified as network-
constrained biclustering, or, alternatively, as unsupervised active
subnetwork detection, when the desired sample subgroups are
unknown.

Formally speaking, given expressions of genes in G measured in
the samples of set S, and an undirected and unweighted graph
N ¼ ðG; IÞ, representing I interactions between the G genes, we
aimed to find subsets of G0 � G genes and S0 � S samples, such that
genes G0 are differentially expressed in a subset of samples S0 com-
pared to the background samples S0 ¼ S n S0; and G0 forms a con-
nected subgraph in the network N. We call such pairs ðG0; S0Þ
modules. We define gene g to be differentially expressed in a set of
samples S0 � S compared to S0 ¼ S n S0, if lg;S0 , its median expression
in S0, is different from the median expression lg;S0 in S0 . Since we are
interested in discovering subgroups of genes that differentiate dis-
ease subtypes and may be used as biomarkers, in this work, we em-
ploy the signal-to-noise ratio (SNR) (He and Zhou, 2008; Mishra
and Sahu, 2011) as a measure of differential expression. The SNR
for expression of gene g in S0 samples is defined as

SNRðg; S0Þ ¼
lg;S0 � lg;S0

rg;S0 þ rg;S0
: (1)

Similarly, we call a set of genes G0 differentially expressed in the
samples of set S0 if 8 gene g 2 G0, g is differentially expressed in S0.
As a measure of differential expression of a bicluster BðG0; S0Þ, we
use the average of absolute SNR over all genes G0 in S0 samples.
Higher average absolute SNR indicates that a subset of samples S0 is
well-separated from the background in a subspace of G0. Such gene
sets are promising biomarker candidates for distinguishing unknown
but biologically relevant subtypes of samples.

In the standard setting of differential expression analysis, all
genes are tested in two given groups, e.g. disease versus control. In
contrast, in our case, the groups of samples are undefined and our
aim is to discover them. If genes are up-regulated in more than half
of all samples, the remaining samples also form a down-regulated
module and vice versa. Therefore, we are always searching for
groups of samples of size not bigger than jSj=2. Furthermore, the
desired module should not be too small in terms of samples, because
a smaller module has a higher probability to appear just by chance.
We suggest users to select an appropriate smin value based on the
size of the dataset and intended downstream analysis.

2.2 Algorithm
2.2.1 Step 1. Assigning sample sets to edges

In the first step, for each interaction edge i connecting genes u and v,
DESMOND identifies a maximal set of samples Sshared

i ¼ fs1 . . . sng
in which both u and v are differentially expressed compared to
S n Sshared

i . For that, we use a modification of the Rank–Rank
Hypergeometric Overlap (RRHO) method (Plaisier et al., 2010)
(Fig. 1), originally developed for comparison of differential expres-
sion profiles obtained in two experiments. It searches for a group of
genes significantly enriched in the tops or bottoms of two ranked
lists. Basically, this method finds an optimal pair of thresholds, for
which the enrichment in tops (bottoms) of the ranked list is the most
significant and returns a set of genes with expressions above (below)
both thresholds. For two ranked lists of genes, the method creates a
2D-heatmap of the one-sided Fisher’s exact test P-values showing
the significance of every pair of threshold values tu, tv, picking a
combination corresponding to the most significant overlap.

For our problem, we modified the RRHO method to find for a
given connected pair of genes u and v a group of samples of size be-
tween smin and jSj2 , such that both genes are concordantly dysregu-
lated in that sample group. Different from the original method, we
move the thresholds from the middle of the lists to the top and stop
when achieving the first significant overlap and averaged jSNRj
value above SNRmin. This SNRmin threshold value could be explicit-
ly defined by the user or estimated based on the data (see Section
2.2.3 for details). A maximal set of samples Sshared

i for which the
expressions of both u and v exceed the thresholds and avg:jSNRj >
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SNRmin is assigned to the edge i. If no significant overlap bigger than
smin found, the edge is excluded from further consideration.

2.2.2 Step 2. Probabilistic edge clustering

In the first step, every edge is assigned a set of samples in which the
pair of genes connected by this edge is up-regulated (or down-
regulated). In step 2, the algorithm groups edges into connected sub-
graphs, such that each contains edges with similar sets of samples.
We represent the output of the first step as a binary matrix X ¼
½xji�n�m for n edges and m samples, such that xji ¼ 1 if sample i is
assigned to edge j and xji ¼ 0 otherwise. We propose a constrained
Bayesian mixture of Bernoulli distributions for clustering the rows
of the matrix into expression modules. The underlying distributions
of the mixture model are as follows:

xji jhic; sj�Bernoulliðxjijhisj
Þ;

hic�Betaðhic; a=2; a=2Þ;
sj jp�CategoricalðsjjpÞ;
p�Dirichletðp; b=K; . . . ;b=KÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

K of them

(2)

In the above model, the assignments of samples to the edges are
modeled as a Bernoulli distribution with parameter hic and a Beta
prior, for each sample 1 � i � m and module 1 � c � K. The
number of modules is set to K, equal the number of non-empty edges
of the network resulting from step 1. sj, 1 � sj � K, indicates the
module to which edge j belongs and follows a categorical distribu-
tion with parameter p and a Dirichlet prior. The model initializes
with each edge assigned to a separate module.

We use Gibbs sampling for parameter learning. Each iteration of
Gibbs sampling goes over all edges and samples the edge indexes
sjð1 � j � nÞ. The Gibbs sampling includes two phases: (i) burn-in,
consisting of several consecutive iterations for initialization of sj,
and (ii) sampling, which consists of several iterations throughout
which the values of sj are recorded for further analysis for identifica-
tion of modules.

At each Gibbs sampling iteration (either in the burn-in or in the
sampling phase), to sample the value of sj, we first compute the mar-
ginal conditional probability of each j to join an adjacent module k
as follows:

Pðsj ¼ kjX; s�j; a;bÞ / PðX; sj ¼ k; s�j; a;bÞ ¼Ð
p

Ð
h ½PðXjh; sj ¼ k; s�jÞPðh; aÞdh�Pðsj ¼ k; s�jjpÞPðp; bÞdp

; (3)

where s�j indicates the current assignment of all edges except edge j
to the modules, and we assume zero probabilities for all non-

adjacent modules. Because, we use conjugate priors (Beta and
Dirichlet) the products are in closed form and integrations over p
and h are straightforward. Keeping the terms that vary with k, we
get the following conditional probability:

Pðsj ¼ kjX; s�j; a; bÞ /Y
i:xji¼1

a=2þ
P

l:sl¼k;l 6¼j xli

aþ jfl : sl ¼ k; l 6¼ jgj

" #

�
Y

i:xji¼0

a=2þ
P

l:sl¼k;l 6¼jð1� xliÞ
aþ jfl : sl ¼ k; l 6¼ jgj

" #

� jfl : sl ¼ k; l 6¼ jgj þ b=K
n� 1þ b

:

(4)

No information is stored about sj during the burn-in phase.
During the sampling phase, which consists of the last 20 iterations
before convergence, the values of sj are recorded. We assume conver-
gence when edge transition probabilities stabilize. Specifically, we
compute edge transition probability matrices Pi from the previous
20 model states, starting from i þ 1-th iteration. Sampling stops
when RMSEðPi;Piþ1Þ reaches a plateau, more specifically, when the
slope of a line fitting RMSE remains between –0.05 and 0.05 during
the last five iterations. The final modules are computed as the most
frequent value of sj for each j in the last 20 iterations.

2.2.3 Step 3. Post-processing of the resulting modules

Steps 1 and 2 are performed independently for the detection of up-
and down-regulated modules and result in many module candidates
containing from zero to many edges. Each module represents a sub-
network, defining a subspace of genes in which samples could be
split into two groups differentially expressing these genes. To split
all samples into the aforementioned two groups, DESMOND per-
forms 2-means clustering of samples in a subspace of genes repre-
senting each module.

Since DESMOND aims to discover subnetworks of differentially
expressed genes distinguishing unknown disease subtypes, we ex-
clude all the modules with <2 edges and too low avg:jSNRj. Users
can either explicitly define the SNRmin threshold or draw a certain
quantile q from the distribution of avg:jSNRj values computed for
1000 ‘minimal’ biclusters—randomly chosen network edges.
Finally, to find more complete gene modules, we merge intercon-
nected modules, dysregulated in the same samples. This is necessary
because

• reference biological networks are incomplete (Luck et al., 2017),

A B

C

Fig. 1. Modified RRHO method used to find the maximal set of samples, in which two interacting genes g1 and g2 are up-regulated. (A) Input network and expression matrix,

red and blue respectively, indicate higher and lower expressions. (B) Two lists of samples arranged in decreasing order of the expression values of g1 and g2. Two thresholds t1
and t2 move from jSj

2 to smin with step size 2. The intensity of the cell color shows overlap significance for corresponding thresholds. For the case of down-regulation, the same

procedure applies, but gene profiles are sorted in ascending order. (C) A set of samples Sshared assigned to the edge connecting g1 and g2
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• local heterogeneity of the network connectivity may force the

method to detect parts of a large bicluster as separate smaller

biclusters.

Therefore, we recursively merge modules, starting from the pair
with the most significant overlap in samples (Bonferroni-adjusted
P-value < 0.05). The merge is only allowed if avg:jSNRj of the
resulting bicluster exceeds SNRmin. The procedure is repeated until
no merge is possible.

2.3 Datasets
2.3.1 Synthetic datasets

We used a similar strategy for synthetic expression data generation,
as described in literature (Eren et al., 2013; Padilha and Campello,
2017). For each gene-sample pair, the expression was sampled from
normal distribution Nð2;1Þ if the gene and sample belonged to one
or several biclusters, or from Nð0; 1Þ otherwise. Since, we had no
prior knowledge of the prevailing bicluster sizes in real data, we gen-
erated 20 expression matrices and implanted 10 biclusters with the
size of 5, 10, 20, 50 or 100 genes and 10, 20, 50 or 100 samples in
every matrix. For each bicluster, gene and sample sets were chosen
randomly from all genes and samples, i.e. bicluster overlap was
allowed.

For each synthetic expression dataset, a scale-free network of
2000 nodes was created using scale_free_graph function from
Networkx 1.10 python package, implementing the procedure pro-
posed by Bollobás et al. (2003).

Next, we assigned gene labels to network nodes in a way so that
genes from the same bicluster would be connected. First, we
assigned to the network genes belonging to exclusive parts of biclus-
ters. For that, we used the approach proposed by Ghiassian et al.
(2015). They have shown that disease-associated genes form com-
pact but not densely connected subgraphs on PPI. Therefore, starting
from a random node, on every step a neighbor with the highest con-
nectivity P-value (hypergeometric test) is added to the growing sub-
graph. Next, genes shared by multiple biclusters were assigned to
the network, randomly selecting unlabeled nodes connecting the
desired biclusters. Finally, background genes were assigned to un-
labeled nodes.

2.3.2 Evaluation on synthetic data and the choice of parameters

Ranges of parameter values used in performance evaluation for each
method are summarized in Supplementary Table S2. The expected
number of biclusters was set to 10 when possible. All other parame-
ters were set to default values. For every combination of parameter
values, we applied each method on 20 simulated datasets and calcu-
lated Relevance and Recovery scores (Preli�c et al., 2006). We consid-
ered optimal a combination of parameters corresponding to the
highest geometric mean of Relevance and Recovery, averaged over
all 20 synthetic datasets. For non-deterministic methods, we com-
puted the average Performance scores in 10 runs.

2.3.3 Evaluation on breast cancer data

We evaluated DESMOND and baseline methods on data collected
in two large breast cancer studies, TCGA-BRCA (Liu et al., 2018)
and METABRIC (Pereira et al., 2016). In METABRIC cohort, all
1904 gene expression profiles were measured by microarray technol-
ogy. TCGA-BRCA data comprised of two datasets: 1081 expression
profiles were measured by RNA-Seq (TCGA-RNAseq) and 529 by
microarrays (TCGA-micro). TCGA-micro and TCGA-RNAseq
cohorts were not independent: 517 expression profiles were
obtained from the same samples. Since microarray and RNA-seq
platforms employ different technologies to estimate gene expression
levels, their measurements in the same samples and genes may differ
(Robinson et al., 2015). This may affect the results of biclustering;
therefore, we did not unite these two subsets of expression profiles
and applied DESMOND independently on TCGA-RNAseq and
TCGA-micro.

Normalized gene expression profiles from TCGA and
METABRIC cohorts were downloaded from cBioPortal (Cerami
et al., 2012). From each cohort, we removed genes expressed in
<5% of samples, log2-transformed and standardized expressions of
remaining genes. Samples from both cohorts were annotated with
patient age at diagnosis, stage of the tumor, and molecular subtype.
All clinical information was downloaded from cBioPortal and con-
verted into the same format.

We used a human gene network (Huang et al., 2018) derived
from the BioGRID (Stark, 2006) network. This network consisted
of 258 257 interactions between 16 702 genes. We have chosen
BioGRID because it is one of the most comprehensive and frequently
updated gene interaction networks for Homo sapiens. It comprises
curated genetic and protein interactions, which are more reliable
than computationally predicted interactions. While it provides good
coverage of human genes, BioGRID is not too dense. Although most
of the edges in this network represent protein interactions, BioGRID
still suits our problem because genes with interacting protein prod-
ucts are functionally related.

For evaluation purposes, we kept only 11 959 genes presented in
all three expression datasets and in the network. We also removed
nodes corresponding to genes absent in expression profiles and their
adjacent edges from the network before using it (179 514 edges
remained).

To demonstrate the biological significance of the discovered
biclusters, we tested them for associations with Gene Ontology
(GO) (The Gene Ontology Consortium, 2016) gene sets, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways (Kanehisa,
2000) and known cancer subtypes using the one-sided exact Fisher’s
test. All gene sets used in this work were downloaded from the
EnrichR (Kuleshov et al., 2016). Overall survival (OS) analysis was
performed using the Cox proportional hazards model implemented
in Lifelines v0.23.0 (Davidson-Pilon et al., 2019) with age at diagno-
sis and stage as covariates. All other statistical tests were performed
in python using Scipy 1.1.0. Benjamini and Hochberg’s procedure
implemented in the gseapy 0.9.9 (Chen et al., 2013; Subramanian
et al., 2005) python library was applied for multiple testing
correction.

3 Results

3.1 Synthetic data and parameter tuning
Since previous studies have shown the importance of appropriate
parameter setting for method performance (Eren et al., 2013; Sun
et al., 2014), each method was run multiple times to find optimal
parameter combinations resulting in maximal performance
(Supplementary Table S2). Method performances varied widely
among tools and different bicluster shapes (Supplementary Fig. S1).
Interestingly, classic and query-based versions of QUBIC showed
similar performances, despite the fact that the latter took into ac-
count network information. Although no method outperformed
others in all cases, COALESCE demonstrated the best overall per-
formance in this benchmark (on average, 0.63 with default and 0.72
with tuned parameters). DESMOND was the second top-
performing method with the average performance of 0.64. It outper-
formed all other methods for biclusters of sizes 100�100, 50�100
and 5�100 with a ¼ 0:5; RRHO P-value threshold P ¼ 0.01 and
q ¼ 0.5. We found that the method was not sensitive to changes of
b=K (Wilcoxon signed-rank test P-values 0.11 and 0.67 for compari-
son of performances obtained with b=K set to 1.0 versus 104 and
10�4 and other parameters fixed) and therefore set b=K ¼ 1:0.
DESMOND did not perform well on biclusters with a small number
of samples. When considering only datasets with biclusters of 20 or
more samples, DESMOND on average outperforms all methods
including COALESCE (Supplementary Table S3). Therefore, given
that DESMOND could not accurately detect the biclusters small in
terms of samples, we set smin to 10% of the whole cohort size in all
subsequent experiments. Almost all methods benefited from param-
eter optimization. DeBi, FABIA, COALESCE and QUBIC greatly
improved their average performances (Fig. 2).
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3.2 Breast cancer data
Five baselines (COALESCE, DeBi, ISA2, Fabia and QUBIC) demon-
strated their ability to detect differentially expressed biclusters in
synthetic data were chosen and applied on three real-world datasets:
TCGA-micro, TCGA-RNAseq and METABRIC. Each method was
run twice: with default parameters and with parameters optimized
on synthetic data. Since, we were interested in differentially
expressed biclusters, we excluded from further analyses all biclusters
with avg:jSNRj < 0:5 [this corresponds to SNR between Nð0;1Þ
and Nð1; 1Þ] and <2 genes or 10 samples.

All methods produced different numbers of biclusters, demon-
strating diverse distributions of shapes and avg:jSNRj values
(Supplementary Fig. S2). FABIA run with default parameters identi-
fied no biclusters with average—SNR—above 0.5. DeBi did not fin-
ish after a week of running with default parameters on the
METABRIC dataset and therefore was run on the subset of 500 ran-
domly chosen samples. In contrast, QUBIC identified biclusters with
weaker differential expression, when running with optimized
parameters than with defaults. Only 8, 2 and 3 biclusters found with
optimized parameters in TCGA-micro, TCGA-RNAseq and
METABRIC, respectively, passed SNR threshold of 0.5. Therefore,
below we report the results obtained with optimized parameters for
all the methods except QUBIC. Given that the effect of parameter
tuning was controversial, we show the results obtained with default
and optimized parameters in Supplementary Figures S2, S3, S5 and
S8–S12.

DESMOND identified 390, 763 and 442 biclusters of 3–157
genes and 53–952 samples in TCGA-micro, TCGA-RNAseq and
METABRIC, respectively. Biclusters produced by DESMOND
tended to be smaller in terms of genes and bigger in terms of samples
than biclusters found by other methods. Compared to the other
methods, QUBIC and DESMOND identified biclusters with more
pronounced differential expression. As expected, DESMOND
biclusters had much higher gene connectivity on average than biclus-
ters produced by all other methods including QUBIC
(Supplementary Fig. S3). We also investigated the redundancy of
method outputs and found that QUBIC and ISA2 identify many
biclusters strongly overlapping in genes and samples (Supplementary
Fig. S4).

In contrast with the synthetic data benchmark, no ground truth
was available for real-world breast cancer datasets. Therefore, to
evaluate obtained biclusters, we tested the corresponding gene and
sample sets for biological significance.

3.3 Associations with GO terms and KEGG pathways
To demonstrate that the identified biclusters are composed of func-
tionally coherent genes, we tested obtained gene sets for overlap
with known sets of functionally related genes from GO and KEGG.
The proportion of biclusters significantly overlapping with KEGG
pathways was always higher for DESMOND than for other meth-
ods, possibly owing to network constraints. Although most of the
biclusters identified by DESMOND were significantly enriched with

at least one GO term, it was second to ISA2 or QUBIC in some tests
for GO term overrepresentation (Fig. 3 and Supplementary Fig. S5).
To show that functional coherency of DESMOND biclusters is not
only due to the network constraint, we have demonstrated that sets
of disconnected genes from these biclusters are also significantly
overlapping with gene sets from GO and KEGG (Supplementary
Table S4).

We further checked how similar are functionally coherent gene
sets detected by different methods. For this purpose, we computed
Jaccard similarities for all significantly overlapping pairs of gene sets
enriched by GO terms or KEGG pathways. Surprisingly, the similar-
ity of such gene sets found by different methods was not high
(Supplementary Fig. S6). Only ISA and DeBi identified many strong-
ly overlapping gene sets, but in all other cases, the examples of high-
ly similar gene sets were rather isolated.

3.4 Permutation tests
Since multiple testing takes place while constructing the biclusters,
there could be some false positives. To demonstrate that biclusters
produced by DESMOND outperform null models, we have per-
formed three permutation tests.

We have shown that DESMOND biclusters found in real data
are bigger and demonstrate more pronounced differential expression
than biclusters found in randomized data. We have also demon-
strated that differential expression of DESMOND biclusters is
stronger than differential expression of random subnetworks of the
same size. The details on the null model construction and computa-
tion of permutation-based empirical P-values are provided in the
Supplementary Text.

To prove that DESMOND has identified functionally coherent
biclusters not only due to network constraints, we generated 200
sets of random subnetworks of the same sizes as DESMOND biclus-
ters. One hundred of these random sets were composed of star-
shaped subnetworks, where one hub node connects all the others,
and the other hundred included chain-shaped subnetworks, created
using depth-first search. We found that the fraction of enriched ran-
dom subnetworks was slightly higher for star-shaped, rather than
for chain-shaped. The percentage of enriched gene sets was always
higher for DESMOND biclusters than for any random set of subnet-
works (empirical P-value<0.01). DESMOND produced 21–38%
and 26–51% more subnetworks enriched by GO terms and KEGG
pathways, respectively than random sampling (Supplementary Table
S5).

To demonstrate that information gain from the network is cru-
cial for the results, we compared DESMOND results produced on
original networks with the results obtained on randomized networks
with 10%, 25%, 50%, 75%, 90% and 100% of shuffled node
labels. Both, the percentage of GO- and KEGG-enriched biclusters
found in TCGA-micro, and Relevance, Recovery and Performance
scores on synthetic datasets decreased when the proportion of
randomized node labels increased (Supplementary Fig. S7).

3.5 Associations with clinical variables
All methods were able to identify many biclusters, significantly (BH-
adjusted hypergeometric P-value¡0.05) enriched by samples anno-
tated with known breast cancer subtypes. Almost all biclusters
found by DESMOND were associated with at least one molecular
subtype of breast cancer. Only 0.5–3.3% of DESMOND biclusters
showed no significant over- or under-representation of any molecu-
lar subtype. In contrast, COALESCE and DeBi produced larger frac-
tions of biclusters not associated with any subtype, up to 68% and
91% of all reported biclusters.

However, although many biclusters were significantly associated
with one or several subtypes, only a few of them demonstrated a
strong overlap with the associated subtype in terms of the Jaccard
similarity. Several methods including DESMOND managed to iden-
tify biclusters with strong overlap with Luminal A (LumA) and
Basal subtypes (Jaccard similarities about 0.5–0.9, Supplementary
Fig. S8). ISA2 applied with default parameters identified biclusters
relatively strongly (Jaccard similarities about 0.5) overlapping with

Fig. 2. Average performance scores demonstrated by DESMOND and nine baseline

methods on 20 synthetic datasets with the default and optimal parameters
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Her-2 subtype in TCGA. For all other subtypes, overlaps with the

most significantly enriched biclusters were weaker.
All identified biclusters were further tested for association with

OS using Cox proportional hazards model. DESMOND and DeBi
produced more biclusters significantly associated with OS compared
to other methods (Fig. 4 and Supplementary Fig. S9 and Table S6).

Surprisingly, no methods except DeBi with optimized parameters
identified OS-associated biclusters in TCGA-micro. However, simi-
larity between OS-associated biclusters found by DeBi on TCGA-

micro and TCGA-RNAseq was not high: pairs of biclusters with the
strongest overlap in genes never shared more than two samples.

Of all methods, only DESMOND, DeBi and QUBIC identified
OS-associated biclusters in both TCGA-RNAseq and METABRIC.

QUBIC found only several isolated OS-associated biclusters, over-
lapping in genes and associated with Basal subtype (Supplementary
Text). DeBi and DESMOND identified many OS-associated biclus-

ters in these two datasets. Although DeBi identified biclusters with
higher HR than DESMOND, the latter produced more similar OS-

associated biclusters in TCGA and METABRIC, as we show further.

3.6 Reproducibility of found biclusters
To evaluate reproducibility of OS-associated biclusters found by
each method in TCGA and METABRIC, we compared best matches

between two corresponding sets of biclusters. For each bicluster
found in one dataset, its best match in another was determined
based on the maximum Jaccard similarity of their gene sets. Since

DeBi and QUBIC with optimized parameters produced much larger
biclusters in terms of genes than DESMOND, we compared the

ratios of observed Jaccard similarities to expected (Fig. 5).

DeBi and DESMOND identified multiple OS-associated biclus-
ters, but a fraction of their findings had no match between TCGA
and METABRIC. All of several biclusters found by QUBIC had a
best match strongly overlapping in genes. However, DESMOND
biclusters, which had a matching partner, tended to demonstrate a
higher gain of Jaccard similarity than biclusters produced by the
other methods. It is important to note that OS-associated biclusters
found by DeBi, QUBIC and DESMOND were not similar in genes
and therefore represented different biomarker candidates. The
examples of OS-associated biclusters produced by DeBi, QUBIC and
DESMOND and composed of similar genes in TCGA and
METABRIC are discussed in Supplementary Text.

Fig. 3. Percentage of gene clusters significantly (BH-adjusted P-value¡0.05) overlapping with at least one functionally related gene set from GO Biological Process, GO

Molecular Function, GO Cellular Component and KEGG. All methods except QUBIC were run with optimized parameters

Fig. 4. Association of biclusters found by DeBi and DESMOND with OS. Every circle represents a bicluster, with size and color intensity proportional to the avg.—SNR—.

The X and Y axes show a negative logarithm of adjusted subtype enrichment test P-values and coefficients (logarithm of Hazard Ratio) in Cox regression models fitted for pa-

tient sets defined by biclusters. The best biomarkers have higher average SNR and larger positive or negative regression coefficients

A B

Fig. 5. Similarity of OS-associated biclusters found by DeBi, QUBIC and

DESMOND in TCGA-RNAseq and METABRIC. (A) Total number of OS-associ-

ated biclusters found in both datasets. The transparent part of each bar corresponds

to biclusters without any match. (B) Logarithms of observed Jaccard similarities div-

ided by expected Jaccard similarities
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Similarly, we compared all biclusters found by each method in
TCGA-BRCA datasets profiled by RNA-seq and microarrays. In this
case, both datasets included the same genes and shared 517 samples.
Therefore, Jaccard similarity of best matches in genes and samples
was calculated considering only shared samples. DESMOND,
QUBIC with defaults and FABIA with optimized parameters shown
on average a higher gain of Jaccard similarity between best matches
than the other methods (Supplementary Fig. S10.).

3.7 Yeast data
To show that DESMOND is applicable to datasets other than
human cancer, we run it and the baselines on two yeast datasets:
DREAM5 (Marbach et al., 2012) and on the dataset from Hughes
et al. (2000) (Supplementary Text and Figs S11 and S12). Although
DESMOND did not outperform all the baselines, most of its biclus-
ters significantly overlapped with GO categories, KEGG pathways
or groups of genes co-regulated by the same TFs.

4 Discussion

In this article, we presented DESMOND, a new method for the iden-
tification of dysregulated gene modules—connected groups of genes
up- or down-regulated in unknown subgroups of samples. We
applied DESMOND to synthetic and real-world datasets and com-
pared its performance with state-of-the-art biclustering methods.

In the benchmark on synthetic data, DESMOND was the second
best performing method, exceeded only by COALESCE. The latter,
however, did not outperform the others on real data, apparently, be-
cause our synthetic datasets do not reflect the whole complexity of
real data. In particular, we did not explicitly model gene co-
expressions and used a scale-free network, which may be unrealistic
(Broido and Clauset, 2019). Another limitation is that we used nor-
mal distributions to model gene expressions, which is optimal for
microarray but not for RNA-seq data, for which zero-inflated distri-
butions fit better (Liu et al., 2019). Also, we did not investigate the
effect of the bicluster-specific expression variance on method
performances.

We demonstrated the capability of DESMOND to identify bio-
logically meaningful subsets of genes and samples in real-world
breast cancer and yeast datasets. Although we noticed that some
biclusters found by DESMOND overlap in gene sets, we found that
the redundancy of its results is not high when genes and samples are
taken into account. In contrast, the closest competitors of
DESMOND, QUBIC and ISA, produce biclusters strongly overlap-
ping in genes and samples. In other words, these methods find a
small number of strong patterns in the data and report them mul-
tiple times with small variations. This helps them to achieve good
results in real data benchmarks, e.g. when the percentages of GO-
enriched biclusters are compared. However, the high redundancy of
the resulting biclusters is undesirable because it complicates further
analysis.

We also note that we did not investigate the effect of different
gene networks on the results and tested it only on the BioGRID net-
work. The method may not perform well on a regulatory network,
in which co-regulated genes are not connected directly. Also, the
network should not be too dense, e.g. like composite functional net-
works. If dysregulated genes already form a connected subgraph,
adding more edges to this subgraph would only increase runtime.

Nevertheless, despite these limitations, we have shown that
owing to its ability to consider gene interactions, DESMOND pro-
duced many biologically meaningful clusterings on the breast cancer
and yeast datasets. DESMOND, QUBIC and DeBi managed to iden-
tify different OS-associated biclusters in both breast cancer cohorts.
Compared to its competitors, DESMOND tended to identify OS-
associated biclusters more similar in genes in independent breast
cancer datasets. The better reproducibility of DESMOND biclusters
may be explained by the usage of network constraints. Higher stabil-
ity of the results is desirable for the discovery of gene signatures re-
producible in independent studies, regardless of the expression
profiling method used. Finding of reproducible OS-associated

biclusters may point to the presence of the internal heterogeneity be-
yond established molecular subtypes and requires further
investigation.
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