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Abstract

Motivation: Identification of small molecules in a biological sample remains a major bottleneck in molecular biol-
ogy, despite a decade of rapid development of computational approaches for predicting molecular structures using
mass spectrometry (MS) data. Recently, there has been increasing interest in utilizing other information sources,
such as liquid chromatography (LC) retention time (RT), to improve identifications solely based on MS information,
such as precursor mass-per-charge and tandem mass spectrometry (MS2).

Results: We put forward a probabilistic modelling framework to integrate MS and RT data of multiple features in an
LC-MS experiment. We model the MS measurements and all pairwise retention order information as a Markov ran-
dom field and use efficient approximate inference for scoring and ranking potential molecular structures. Our experi-
ments show improved identification accuracy by combining MS2 data and retention orders using our approach,
thereby outperforming state-of-the-art methods. Furthermore, we demonstrate the benefit of our model when only a
subset of LC-MS features has MS2 measurements available besides MS1.

Availability and implementation: Software and data are freely available at https://github.com/aalto-ics-kepaco/
msms_rt_score_integration.

Contact: eric.bach@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The identification of small molecules, such as metabolites or drugs,
in biological samples is a challenging task posing a bottleneck in
various research fields, such as biomedicine, biotechnology, environ-
mental chemistry and drug discovery. In untargeted metabolomics
studies, the samples typically contain thousands of different mole-
cules, the vast majority of which remain unidentified (Aksenov
et al., 2017; da Silva et al., 2015). Liquid chromatography (LC)
coupled with tandem mass spectrometry (MS2) is arguably the most
important measurement platform in metabolomics (Bla�zenovi�c
et al., 2018), due to its suitability to high-throughput screening, its
high sensitivity and applicability to a wide range of molecules.
Briefly explained, LC separates molecules by their differential physi-
cochemical interaction between the stationary and mobile phase,
which results in retention time (RT) differences and MS separates
molecular ions by their mass per charge (MS1). Subsequently, MS2

can be used to fragment molecules in a narrow mass window and to
record the fragment intensities (MS2-spectrum). In an untargeted

metabolomics experiment, large sets of MS features (MS1 and RT,
plus optionally MS2), are observed, corresponding to the different
molecules in the sample. Metabolite identification concerns then the
structural annotation of the observed MS features.

In recent years, numerous powerful approaches (Nguyen et al.,
2018a; Schymanski et al., 2017) to predict molecular structure
annotations for MS2 spectra have been developed (Allen et al.,
2014; Brouard et al., 2016; Dührkop et al., 2015, 2019; Nguyen
et al., 2018b, 2019; Ruttkies et al., 2016, 2019). Typically, these
methods output a ranked list of molecular structure candidates, that
can be shown to human experts, or further post-processed, e.g. by
using additional information available for the analysed sample.
Sources of additional information include, e.g. RT (Bach et al.,
2018; Ruttkies et al., 2016; Samaraweera et al., 2018), collision
cross-section (Plante et al., 2019) or prior knowledge on the data
generating process, such as the source organism’s metabolic charac-
teristics (Rutz et al., 2019).

RT, i.e. the time that a molecule takes to elute from the LC col-
umn, is readily available in all LC-MS pipelines, and is frequently
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used in aiding annotation (Stanstrup et al., 2015). A basic technique
is to use the difference between the observed and predicted RT
(Domingo-Almenara et al., 2019; Samaraweera et al., 2018) to
prune the list of candidate molecular structures. A major challenge
for utilizing RT information, however, is that the RT of the same
molecule can vary significantly across different LC systems and con-
figurations, necessitating system specific candidate RT reference
databases and RT predictors. Different approaches have been pro-
posed to tackle this challenge, such as using physicochemical proper-
ties (e.g. partition coefficient, LogP) as RT proxies (Hu et al., 2018;
Ruttkies et al., 2016), RT mapping across LC systems (Stanstrup
et al., 2015) or predicting retention orders, which are largely pre-
served within a family of LC systems (e.g. reversed phase) (Bach
et al., 2018; Liu et al., 2019). Using LogP as an RT proxy is simple
to implement, but only models the hydrophobic separation effects of
the LC system. RT mapping, on the other hand, is limited to pairs of
LC systems in which the same molecules have been measured.
Retention order prediction can overcome those drawbacks, by learn-
ing the LC system’s separation directly from RT data of multiple
systems (Bach et al., 2018).

This study proposes a probabilistic framework to integrate MS1

or MS2-based annotations with predicted retention order for
improved small molecule identification given a set of MS features
measured within one LC-MS run by building on the work by Bach
et al. (2018) and Del Carratore et al. (2019). The latter proposed a
probabilistic approach for integrating different types of additional
information to MS1 data, including RT information. We too define
a probabilistic approach, but differ in how RT is handled. Where
Del Carratore et al. (2019) use absolute RT information, we follow
Bach et al. (2018) and use pairwise retention order predictions for
molecules eluting within the same LC-MS run. In contrast to the
work done by Bach et al. (2018), our model makes use of pairwise
retention order information between all MS features rather than
only the ones adjacent in terms of their RTs, resulting in more accur-
ate annotations. Furthermore, our model allows to rank all candi-
date lists, instead of just returning the most likely candidate
assignment for each MS feature, as done by Bach et al. (2018).

Our framework models the score integration as an inference
problem on a graphical model, where the edges correspond to reten-
tion order predictions, the nodes correspond to MS features and the
node labels correspond to candidate molecular structures, scored by
a MS2 based predictor, such as CSI: FingerID (Dührkop et al.,
2015), MetFrag (Ruttkies et al., 2016) or IOKR (Brouard et al.,
2016), or in the absence of MS2 information, MS1 precursor mass
deviation. This graph is fully connected, which makes exact infer-
ence an NP-hard problem. To solve this challenge, we resort to effi-
cient approximate inference, in particular spanning tree
approximations (Marchand et al., 2014; Pletscher et al., 2009; Su
and Rousu, 2015; Wainwright et al., 2005).

2 Materials and methods

2.1 Overall workflow
We assume data arising from a typical LC-MS-based experimental
workflow (including chromatographic peak picking, and align-
ment): MS features consisting MS1 measurement and the associated
RT. A subset of these will include an MS2 spectrum. In the follow-
ing, we present our score-integration model in the most general
form in which it is provided with MS features and a set of possible
candidate molecular structures. The candidate list can be generated,
e.g. by querying molecular structures from a structure database,
such as ChemSpider (Pence and Williams, 2010), that have the same
mass as the observed MS feature. In addition, we assume that to
each candidate structure a score is assigned by either an MS2-based
predictor, or, if no MS2-spectrum is available, a score based on the
mass deviation of the candidates from the MS mass. For all molecu-
lar candidate pairs, associated with the different MS features, the re-
tention order is predicted. Here, we use the Ranking Support Vector
Machine (RankSVM)-based predictor by Bach et al. (2018). The
candidate structure scores and predicted retention orders are

integrated through a probabilistic graphical model (described in the
following). This allows us to rank the molecular candidate struc-
tures by their inferred marginal probabilities, given both the MS and
RT information.

More formally, the output of an LC-MS experiment is given as a
tuple set D ¼ fðxi; ti; CiÞg, with xi 2 X being the spectrum of feature
i (either an MS2 or a spectrum containing only a single peak at the
mass of the precursor ion if no MS2 information is available), ti 2
R�0 being its RT, and Ci ¼ fmi1; . . . ;mini

g �M being the associated
molecular candidates. Here, mir 2M represents a molecular candi-
date structure and ni is the number of molecular candidates for the
ith MS feature. Figure 1 shows an overview of our workflow.

2.2 Probabilistic model
Let G ¼ ðV;EÞ be an undirected graph, in which each node, i 2 V
represents one observed MS feature, and with an edge for all MS
feature pairs E ¼ fði; jÞji; j 2 V; i 6¼ jg. The edge-set E does not con-
tain any parallel edges. The number of MS features is denoted with
N, i.e. jVj ¼ N. We associate each node i in the vertex set with a dis-
crete random variable zi that takes values from the space
Zi ¼ f1; . . . ; nig. Intuitively, zi defines which candidate has been
assigned to the ith MS feature. The full vector z ¼ fziji 2 Vg corre-
sponds to the molecular structure assignment to each MS feature in
the LC-MS experiment, and it takes values from the set
Z ¼ Z0 � � � � � ZN. In this work, we consider Z to be fixed and fi-
nite for a given a set of MS features, due to our definition of the mo-
lecular candidates sets, which assumes that we can restrict the
putative annotation for a given MS feature.

2.2.1 Markov random field

The probability distribution of z is given as a pairwise Markov
Random Field (MRF) (MacKay, 2005):

pðzÞ ¼ 1

Z

Y
i2V

wiðziÞ
Y
ði;jÞ2E

wijðzi; zjÞ; (1)

composed of node wi and edge wij potential functions, and omits
higher-order cliques (hence the term pairwise). Above, wi : Zi 7!R>0

is the potential function of node i measuring how well the i’s candi-
dates matches the measured MS information, and wij : Zi �
Zj 7!R>0 encodes the consistency of the observed retention orders
for MS feature i and j and the predicted retention order of their can-

didates zi and zj and Z ¼
P

z2Z

�Q
i2V wiðziÞ

Q
ði;jÞ2E wijðzi; zjÞ

�
is the

partition function (MacKay, 2005).

2.2.2 Node potential function wi

For each candidate mir; r 2 Zi, we predict a matching score hir ¼
f ðxi;mirÞ 2 R expressing how well it matches the observed MS1 or
MS2 spectrum xi. For that, we assume a pre-trained model, such as
CSI: FingerID (Dührkop et al., 2015), MetFrag (Ruttkies et al.,
2016) or IOKR (Brouard et al., 2016). We use the latter two in our
experiments as representative MS2 scoring methods (Section 3.3).
MetFrag performs an in silico fragmentation of mir, compares these
fragments peaks with the observed ones in xi and outputs a match-
ing score. IOKR, on the other hand, can be used to directly predict a
matching score f(x, m) for any (MS2 feature, molecular structure)-
tuple. All matching scores hir are normalized to the range ½0; 1�.
Finally, we express the potential of a molecular candidate mr given
the spectrum xi as follows:

wiðzi ¼ rÞ ¼ maxðhir; cÞ;

where c > 0 is a constant used to avoid zero potentials. In our
experiments, we select c such that it is 10 times smaller than the
minimum of all non-zero scores across all candidate sets.

2.2.3 Edge potential function wij

For each candidate pair ðr; sÞ 2 Zi �Zj associated with the MS pair
(i, j), we compute how well the candidates’ predicted retention order
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is aligned with the observed one defined by the RTs ti and tj. To this
end, we apply the framework for retention order prediction devel-
oped by Bach et al. (2018). The edge potential wijðzi ¼ r; zj ¼ sÞ is

defined as follows:

wijðzi ¼ r; zj ¼ sÞ ¼ r
�

signðti � tjÞ �wTð/ir � /jsÞ
�
;

where w 2 R
jFm j is the RankSVM’s parameter vector, and /ir;/js 2

Fm are the feature vectors of the candidates’ molecular structures,
and r : R7!ð0; 1� is a monotonic function mapping the predicted

preference value difference to a value between zero and one. In our
experiments, we consider two mapping functions:

Sigmoid : rsigmoidðxÞ ¼
1

1þ expð�kxÞ
Step� Function : rstepðxÞ ¼ f

�;x < 0
1; x � 0

; � ¼ 10�10:

The different functions can be interpreted as follows. The sig-
moid makes full use of the information from the RankSVM margin,

i.e. the score of each candidate pair depends on the preference score
difference. In this work, we consider k as a hyper-parameter of our
method that needs to be estimated from data (Section 3.5). The step-
function, on the other hand, only differentiates between aligned and
not aligned pairs.

2.2.4 Weighting of information sources

To control the contribution of each information source, i.e. MS in-

formation and retention orders, we introduce a modification on the
potential functions:

pðzÞ ¼ 1

Z

Y
i2V

wiðziÞ1�D
Y
ði;jÞ2E

wijðzi; zjÞD

with D 2 ½0; 1�. A D value close to one, e.g. will result in a score

mainly based on the observed retention orders. In our experiments,
we explain how this hyper-parameter can be estimated in practice

(Section 3.5).

2.3 Ranking candidates through approximated

marginals
We rank the molecular candidates using the marginals of the MRF
(1). The marginal for the candidate r of MS feature i is given as:

pðzi ¼ rÞ ¼
X

fz02Zjz0
i
¼rg

pðz0Þ: (2)

In practice, the calculation of (2) is intractable due to the size of
the domain Z of z, which grows exponentially with the number of
MS features, thus we will resort to approximate inference methods.

2.3.1 Tree approximation of G
To enable feasible inference of (2), we approximate the MRF (1)
using spanning trees of the original graphical model G (Marchand
et al., 2014; Pletscher et al., 2009; Su and Rousu, 2015; Wainwright
et al., 2005). In the following let T be a spanning tree of G with the
same nodes, but an edge-set EðTÞ � E, with jEðTÞj ¼ N � 1, that
ensures T being a cycle-free single connected component. The prob-
ability distribution of the graphical model induced by T is given as:

pðzjTÞ ¼ 1

ZðTÞ
Y
i2V

wiðziÞ
Y

ði;jÞ2EðTÞ
wijðzi; zjÞ: (3)

As the graphical model associated with (3) is a tree, we can
exactly infer its marginals through the sum-product algorithm
(MacKay, 2005), The sum-product algorithm is a message-passing
algorithm using dynamic programming that has linear time com-
plexity in the number of MS features. See, e.g. MacKay (2005) for
further details on the algorithm.

The output of the sum-product algorithm are the unnormalized
marginals lðzi ¼ rjTtÞ for all i 2 V and r 2 Zi. We calculate the nor-
malized marginals as follows (MacKay, 2005):

pðzi ¼ rjTÞ ¼ lðzi ¼ rjTÞ
Pni

r0¼1

lðzi ¼ r0jTÞ
:

2.3.2 Random spanning trees sampling

We compare two approaches to retrieve spanning trees from G. The
first approach is to randomly sample spanning trees from G (c.f.

Fig. 1. Workflow of our framework and its main components. (a) Data acquisition in an LC-MS experiment resulting in a set of (MS2, RT)-tuples of unknown molecules. (b)

Illustration of the underlying graphical model. (c) Ensemble of spanning trees to approximate the MRF and their integration using averaged marginals. (d) Output to the user:

ranked molecular candidate lists based on the approximated marginals. (e) Incorporation of the predicted retention orders for a particular assignment for z via the edge poten-

tial function. (f) Illustration of the RankSVM model
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Pletscher et al., 2009; Su and Rousu, 2015; Wainwright et al.,
2005). We sample the trees by applying the minimum weighted
spanning tree algorithm to a random adjacency matrix. If for an MS
feature pair (i, j) both RTs are equal, i.e. ti¼tj, than their corre-
sponding edge is not sampled. This is justified by the observation,
that MS features with a RT difference equal zero, do not impose
constraints on the retention order of their corresponding candidates.
We will refer to a sampled spanning tree as Tt. The second approach
was implicitly used by Bach et al. (2018) and corresponds to a linear
Markov chain where edges connect adjacent MS features ordered by
increasing RT, which can be seen as a degenerate spanning tree. In
the remaining text, we refer to this tree as Tchain.

2.3.3 Averaged marginal over a random spanning tree ensemble

Using tree-like graphical models for the inference is motivated by
the exact and fast inference it enables us to do. However, a single
tree, such as Tchain or a sampled Tt, will most likely be only a rough
approximation of the original probability distribution (1).
Therefore, the use of random spanning tree ensembles T ¼ fTtgL

t¼1

has been proposed. In particular, Wainwright et al. (2005) show
that an expectation over trees can be used to obtain an upper bound
on the maximum a posteriori (MAP) estimate of the original graph,
and showed that this approximation can be tight if the underlying
trees agree about the MAP configuration. More recently, Marchand
et al. (2014) demonstrated generalization bounds for joint learning
and inference using tree ensembles. More applied work in using
tree-based approximation can be found in Pletscher et al. (2009),
who use majority voting and Su and Rousu (2015), who empirically
study several aggregation schemes in multilabel classification.

Motivated by the mentioned literature, we opted to average the
marginals of a random spanning tree ensemble T, where for each
tree Tt, we independently retrieve the marginals using the sum-
product:

pðzi ¼ rjTÞ ¼ 1

L

XL

t¼1

pðzi ¼ rjTtÞ: (4)

2.3.4 Max-marginals

The exact inference on trees allows us to use the max-marginal, as
an alternative to the sum-marginal shown in Equation (2). The max-
marginal is closely related to the MAP estimate. For a single tree T it
is given as:

pmaxðzi ¼ rjTÞ ¼ max
fz02Zjz0

i
¼rg

pðz0jTÞ:

The interpretation of the two marginals (sum and max) differs
slightly. Whereas the sum-marginal expresses the sum of the proba-
bilities of all configurations z0 with z0i ¼ r, the max-marginal is the
maximum probability that a configuration with the constraint z0i ¼ r
can reach. In our experiments, we compare the performance of both
marginal types (Section 4.1). The max-product algorithm is used to
calculate the unnormalized max-marginals lmaxðzi ¼ rjTÞ, which is
a modification of the sum-product algorithm, in which summations
are replaced by maximization. The normalized marginal can be cal-
culated as (MacKay, 2005):

pmaxðzi ¼ rjTÞ ¼ lmaxðzi ¼ rjTÞ
maxr02f1;...;nig lmaxðzi ¼ r0jTÞ : (5)

By plugging Equation (5) into (4) instead of the sum-marginal,
we obtain the averaged max-marginal pmax.

2.3.5 Run-time complexity

Calculating the marginals for an individual tree and all MS features
i has run-time complexity OðN � n2

maxÞ. Here, N is the total number
of features and nmax ¼ maxi2V jZij the maximum number of molecu-
lar candidates for a feature.

3 Material and experiments

3.1 Evaluation datasets
To evaluate our score-integration approach, we use two publicly
available datasets. These are described in this section and summar-
ized in Table 1.

3.1.1 CASMI 2016

The Critical Assessment of Small Molecule Identification (CASMI)
challenge is a contest organized for the computational spectrometry
community (Schymanski et al., 2017). For its implementation in
2016, a dataset of 208 (MS2, retention-time)-tuples was released.
The dataset contains 81 negative and 127 positive ionization mode
MS2 spectra. The molecular candidate structure sets were extracted
from ChemSpider, using a 6 5 ppm window around the monoiso-
topic exact mass of the correct candidate, by the challenge
organizers.

3.1.2 EA (Massbank)

Massbank (Horai et al., 2010) is a publicly available repository for
MS data. For the development of MetFrag 2.2, Ruttkies et al. (2016)
extracted 473 (MS2, retention-time)-tuples of 359 unique molecular
structures from Massbank (EA dataset). The dataset is split into 154
negative and 319 positive ionization mode MS2 spectra. We used
the molecular candidates provided by Ruttkies et al. (2016)
extracted from ChemSpider using the molecular formula (MF) of
the correct candidate.

For each dataset and ionization mode, we repeatedly subsample
training and test (MS2, RT)-tuple sets: CASMI (negative) 50-times
Ntrain ¼ 31;Ntest ¼ 50; CASMI (positive) 50-times Ntrain ¼ 52;
Ntest ¼ 75; EA (negative) 50-times Ntrain ¼ 45;Ntest ¼ 65; and EA
(positive) 100-times Ntrain ¼ 50;Ntest ¼ 100. No molecular structure,
determined by its InChI representation, appears simultaneously in test
and training. The training set is used for the hyper-parameter selection
(Section 3.5) and the test sets are used to assess the average identification
performance of our score-integration framework (Section 3.4).

3.2 Training setup for the retention order predictor
To calculate the edge potentials of our MRF model (1), we use the
RankSVM retention order prediction approach by Bach et al. (2018).
The RankSVM model is trained using seven publicly available RT
datasets. Six where published by Stanstrup et al. (2015) along with
their RT mapping tool PredRet: UFZ_Phenomenex, FEM_long,
FEM_orbitrap_plasma, FEM_orbitrap_urine, FEM_short and
Eawag_XBridgeC18. The seventh dataset contains examples for
which RTs were published as part of the training dataset for the
CASMI 2016 challenge (Schymanski et al., 2017). The joint dataset
covered four different chromatographic columns all using H2O !
MeOH (with 0.1% formic acid as additive) as eluent. In total, the
dataset contained 1248 (molecule, RT)-tuples of 890 unique molecu-
lar structures, after the same pre-processing as in Bach et al. (2018)
was applied. We represent the molecular structures using
Substructure counting fingerprints calculated with rcdk and CDK 2.2
(Willighagen et al., 2017). We use the MinMax-kernel (Ralaivola
et al., 2005) to calculate the similarity between the fingerprints. For
our experiments, we build an individual RankSVM model for each
(MS, RT)-tuple subsample (Section 3.1), ensuring no molecular struc-
ture in the subsample is used for the RankSVM training.

3.3 MS2-based match scores from MetFrag and IOKR
We apply MetFrag (Ruttkies et al., 2016) and IOKR (Brouard et al.,
2016) as representative methods to obtain MS2 matching scores for
the molecular structures in the candidate list of each MS2 spectrum.

3.3.1 MetFrag

We use the latest MetFrag version 2.4.5 (http://msbi.ipb-halle.de/
cruttkie/metfrag/MetFrag2.4.5-CL.jar) and utilize it as described in
Ruttkies et al. (2016). The MS2 matching scores are calculated using
the FragmenterScore feature of MetFrag.
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3.3.2 IOKR

Two IOKR models are trained, for negative and positive mode MS2

spectra, respectively. The training (MS2, molecular structure)-tuples
are extracted from GNPS (Wang et al., 2016), Massbank and the
CASMI 2016 training data. We remove training molecular struc-
tures that appear in our evaluation datasets (Section 3.1). This
results in 3255 negative and 6773 positive mode training examples.
We use a uniform combination of 16 MS2 spectra and fragmentation
tree (FT) kernels as input kernel (Supplementary Section S4). On the
output side, we use the same molecular fingerprint definitions as
Dührkop et al. (2019) as feature representation and a Gaussian ker-
nel those distances are derived from the Tanimoto kernel (Brouard
et al., 2019) as output kernel. For all MS2 spectra in our evaluation
datasets, we calculate the FTs using SIRIUS 4.0.1 (Dührkop et al.,
2019) and keep the highest scoring tree for each spectra to calculate
the MS2 and FT kernels used by the IOKR.

3.4 Performance evaluation
In our experiments, we use the top-k accuracy to determine the me-
tabolite identification performance, i.e. the percentage of correctly
ranked molecular candidates at rank k or less. Different approaches
can be used to determine the rank of the correct structure. We fol-
low the protocol used by Schymanski et al. (2017). If multiple
stereo-isomers were present in the candidate list, only the one with
the highest MS2-score was retained. The correct molecular structure
was found by comparing the InChIs containing no stereo informa-
tion. The top-k accuracies are calculated the test sets.

3.5 Hyper-parameter estimation
The training set of each individual subsample is used to determine
optimal weighting D between MS and retention order information.
For that, we run the score-integration framework for a different D
values, and calculate the area under-the-ranking curve up to rank
20: top20AUC ¼ 1

20

P20

i¼1

topðiÞ
N , where topðiÞ is the number of correct

structures up to rank i and N is the number of MS features.
Subsequently, we select the retention order weight with the highest
top20AUC (Supplementary Section S2). The optimal sigmoid par-
ameter k is estimated using Platt’s method (Lin et al., 2007; Platt,
2000) calibrated using RankSVM’s training data (Section 3.2).

3.6 Experiments
3.6.1 Full MS2 information available

We compare our approach for combining MS2 and RT information
for metabolite identification against the baseline, which only uses
MS2 information for the candidate ranking. This allowed us to
quantify the performance gain by using RTs. Furthermore, we
applied two recently published methods for the integration of MS2

and RT scores and compared them to our approach. The first one is
MetFrag 2.2 (Ruttkies et al., 2016), which exploits the RT informa-
tion by establishing a linear relationship between the candidates’
predicted LogP values with the observed RTs. Each molecular candi-
date receives an additional score by comparing its predicted RT
against that observed for the corresponding MS2 spectra. We use the

CDK (Willighagen et al., 2017) XLogP predictions, which are auto-
matically calculated by the MetFrag software. The weight of the RT
feature RetentionTimeScore is determined as described in Section
3.5. Our second comparison is the approach by Bach et al. (2018),
which uses predicted retention order and dynamic programming
over a chain-graph connecting adjacent MS features. Bach et al.
(2018) focussed in extracting the most likely assignment z [Equation
(3)] given the chain-graph using dynamic programming. Here, we
use our generalized framework to also compute the marginals of all
candidates given the chain-graph Tchain. The approach by Bach et al.
(2018) implicitly used a hinge-sigmoid to compute edge potentials:
rhingeðxÞ ¼ min 2

1þexpð�kxÞ ; 1:0
� �

. Its parameter k is determined as
described in the Supplementary Section S2. We refer to this method
as Chain-graph.

3.6.2 Missing MS2

In a second experiment, we simulated the common application scen-
ario, in which during an LC-MS experiment, a set of MS features
(MS and RT) have been measured, but MS2 spectra have only been
acquired for a subset of the features. There can be multiple reasons
for this, such as limited measuring time when using, e.g. data-
dependent acquisition (Xiao et al., 2012) protocols, bad fragmenta-
tion quality or inability to deconvolute all spectra when using data-
independent acquisition. In this case, besides the RT, only MS1

related information is available for some features, which includes
the mass of the ion (precursor m/z) and its isotope pattern. We use
our proposed score-integration framework to perform structural
identification when the proportion of MS features that have an MS2

spectrum varies. We vary the percentage of available MS2-spectra
from 0% to 100% and investigate how the joint use of MS1, MS2

and RT information can improve over the baseline solely relying on
only MS information. For the candidates r of an MS feature i, simu-
lated to be without MS2 spectrum, we assign the following candi-
date score (Del Carratore et al., 2019):

Table 1. Summary of the datasets used for the evaluation of our score-integration framework

Dataset Ionization Mass spectra info. Molecular candidatesa Chromatography

MS1 info. #MS2 Tot. #Cand. Median #Cand. Column Eluent

CASMI 2016 Negative Precursor m/z 81 74 589 420 Phenomenex Kinetex

EVO C18

H2O!MeOH (both

0.1% formic acid)

CASMI 2016 Positive Precursor m/z 127 183 633 919 Phenomenex Kinetex

EVO C18

H2O!MeOH (both

0.1% formic acid)

EA (Massbank) Negative Precursor m/z 154 75 107 119.5 Waters XBridge C18 H2O!MeOH (both

0.1% formic acid)

EA (Massbank) Positive Precursor m/z 319 215 893 246 Waters XBridge C18 H2O!MeOH (both

0.1% formic acid)

aExtracted from ChemSpider. CASMI: 65 ppm window around monoisotopic exact mass of correct candidate. EA: MF of correct candidate.

Fig. 2. Top-k accuracies, averaged across all datasets and ionizations, plotted

against the number of random spanning trees (L) used for the approximation. The

baseline using only MS2 information is plotted in black. The sigmoid function is

used in the score integration. The differences between the sum- and max-marginals’

average performance for the L values is significant (P < 0.001 for Top-1 and 20,

Two-sided Wilcoxon Signed-Rank test

1728 E.Bach et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/12/1724/6007259 by guest on 10 April 2024



hir ¼
Nðmi �mirj0;rÞ

maxs2f1;...;nig N ðmi �misj0; rÞ
;

where mi is the neutral exact mass of the measured ion calculated

from the precursor m/z using the ground truth adduct, here either
½MþH�þ (positive) or ½M�H�� (negative), and mir is the exact

mass of candidate r associated with MS feature i, and r ¼ ppm�mi

2�106

variance of Gaussian noise model. ppm expresses the MS-device ac-
curacy, which we set to ppm¼5.

4 Results

4.1 Parameters of our framework
This section investigates the influence of different settings for frame-
work, such as number of random spanning trees or the marginal
type.

4.1.1 Number of random spanning-trees and marginal type

Figure 2 shows the top-k accuracy as a function of the number of
random spanning trees L averaged across the datasets and ioniza-
tions. The identification performance increases for larger L, where-

by the improvement per tree decreases. For the top-1 performance
remains similar for L � 16 trees. However, for top-20, we observe

improvements till L ¼ 128. Figure 2 also shows that the max-
marginal approach performs slightly better than the sum-margin.
An explanation could be that max-marginal is more robust against

candidate configurations z with very low probability. The sum-
marginal averages over such cases, whereas the max-marginal only
includes the one with maximum probability.

4.1.2 Comparison of the edge potential functions

The average metabolite identification performance does not differ

much between two edge potential functions (see Supplementary
Table S1). This is interesting specifically for the Step-function,

which uses the predicted retention orders in a binary fashion only.
However, the Sigmoid function still can significantly outperform the
Step-function for top-1 and top-5 accuracy.

4.2 Performance of our score integration framework
Here, we compare our score-integration framework with other

methods and evaluate it under different data setups. We use
L ¼ 128 with max-marginals and the Sigmoid as edge potential

function for the experiments.

4.2.1 Comparison to other approaches

In Table 2, we compare the performance of our score-integration
framework with other approaches from the literature that utilize RT

information for metabolite identification. It can be seen that our
framework performs well across all datasets and ionization modes
and we reach significant improvements over the baseline (Only

MS2). Especially for the positive mode spectra, our method seems to
have an advantage, as both competing approaches, cannot consist-
ently improve the identification by including RT information. The

least performance improvement of our approach can be observed
for the negative CASMI dataset, which might be due to the small

training set. The other approaches, MetFrag 2.2 and Chain-graph,
can consistently (top-1, 5, 10 and 20) improve the results only on
particular (dataset, ionization mode) combinations. However, they

almost always increase top-1 performance. The results in Table 3
show that our framework significantly outperforms MetFrag 2.2

and Chain-graph in terms of identification performance.

4.2.2 Influence of MS2 scoring method

Table 4 shows the performance using of our score-integration
framework for two difference MS2 scoring methods, MetFrag and
IOKR (Section 3.3). Retention order information (MS2 þ RT) can

Table 2. Identification accuracies (top-k) for the different datasets and ionization modes

Negative Positive

Dataset Method Top-1 Top-5 Top-10 Top-20 Top-1 Top-5 Top-10 Top-20

CASMI 2016 MS2 þ RT (our) 15.2 (***) 47.2 (***) 57.0 (**) 70.1 (***) 14.0 (***) 40.7 (***) 52.2 (***) 62.8 (***)

MS2 þ RT (Chain-graph) 13.2 (***) 49.4 (***) 61.0 (***) 69.4 (***) 11.9 36.5 50.2 (***) 60.7 (***)

MS2 þ RT (MetFrag 2.2) 14.0 (***) 42.0 55.5 71.2 (***) 13.7 (***) 36.2 46.2 57.5

Only MS2 11.1 44.2 55.3 68.0 11.8 37.3 47.0 58.3

EA Massbank MS2 þ RT (our) 28.7 (***) 61.9 (***) 73.8 (***) 83.6 (***) 27.3 (***) 61.6 (***) 72.9 (***) 80.7 (***)

MS2 þ RT (Chain-graph) 27.2 (***) 59.5 (***) 72.4 (***) 81.8 (***) 23.9 (***) 59.2 70.1 79.1 (***)

MS2 þ RT (MetFrag 2.2) 30.2 (***) 59.2 (***) 73.6 (***) 84.4 (***) 24.0 (***) 59.0 69.5 77.1

Only MS2 22.8 57.6 69.5 78.5 21.2 59.0 69.7 77.6

Note: Compares our score-integration framework (MS2 þ RT (our)), against the baseline (Only MS2), MetFrag 2.2 with predicted RT and the Chain-graph

model. The best performance for each dataset and ionization is indicated by bold-font. The stars (*) represent the significant improvement over the baseline calcu-

lated using a one-sided Wilcoxon signed-rank test on the sample top-k accuracies (P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***)).

Table 3. Pairwise test for significant improvement of the MS2 þ RT

score-integration methods: Our, MetFrag 2.2 and Chain-graph

Method Top-1 Top-20

(MS2þRT) Chain-graph MetFrag 2.2 Chain-graph MetFrag 2.2

Our 8:7 � 10�24 6:1 � 10�8 2:1 � 10�13 1:5 � 10�14

Chain-graph — n.s. — 8:1 � 10�04

MetFrag 2.2 4:3 � 10�08 — n.s. —

Note: We show the P-values for testing the improvement of the row over

the column method using a one-sided Wilcoxon signed-rank test. The test is

performed over all top-k accuracy samples (datasets and ionization). MetFrag

2.2 and Chain-graph could not significantly outperform our framework. P-

values � 0:05 are marked with ‘n.s.’.

Table 4. Top-k accuracies averaged across all datasets for two

MS2-scorers

MS2-scorers Method Top-1 Top-5 Top-10 Top-20

MetFrag MS2 þ RT 21.3 52.9 64.0 74.3

Only MS2 16.7 49.5 60.4 70.6

IOKR MS2 þ RT 26.7 52.1 62.5 70.3

Only MS2 25.1 49.5 60.3 67.6
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improve the identification performance in both cases; however the
improvement with IOKR scores is lower.

4.2.3 Influence of the candidate set

Here, we study the effect of two commonly used ways of defining
the candidate lists of molecular structures: first approach (‘All’)
includes all molecules with a matching exact mass to the list, and
the second approach (‘Correct MF’) only includes molecular struc-
tures matching the pre-determined MF [e.g. SIRIUS (Dührkop et al.,
2019) uses this approach]. To determine the effect of the candidate
set definition on our framework, we modify the CASMI dataset,
such that for a spectrum i only candidates are used that have the
same MFs as the correct structures. This leads to significantly
reduced candidate sets: For the positive mode spectra, the median
number of candidates decreases from 919 to 238 and for the nega-
tive ones from 420 to 58. For the Massbank data, we cannot do this
modification, as the candidates are already restricted to structures
with the correct MF. Table 5 shows that the baseline performance
using MetFrag MS2 scores (Only MS2) improves after filtering of the
candidates. Further improvement can be reached by using retention
order information (MS2 þ RT) even though the absolute improve-
ment is slightly lower than without candidate filtering. For IOKR,
we notice that RT information significantly improves the top-k
accuracies when all matching exact mass candidates are used,
whereas when the candidate sets only contain molecules with the
correct, i.e. ground truth, MF, using RT information can only im-
prove top-10 and top-20 accuracies.

4.3 Missing MS2

In Figure 3, we show the identification accuracy using our score-
integration framework compared to the baseline (Only MS) when
only some percentage of the MS features has an MS2 spectrum. The
features without spectra only use the precursor mass as MS informa-
tion (Section 3.6). We vary the percentage from 0% to 100% with
25%-point steps. The retention order weight D was optimized using
the 100% setting. At 0%, the score-integration framework only uses
the mass of the candidates and their predicted retention order for

the ranking. In the absence of MS2 information, we observe a high
performance gain for top-20. The more MS2 information we add,
the smaller the gain in top-20 accuracy using the retention orders.
The fact that RT is a weaker information than MS2 could explain
this observation. The more MS2 are available, the less additional in-
formation RT can add. For the top-1, there is constant improvement
for all MS2%’s.

5 Discussion

In this article, we have put forward a rigorous probabilistic frame-
work for the integration of MS-based candidate structure and reten-
tion order predictions. Our framework allows the use of any of the
popular models, such as CSI: FingerID, IOKR or Metfrag for scoring
candidate structures on MS data.

Our method takes into account the retention orders of all candi-
date structure pairs in distinct candidate lists through an approxi-
mated fully connected MRF model. It generally achieves higher
quality structural annotations of observed MS features than using a
single Markov chain as implied in the Bach et al. (2018) model. It
also improves on the method of Ruttkies et al. (2016), which uses
predicted RTs, in three out of four experiments. For the latter ap-
proach, we believe using the RankSVM scores instead of the pre-
dicted LogP values could improve the performance. Both measures
are proxies for retention behaviour and our results show that the
RankSVM predicts the retention order more accurately than the
LogP values (see Supplementary Table S2). We also demonstrate
that our framework improves the identifications, if only a subset of
the MS features come with an MS2 spectrum. The framework is
computationally efficient, e.g. ranking the candidates for a set of
N ¼ 75 MS features takes <4 min (see Section S.5), and can be
trained using modest-sized datasets.

The amount of improvement using RT information was shown
to depend on the dataset and MS2 scorer (here MetFrag or IOKR).
This indicates that RT information rather fine tunes the ranking
given by the MS2 scorer, e.g. by better tie-breaking. The underlying
factors could be ambiguities in the candidate sets that can be only be
resolved by RT or molecular features that cannot be predicted by
MS. Stereochemistry is an obvious factor, but annotations of stereo-
chemistry are not always provided for the RT databases limiting the
use of this information for training better retention order prediction
models. Thus improved modelling of stereochemistry features is an
important open problem (Witting and Böcker, 2020). A further re-
search direction could be to include the LC system’s configuration,
e.g. column or eluent, into the retention order prediction. As LC sys-
tems can be configured to separate certain molecular classes, this
could provide additional information to certain molecular candi-
dates. Also, using the LC peak shape to train a model directly pre-
dicting the retention order probabilities could be more accurate, e.g.
by incorporating RT variance. However, such data are currently not
part of the public RT databases.
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