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Abstract

Motivation: Predicting early in treatment whether a tumor is likely to respond to treatment is one of the most difficult
yet important tasks in providing personalized cancer care. Most oropharyngeal squamous cell carcinoma (OPSCC)
patients receive standard cancer therapy. However, the treatment outcomes vary significantly and are difficult to
predict. Multiple studies indicate that microRNAs (miRNAs) are promising cancer biomarkers for the prognosis of
oropharyngeal cancer. The reliable and efficient use of miRNAs for patient stratification and treatment outcome
prognosis is still a very challenging task, mainly due to the relatively high dimensionality of miRNAs compared to
the small number of observation sets; the redundancy, irrelevancy and uncertainty in the large amount of miRNAs;
and the imbalanced observation patient samples.

Results: In this study, a new machine learning-based prognosis model was proposed to stratify subsets of OPSCC
patients with low and high risks for treatment failure. The model cascaded a two-stage prognostic biomarker selec-
tion method and an evidential K-nearest neighbors classifier to address the challenges and improve the accuracy of
patient stratification. The model has been evaluated on miRNA expression profiling of 150 oropharyngeal tumors by
use of overall survival and disease-specific survival as the end points of disease treatment outcomes, respectively.
The proposed method showed superior performance compared to other advanced machine-learning methods in
terms of common performance quantification metrics. The proposed prognosis model can be employed as a sup-
porting tool to identify patients who are likely to fail standard therapy and potentially benefit from alternative tar-
geted treatments.

Availability and implementation: Code is available in https://github.com/shenghh2015/mRMR-BFT-outcome-

prediction.:

Contact: huali19@illinois.edu or xwang317@uic.edu

1 Introduction

Head and neck cancer is the fifth most common cancer in the United
States (Street, 2019), with an overall survival rate lower than 50%.
Although the incidence of other sub-sites of head and neck cancer
has decreased steadily in the past decades, the number of oropharyn-
geal squamous cell carcinoma (OPSCC) cases has increased signifi-
cantly (Ernster et al., 2007; Gao et al., 2013). Retrospective studies

conducted by the International head and neck Cancer Epidemiology
Consortium (INHANCE) have demonstrated that clinical bio-
markers have prognostic value in helping stratify OPSCC patients
into groups with varied risks of death or disease progression (Heck
et al., 2010; Winn, 2015). Human papillomavirus (HPV) is a known
driving oncogenic factor in oropharyngeal cancer, as well as a
significant prognostic biomarker for patient survival (Gillison
et al., 2008; Marur and Burtness, 2014). However, HPV-positive
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oropharyngeal cancer patients have similar rates of metastatic
spread to HPV-negative patients. The same is true for patient groups
stratified with other clinical biomarkers (e.g. sex, age, tumor TNM
stage and tumor size). There is an urgent need to determine oropha-
ryngeal cancer’s distinctive characteristics for patient stratification.

MicroRNAs (miRNAs) are a family of small non-coding RNA
molecules that collectively controls the expression of thousands of
protein-coding genes (Ambros, 2004; Chen et al., 2018). Multiple
studies indicate that miRNAs are promising biomarkers and play
critical regulatory roles in oropharyngeal and other human cancers
(Gao et al., 2013; Miller et al., 2015; Satapathy et al., 2017). Among
all human miRNAs, 533 are expressed in oropharyngeal tumors or
normal oropharynx, as revealed by analyzing the Cancer Genome
Atlas data (http://cancergenome.nih.gov/). Most reported miRNA
studies focused primarily on the early diagnosis of head and neck
cancer, but not the disease treatment outcome prognosis or survival
analysis. The survival analysis is either to directly predict the risk of a
patient/population, or to address the simpler binary classification
problem (survived—not survived). The reliable and efficient usage of
miRNAs for oropharyngeal cancer patient stratification with low
and high risks of treatment failure remains a challenging problem,
mainly due to the challenges described below. First, uncertainty of
the profiled miRNAs with the corresponding outcome labels exist
due to the heterogeneity of tumor tissues. Second, not all profiled
miRNAs are useful and some of them might even mislead the patient
stratification. Redundancy among the extracted miRNA biomarkers
and irrelevancy of the miRNAs to outcomes exist. Third, imbalanced
(skewed) dataset due to different treatment outcome rates can result
in higher false positive rates on the patient cases with outcomes in
the minor class. Fourth, relatively small training samples compared
to the high-dimensional miRNA feature space may result in a high
risk of over-fitting and decrease the prognosis performance on unseen
patient data. Sparse and robust prognostic miRNAs are desired to
stratify OPSCC patients for targeted treatment.

Prognostic miRNA biomarker identification can be considered as a
problem of feature selection that needs solutions to address the above-
mentioned challenges. Numerous feature selection methods have been
proposed in the past decades (Cheng et al., 2011; Kira and Rendell,
1992a; Kwak and Choi, 1999; Lin and Jeon, 2006; Sun, 2007). Some
reported methods aimed to select informative features by considering fea-
ture-label relevance. For examples, Kira and Rendell (1992a) and Sun
(2007) proposed RELIEF (RELevance In Estimating Features) and I-
RELIEF (iterative RELIEF) algorithms to weight the relevance of features
with class labels in terms of Euclidean distance for feature selection.
Wang et al. (2012) employed feature-label correlation coefficients to se-
lect features, while Gao et al. (2013) utilized a cox proportional hazards
model to select outcome-relevant miRNAs.

Differently, other methods have been proposed to select fea-
tures by considering both feature-label relevance feature-feature re-
dundancy. For examples, Eid et al. (2013) calculated Pearson
correlation coefficients between features and labels, which were
employed to select features with high feature-label relevance and
low feature-feature redundancy based on a sequential-searching
strategy. Hall (2000) have proposed a correlation-based method to
rank the redundancy of feature subsets for feature subset selection
instead of individual feature selection. Peng et al. (2005) have
designed an iterative minimal-redundancy-maximal-relevance
(mRMR) evaluation strategy, which employed mutual information
to characterize the relationships between features and labels for
feature selection. The statistical correlation measurements investi-
gate variables’ non-independence with their products. The features
selected based on these measurements might still yield stocastically
dependent. Instead of considering the linear covariance, mutual in-
formation evaluates variables’ non-independence with their joint
probability distributions, which provides more thoughtful evalu-
ation of variables’ dependence. Therefore, mutual information be-
tween features and labels are considered as a powerful tool to
select features with low feature-feature redundancy and high fea-
ture-label relevance.

The above-mentioned methods, which exploited intrinsic feature-
label relevance and feature-feature redundancy for feature selection,

are suitable for a filtering (or embedding feature selection) situation
without specifying following classifiers. However, only considering
the feature-feature redundancy and feature-label relevance might se-
lect redundant and label-irrelevance features for specific classifiers
and might increase the potential over-fitting risk on unseen data and
decrease the classification performance. The majority of reported
methods aimed to select informative features which optimize a pre-
determined classifiers (Kennedy, 2006; Lian et al., 2015; Mi et al.,
2015; Tang et al., 2014). The informativeness of the selected features
is also evaluated by the performance of the classifiers. Commonly,
these methods select features and optimize the performance of the
classifier simultaneously through the minimization of loss functions
with a set of training dataset. When the dimension of the feature
space is high and the size of training dataset is relative small
(Loughrey and Cunningham, 2004), using all available features to
optimize a loss function increases the computational burden and
yields sub-optimization due to the feature-feature redundancy and
feature-label irrelevance described above. Sparsity learning methods
(Lian et al., 2015; Tan et al., 2010) have been employed to utilize
prior knowledge for feature selection. These methods might still se-
lect irrelevant and redundant features without considering intrinsic
properties of feature-label relevance and feature-feature redundancy.

Other reported methods consider both feature intrinsic proper-
ties and classification performance (El Akadi et al., 2011; Ge et al.,
2016; Lian et al., 2016b; Wen et al., 2019). For example, Random
Forests or Random Survival Forests (RSF) (Breiman et al., 1984; Lin
and Jeon, 2006) are state-of-the-art machine-learning methods
which are known for handling large dimensionality datasets and
performing the feature selection and survival prediction. However,
RSF methods select informative features individually instead of
determining the subset of features simultaneously. In a two-stage
feature selection method proposed by Ge et al. (2016), a subset of
informative features was first determined through the evaluation of
feature-label relevance and feature-feature redundancy with a metric
of maximal information coefficient (MIC). The feature subset was
then refined by optimizing a pre-defined k-nearest neighbors (K-
NN) classifier based on a best-first search strategy (Pearl, 1984).
Lian et al. (2015) employed RELIEF method (Kira and Rendell,
1992a) to pre-select a feature subset based on feature-label rele-
vance, and then refined the feature subset by optimizing an eviden-
tial K-NN classifier with Belief Function Theory (BFT) (Denoeux,
2008). RELIEF method was employed to select informative features
individually based on feature-label relevance. However, redundant
features might still be selected, which can affect the final classifica-
tion performance. To the best of our knowledge, no reported meth-
ods have been proposed to address the above-mentioned four
challenges.

In this study, a prognosis model was proposed to address the
above described challenges to select informative feature subset and
optimize a binary classifier for patient stratification, which was
motivated by the previous work (Lian et al., 2015; Wu et al., 2019).
The proposed model was employed to reliably stratify subsets of
150 OPSCC patients with low and high risks of treatment failure,
and the performance was compared to other state-of-the-art meth-
ods. The potential applications of the proposed method was dis-
cussed as well.

2 Materials and methods

The proposed prognosis model, shown in Figure 1, included three
steps of: (i) mRMR-based feature pre-selection, (ii) BFT-based fea-
ture refinement and (iii) evidential K-nearest neighbors (EK-NN)
classifier. Given a training dataset including tumor samples with
profiled miRNAs and treatment outcomes, the mRMR-based
method first selected a subset of miRNAs that are most relevant to
outcome labels and yield less redundancy with each other. The belief
function theory (BFT)-based feature refinement method refined the
pre-selected miRNAs to a highly sparse feature subset that addresses
the issues of small and imbalance training datasets and class label
uncertainty through the optimization of the pre-defined classifier.
The EK-NN classifier was employed as the pre-defined classifier for
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feature refinement and was trained together with the feature refine-
ment. The refined miRNA feature subset and the trained EK-NN
classifier were employed to stratify unseen patients into groups of
low or high-risk of treatment failures.

2.1 Dateset preparation: miRNA expression profiling
One hundred fifty oropharyngeal squamous cell carcinoma (OPSCC)
patient cases were employed to demonstrate the model performance.
The patient cases have been collected based on an Institutional Review
Board (IRB) protocol approved by the Human Research Protection
Office of the Washington University School of Medicine in St. Louis.
All the patient cases have been treated with radiation therapy. Half of
them have also received surgery and/or chemotherapy. The miRNA ex-
pression profiling has been performed on these FFPE tumor samples
using our established real-time RT-PCR method (Wang, 2009) to de-
termine 96 cancer-related miRNAs based on the dysregulation of these
miRNAs in various human cancers. Sections from each tumor sample
were stained with hematoxylin and eosin (H&E) and reviewed inde-
pendently by two study pathologists at Washington University to con-
firm diagnoses. The expression levels of individual miRNAs profiled
from each tumor sample were normalized for the study. More details
of the profiling procedure was explained by Gao et al. (2013).

The age of patient cases at the time of diagnosis ranged from 32
to 87 with an average of 56.5 years. The patients are predominantly
Whites (86%) and the rest patients are Africa-American (12%) and
Native Americans and Asians (2%). All the patients were treated with
radiotherapy (definitive or post-operative). Overall survival (OS) and
disease-specific survival (DSS) were considered as two different types
of treatment outcomes. OS period was defined as the time in between
the date of treatment received and the date of death, which ranges
from 67-4268 days. DSS is a net survival measure representing cancer
survival in the absence of other causes of death, which estimates the
probability of surviving using the definition of specific cause of death.
DSS period was defined as the time between the date of treatment
received and the date the patient survives without any symptoms of
the OPSCC, which ranges from 1 to 4268 days. When stratifying the
outcomes based on OS, 99 cases have the labels of OS and the rest 51
cases have the labels of non-OS. When stratifying the outcomes based
on DSS, 96 cases have the labels of DSS and the rest 54 cases have the
labels of non-DSS. Without loss of generality, the label of OS can be
represented as x1 and the label of non-OS can be represented as x2

when stratifying patient cases based on OS. The label of DSS can be
represented as x1 and the label of non-DSS can be represented as x2

when stratifying patient cases based on DSS. The labels x1 and x2

will be used in the following sections for method description. All pa-
tient cases were de-identified prior to analysis.

2.2 mRMR-based miRNA biomarker pre-selection
An iterative minimal-redundancy-maximal-relevance (mRMR)
evaluation strategy (Peng et al., 2005) was employed to pre-select
profiled miRNAs based on the feature-label relevance and feature-
feature redundancy. Let X ¼ fx1; x2; . . . ; xKg represent the set of K
profiled miRNAs, X ¼ fx1;x2g represent the set of outcome labels
related to X, rðxk1

;xk2
Þ is defined as the similarity of any two fea-

tures xk1
and xk2

; k1; k2 2 f1;2; . . . ;Kg, and v(x) is defined as the

relevance of feature x to the outcome labels, x 2 X. Both rðxk1
;xk2
Þ

and v(x) are defined as the discrete mutual information (Ding and
Peng, 2005; Ross, 2014; Steuer et al., 2002):

rðxk1
; xk2
Þ ¼

X
Ck1

X
Ck2

pðxk1
;xk2
Þ log

pðxk1
;xk2
Þ

pðxk1
Þpðxk2

Þ ; (1)

vðxÞ ¼
X
Cx

X
Cx

pðx;xÞ log
pðx;xÞ

pðxÞpðxÞ ; (2)

where Ck1
; Ck2

, Cx and Cx represent all possible states that a meas-

urement performed on xk1
; xk2

, x and x (x 2 X), respectively. Here,
pðxk1

; xk2
Þ represents the joint probabilistic distribution of xk1

and
xk2

, while pðx;xÞ the joint probabilistic distribution of x and x, and

p(x) and pðxÞ the marginal probabilistic distributions of x and x, re-
spectively. Given X, pðxk1

; xk2
Þ; pðx;xÞ; Ck1

; Ck2
, Cx and Cx are

estimated by use of curve fitting (Ding and Peng, 2005; Ross, 2014).
A subset of features S � X is selected by minimizing a loss function
LmðSÞ, which is defined as:

LmðSÞ ¼ RdðSÞ � RvðSÞ; (3)

where RdðSÞ is defined as the mean of redundancies between any
two features in S, and RvðSÞ is defined as the mean of relevance be-
tween any feature x in S and outcome label variable x:

RdðSÞ ¼
1

jSj2
X

xk1
;xk2
2S

rðxk1
; xk2
Þ; (4)

RvðSÞ ¼
1

jSj
X
x2S

vðxÞ: (5)

Given a training dataset, a subset S� yielding high feature-label

relevance and low feature-feature redundancy is determined by min-
imizing LmðSÞ in Equation 3 with an incremental searching strategy

shown in Algorithm 1.

2.3 BFT-based miRNA biomarker refinement
The goal of feature refinement is to further select a feature subset S��

from the S� determined by mRMR method described above. This re-

finement process relates to the performance of a classifier. The fea-
ture refinement process was designed based on BFT theory

(Dempster, 2008; Shafer, 1976; Wu et al., 2019), considering its
ability of reasoning with uncertain and imprecise information by
aggregating partial and uncertain evidences. BFT is a generalization

of both probability theory and set-membership approaches, and
closely relates to imprecise probability (Walley, 2000) and random

sets (Nguyen, 2006). The traditional Bayesian classification consid-
ers the probability of a sample’s label belonging to each class, but
BFT-based feature refinement method considers not only the prob-

ability of a sample belonging to each single label but also belonging
to the subsets of all labels, which can deal with class label impreci-
sion and uncertainty (the challenges described in this study).

Fig. 1. Framework of the proposed prognosis model. The squares in each step represent the miRNA features. The white biomarkers represent those non-selected features. The

mRMR-based feature selection method first selects those blue and green biomarkers which yield high feature-class relevance and low feature-feature redundancy. The BFT-

based feature refinement method further determines those sparse biomarkers (green) which yield low feature-label uncertainty and high classification accuracy
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In this study, four possibilities of a sample’s class label were con-
sidered and defined as A � fx1;x2;X;1g, in which 1 represents
an empty label set. In this way, the uncertainty of a sample’ label is
handled more precisely than only separating the possibilities of a
sample’s label belonging to either x1 or x2. Let x denote the label of
a sample X, the evidence regarding the actual value of x can be rep-
resented by a mass function m on X, which was defined from the
power set 2X to the interval ½0;1�:X

A2X
mðAÞ ¼ 1; (6)

where m(A) denotes a degree of belief attached to the hypothesis
that ‘x 2 A’. The mass function induced by a sample Xi, which sup-
ports the assumption that another sample Xj has the same class label
of Xi, is defined as:

fmi;jðfxcgÞ ¼ ae�ccd2
i;j

mi;jðXÞ ¼ 1� ae�ccd2
i;j

; (7)

where c ¼ f1; 2g, a and cc are the weight factors, and di;j represents
the distance between Xi and Xj:

d2
i;j ¼

XV

v¼1

kvd2
ij;v; (8)

where dij;v ¼ jxi;v � xj;vj represents the Euclidean distance between the
vth feature of Xi and that of Xj, 1 � v � V, and kv represents an elem-
ent in K. Large dij;v represents negligible information provided by the vth
feature of Xi to Xj. Given a set of N samples Xn, 1 � n � N, which can
be separated into two groups of samples, H1 and H2, with different labels
x1 and x2, respectively. The mass function mHc

i induced by the set of N
samples, which supports the assumption that the sample Xi has the same
class label of Hc, is defined as:

Algorithm 1: mRMR-based miRNA feature pre-selection strategy

(mHc

i ðfxcgÞ ¼ 1�
Yn¼1;...;N

Xn2Hc

ð1� e�ccd2
i;n Þ

mHc

i ðXÞ ¼
Yn¼1;...;N

Xn2Hc

ð1� e�ccd2
i;n Þ

; (9)

where c ¼ f1;2g; mHc

i ðXÞ ¼ 1 when Hc is empty. A global mass func-
tion Mi regarding the class membership of Xi can be calculated as:

(Miðfx1gÞ ¼ mH1

i ðfx1gÞ �mH2

i ðXÞ
Miðfx2gÞ ¼ mH2

i ðfx2gÞ �mH1

i ðXÞ
MiðXÞ ¼ mH1

i ðXÞ �m
H2

i ðXÞ
Mið1Þ ¼ mH1

i ðfx1gÞ �mH2

i ðfx2gÞ

: (10)

Defining a binary vector K with the size of the number of ele-
ments in S�, the goal of feature refinement process is to determine
the value of an element k in K to be either 0 or 1. In the determined
K, 1 represents the corresponding feature in S� was selected, while 0
represents the feature was not selected. The refined feature subset
S�� is those features corresponding to k¼1. Given the definition of
mass function and global mass function, each k in K can be deter-
mined through the minimization of a loss function LbðKÞ:

LbðKÞ ¼ LerrðKÞ þ LuncertainðKÞ þ bjjKjj0: (11)

The first item LerrðKÞ in LbðKÞ measures the mean squared error
between the predicted probability scores and the outcome labels in
the feature subspace determined by K. Here LerrðKÞ was defined as:

LerrðKÞ ¼
1

N

XN
n¼1

X2

c¼1

ðMnð xcf gÞ � yn;xc
Þ2; (12)

where MnðfxcgÞ represented a global mass function that quantifies
the level of evidence that sample Xn has class label of xc, yn;x1

¼ 1
and yn;x2

¼ 0 when the label of Xn was x1, and yn;x1
¼ 0, and

yn;x2
¼ 1 when the label of Xn was x2.

The second item LuncertainðKÞ in LbðKÞ was defined as:

LuncertainðKÞ ¼
1

N

XN
n¼1

ðMnðXÞ2 þMnð1Þ2Þ; (13)

where Mnð1Þ defined in Equation (10) measures the conflict in the
neighborhood of Xn, and MnðXÞ measures the imprecision regarding
the class membership of Xn (Wu et al., 2019). The item Lerr and
item Luncertain work together to select the features which can correct-
ly estimate samples’ labels and penalize a feature subset that results
in conflict and imprecise evidence. The features are selected by con-
sidering both the uncertainties of features and class labels and other
issues through the training process.

Last term bjjKjj0 is a sparsity constraint, in which jjKjj0 ¼
PV
i¼1represents the number of non-zero entries in K and b is a scalar that

controls the strength of the sparsity penalty. This term forces the
selected miRNA feature subset to be sparse in order to decrease the
over-fitting risk on unseen data, and lead to high classification ac-
curacy and small overlaps between different classes.

2.4 EK-NN classifier for patient stratification
The EK-NN classifier (Denoeux, 1995; Denœux and
Kanjanatarakul, 2016; Lian et al., 2016a; Liu et al., 2017; 2018)
was employed as the pre-defined classifier for the feature refinement
and the final classifier for stratifying unseen data as well. The origin-
al voting K-NN (Dudani, 1976) assigns a sample into the class repre-
sented by its majority nearest neighbors in the training set without
concerning the dissimilarity (distance) between the sample and its
neighbors. To endow the K-NN method with the capability to con-
sider the sample dissimilarity to better handle the uncertain informa-
tion, the EK-NN rule provides a global treatment of partial
knowledge regarding the class membership of training patterns.
Ambiguity and distance reject options are also taken into account
based on the concepts of lower and upper expected losses (Quost
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et al., 2011). The EK-NN method has outperformed other tradition-
al K-NN methods in many situations when using the same informa-
tion (Zouhal and Denoeux, 1998).

The parameters a and cc in Equation (7) were determined along
with the minimization of the loss function defined in Equation (11).
The loss function LbðKÞ was minimized by use of an integer genetic
algorithm (Damousis et al., 2004). The determined parameters a
and cc were then employed to calculate the mess-functions in
Equation (7) which were employed to measure the differences
(mass-function based distances) of a given sample to its neighbors
and stratify it. In addition, to overcome the challenge of feature se-
lection with imbalance data, an adaptive synthetic sampling
(ADASYN) (He and Garcia, 2008) was employed to rebalance data
by generating synthetic minority class samples according to their dis-
tribution. The key idea of ADASYN is to create synthetic samples
according to the distribution of the minority class samples, where
more samples are generated for the minority class samples that have
higher difficulty in learning. The level of difficulty in learning for
each minority samples is measured by the ratio of the majority class
samples in each minor class sample’s k-nearest-neighborhood. In
this study, five neighbors are considered for the minor class data re-
balance according to the processed data. ADASYN outputs a bal-
anced training dataset via the procedure described in the literature
(He and Garcia, 2008; Lian et al., 2015).

2.5 Prognosis model training and validation
In this study, overall survival (OS) and disease-specific survival
(DSS) were employed as the end points of treatment outcome, re-
spectively. The proposed method was trained and tested separately
to stratify low-risk and high-risk patients based on either OS or
DSS. Of all 150 samples, 101 samples were randomly selected as the
training set while the rest 49 samples were considered as the testing
set based on OS labels. The training dataset included 40 OS positive
and 61 negative cases, and the testing dataset included 11 positive
and 38 negative cases, respectively. Positive cases represent survival
and negative represents not. The same separation strategy was also
employed to determine training and testing datasets based on the
DSS label, of which 41 positive and 60 negative cases were included
in the training datasets and 13 positive and 36 negative cases were
included in the testing datasets. Five-fold cross validation was
employed to train and validate the proposed method. The training
data was used alone without involving any testing data. The hyper-
parameters, a, b and the number of neigbors in EK-NN, were opti-
mized individually through the line search. The model that achieved
the lowest validation loss, which is the average loss over the folds,
was employed for the final evaluation on the testing data. In add-
ition, the searching range of the parameters was summarized in
Table 1. The range is determined considering that (i) b should be
much less than 1 for reasonable sparsity of features, (iii) a should be
close to 1 considering small uncertainty of features and labels and
(iii) the numbers of neighbors is chosen from the commonly setting
of that in K-NN methods.

The prediction accuracy, F1 score, the area under the receiver
operating characteristic curve (AUC), and Kalpan Meier survival

curves (Bland and Altman, 1998) were employed to evaluate the per-
formance of the proposed method. The prediction accuracy is

defined as: Accuracy ¼ TpþTn

TpþTnþFnþFn
, and the F1 score is defined as:

F1 ¼ 2Tp

2TpþFpþFn
. Here Tp is the number of positive cases that are cor-

rectly predicted as positive ones, Tn is the number of negative cases
that are correctly predicted as negative ones, Fp is the number of the
cases that are predicted to be positive but in fact are negative ones,
and Fn is the number of the cases that are predicted to be negative
but in fact are positive ones. The F1 score is an effective metric for
evaluating prediction performance when having imbalanced testing
dataset. The ROC curve and the area under the ROC curve (AUC)
were also employed to visualize the stratification performance. The
AUC was calculated based on the ROC curves fitted by use of the
tools developed by Metz (1999). The Kaplan Meier curves were
plotted by use of Kaplan–Meier analysis methods (Bland and
Altman, 1998) and the open-source software (Creed et al., 2020).

3 Results

Figure 2 showed the performance of the proposed method on strati-
fying patient cases based on OS and DSS as the endpoints of the out-
come, respectively. It can be observed that the proposed method
achieved high performance. The proposed model has been further
evaluated through the comparison with other state-of-the-arts meth-
ods. The results were shown in Figures 3 and 4. The first compared
method is the cox proportional hazards regression (CoxReg) analy-
ses-based method (Cox, 1972; Gao et al., 2013), which is one of the
most popular regression techniques for survival analysis. The BFT-
based evidential forward feature selection (EFS-BFT) method (Lian
et al., 2015), and the RELIEF-based BFT (RELIEF-BFT) method
(Lian et al., 2015) were also compared to the proposed mRMR-BFT
method. In the EFS-BFT method, a BFT-based feature selection
method was directly applied to all profiled miRNA features to select
a sparse subset. In the RELIEF-BFT method, the RELIEF algorithm
(Kira and Rendell, 1992b) was employed to pre-select informative
features based on feature-label relevance, and then BFT-based fea-
ture refinement was applied to determine the final sparse subset of
miRNA features. In the mRMR-BFT method, the feature set selected
by the mRMR method was refined to a sparse feature set by use of
the BFT method. The EK-NN classifier was employed as the pre-
defined classifier to train all these compared methods excluding the
CoxReg method. The EK-NN classifier, which was trained by use of
all profiled features directly, was also compared to demonstrate the
significance of feature selection process. The same training and test-
ing data separation were employed for other compared methods for
fair comparison. The parameters in all methods were optimized sep-
arately to achieve the best performance of each. The comparison
results show that the proposed mRMR-BFT method achieved higher
performance in terms of the metrics of prediction accuracy, AUC
and F1 score.

Table 1. The parameters to be determined through the training

process

Parameters Range of settings

b in Equation 11 determined from

f0:001; 0:01; 0:02; 0:05; 0:07; 0:1g
No. of the neighbors in

EK-NN

determined from f5; 7; 9; 11g

a determined from f0:8; 0:85; 0:9; 0:95g
cc ¼ 1

dc
2 and determined through loss function

minimization,

where dc
2 represents the mean distance

between any two samples with the same xc

Fig. 2. Performance of the proposed method evaluated by use the matrices of

Accuracy, AUC and F1 score and based on the outcome labels of OS (a) and DSS

(b), respectively
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The effectiveness of the minor class data re-balance has been
evaluated. Figure 5 showed the performance of the proposed
method with and without data imbalance. In addition, the effective-
ness of minor data re-balance was evaluated with the K-NN classi-
fier. The results showed that minor class data re-balance improved
the classifier performance on patient stratification. The effectiveness
of the feature pre-selection process to improve the stratification

performance of the learned EK-NN classifier was investigated.
Figure 6 showed the prediction performance of the learned EK-NN
prediction model by use the proposed mRMR-based method and
four other pre-selection methods. These compared methods, which
are independent to the classification performance, include RELIEF
(Kira and Rendell, 1992a), mutual information maximization
(MIM) (Fano and Hawkins, 1961) and mutual information feature
selection (MIFS) (Battiti, 1994), and the random-forest method (Lin
and Jeon, 2006). For fair comparison, a BFT-based feature refine-
ment method was employed to refine the features pre-selected by
these three methods, and the EK-NN-based classifier was employed
as the pre-defined classifier for outcome prediction. The BFT
method was directly applied to all profiled miRNA features to select
a sparse subset to demonstrate the performance without any feature
pre-selection. The parameters in all methods were optimized to
achieve the best performance of each. The proposed mRMR-BFT
method showed superior performance by selecting features consider-
ing both high feature-label relevance and low feature-feature
redundancy.

The BFT-based feature refinement method was compared with
other two widely used feature methods, the genetic algorithm (GA)
(Davis, 1991) and the binary particle swarm optimization (BPSO)
(Kennedy and Eberhart, 1997) methods. Both GA and BPSO meth-
ods require a pre-defined classifier for feature selection. Here, the
mRMR-based selection method was uniformly employed as the fea-
ture pre-selection method for fair comparison. As shown in Figure
7, the proposed mRMR-BFT based method achieves superior predic-
tion performance in terms of Accuracy, AUC and F1 score, com-
pared to the other two methods.

The 5-year Kaplan–Meier survival curves were plotted for the
prediction results of the proposed mRMR-BFT method and the
other five compared methods (CoxReg, EFS-BFT, RELIEF-BFT,
MIM-BFT and MIFS-BFT). The patients in the testing cohort were
stratified into either the high-risk group or low-risk group based on
the same threshold risk score determined by the training cohort of
each of the compared methods. As shown in Figures 8 and 9, the
proposed mRMR-BFT method can stratify high-risk and low-risk
patient groups more accurately compared to the other five methods.

Table 2 shows the selected informative miRNA features by use
of the proposed method and the other four methods: CoxReg, EFS-
BFT, RELIEF-BFT and mRMR-only. In the CoxReg method (Gao
et al., 2013), a subset of 6 miRNA features were selected by use of
multi-variate cox regression, which were employed to learn a cox re-
gression model for stratifying patients into high-risk and low-risk
groups. In the mRMR method, 13 miRNA features were selected
and employed to train the EK-NN classifier directly without per-
forming feature-refinement. A total of 5 and 8 features were selected
by the EFT-BFT and RELIEF-BFT methods, respectively. In the pro-
posed mRMR-BFT method, 13 miRNAs were pre-selected by the
mRMR method, and then were refined to 6 features by use of the
BFT-based refinement process through the optimization of the EK-
NN classifier. It showed that less features were selected and the fea-
ture sparsity is high.

4 Discussion

In this study, a novel and systematic machine learning-based strat-
egy was proposed to reliably stratify subsets of OPSCC patients
with low and high risks of treatment failure. The proposed strategy
included a two-stage feature selection procedure and an EK-NN
classifier to address the challenges described above in Section 1. The
model can serve as a clinical decision-making tool to (i) readily iden-
tify the subset of patients with low risk that would benefit from de-
intensifying treatment, and (ii) accurately identify high risk patients
for whom de-intensification would be detrimental and who may re-
quire further intensification. The designed method has several inno-
vations. First, by use of appropriate methods to address the
challenges in each step of outcome prediction, the overall perform-
ance is improved which is demonstrated by the prediction results
when compared with other methods. The mass functions considered
the possibilities of a sample belong to each single label and the

Fig. 3. Performance comparison of the proposed method and five other methods.

The performance was evaluated by use of ROC curves and AUC values and consid-

ering the overall survival OS (a) and disease-specific survival DSS (b) as the outcome

labels, respectively

Fig. 4. Performance comparison of the proposed method and five other methods.

The performance was evaluated by use of the matrices of Accuracy, AUC and F1

score and based on the outcome labels of OS (a) and DSS (b), respectively

Fig. 5. Comparison of the proposed method with and without minor-class data bal-

ance. The classical K-NN method with and without data balance were compared as

well

Fig. 6. Comparison of the mRMR-based feature pre-selection and other four feature

pre-selection methods. The selected features from the five methods were employed

to refine the features and the EK-NN classifier. BFT-only feature selection method

was also compared. The performance was measured by use of the metrics of

Accuracy, AUC and F1 score and based on the outcome labels of OS (a) and DSS

(b), respectively

A novel systematic approach for cancer treatment prognosis with microRNAs 3111

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3106/6261310 by guest on 20 April 2024



combinations of multiple classes and addressed the uncertainty of
features and labels of samples. In addition, the model was designed
with a modularized structure, which facilitates the change of any
one or several modules for classification performance evaluation/
comparison and facilitate the incorporation of other state-of-the-art
modules. The modularized design can provide a seamless integration
of each component.

Some future research directions can be summarized as below.
First, the proposed method was to train a prediction model for pre-
dicting oropharygneal cancer treatment outcome and patient stratifi-
cation. It forms a basis for biomarker and/or feature-based cancer
treatment outcome prediction, and can be generalized to other type
of cancer treatment outcome prediction scenarios. It was observed
that the features selected (retained) from the total of 96 miRNA

features show great variability in this study (Table 2). All these 96
miRNAs have been proved to be related to OPSCC outcomes. The
selected feature subset relates to feature selection methods and clas-
sifiers. Further radiobiology investigation might be required to pro-
vide more information for future study. The proposed method
should be further evaluated when larger clinical dataset is available.
The performance improvement by using data-rebalancing process
should be investigated with large datasets as well.

Second, radiomics, the high-throughput extraction and ana-
lysis of numerous features from medical images, is a highly prom-
ising approach for characterizing tumor phenotype, which
provides an unprecedented opportunity to support and improve

Fig. 7. Comparison of the BFT-based feature refinement method and two other feature refinement methods. The features selected by mRMR methods were employed as the in-

put of three methods (a). The performance measured by use of metrics of Accuracy, AUC and F1 score (a). The ROC curves and corresponding AUC values by use of OS (b)

and DSS (c) as the outcome labels

Fig. 8. Kaplan–Meier survival analysis to evaluate the performance of the proposed

method and other five compared methods by use of OS as outcome labels

Fig. 9. Kaplan–Meier survival analysis to evaluate the performance of the proposed

method and other five compared methods by use of DSS as outcome labels
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personalized clinical decision-making (Wu et al., 2019; Yip and
Aerts, 2016) For several tumor sites, imaging biomarkers have
shown promise in accurately separating favorable and unfavor-
able prognosis patients. Clinic features, such as gender, age and
tumor stage, may also convey useful information for outcome
prediction. However, current efforts to utilize high-dimensional
multimodal biomarkers for early disease prognosis and treatment
outcome prediction have also been compromised due to the
above-mentioned challenges. Designing multimodal biomarker-
based prognosis model can be potentially useful to learn a power-
ful and robust model for predicting treatment outcomes of oro-
pharyngeal cancer and other cancer types. The thoughtful
investigation of the correlation, independence and complemen-
tary nature of multimodal biomarkers (imaging, genomics, clinic-
al and histopathologic biomarkers) remains unexplored, and
requires further studies.

Third, deep learning methods have been applied in various fields
and showed promising results. However, supervised deep learning
methods have not been employed in this study, mainly because that
the number of training samples is too small to well train a deep neur-
al network, and data from single-modal has been employed, which
will severely decrease the generalization ability of deep learning
method. To study how to process multimodal data with deep learn-
ing method is a challenging task but an interesting research work
that might provide more robust patient stratification and outcome
prognosis. In addition, it will be interesting to assess the inform-
ativeness of the features extracted by use of deep learning methods
and compare their performance with that of the features selected by
traditional machine-learning methods.

5 Conclusion

A novel and systematic machine learning-based strategy was pro-
posed to learn a prediction model with miRNA features for the
stratification of oropharyngeal cancer patients with low and high
risks of treatment failure. The prognosis model can be employed as
a supporting tool to identify patients who are likely to fail standard
therapy and potentially benefit from alternative or targeted
treatments.
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